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Abstract
A fundamental idea behind all state-of-the-art
deep network models are shortcut connections
which allow layers to perform identity mappings,
passing their input almost unaltered to their out-
put. Although this functionality allows informa-
tion to flow more freely through the network,
the details of the shortcut connection have pro-
found impact on the capacity of learning iden-
tity mappings. This paper proposes Residual
Gates, a novel and simple gating mechanism for
shortcut connections that can be applied to any
network model. The proposed design leverages
two aspects: a single scalar parameter controls
the gate; the new output is a weighted sum of
the input and the original layer’s output. A di-
verse set of experimental results show the ad-
vantages of Residual Gates, including superior
performance in all models and all datasets eval-
uated (yielding competitive results for CIFAR-
10 and CIFAR-100), robustness to layer removal
on the trained model (only 8% accuracy decrease
after removing 60% of layers), competitive per-
formance without adopting batch normalization.
The paramount success of Residual Gates stems
from the simplicity in learning identity map-
pings, allowing the optimizer to push informa-
tion much more freely through the network and,
thus learn better representations.

1. Introduction
Recent advancements in neural networks have show-
cased the unprecedented success in increasing the net-
work’s depth. Deep network models such as Residual
Networks (He et al., 2016a) and Highway Neural Net-
works (Srivastava et al., 2015) allow designing networks
with hundreds of layers, and have led to breakthroughs in
several computer vision applications.

The potential benefits of increasing network depth seems
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unquestionable, supported by both theoretical and practical
findings. On the theoretical side, increasing a network’s
depth contributes exponentially more to its representa-
tional capacity in comparison to increasing its width (Eldan
& Shamir, 2016; Telgarsky, 2016; Bianchini & Scarselli,
2014; Montúfar et al., 2014). Moreover, most models al-
low layers to learn the identity function, making it possible
to increase depth without compromising performance (He
et al., 2016a). In practice, deep networks have been highly
successful in many Machine Learning applications, and are
the leading architectures on competitions such as ILSVRC
(He et al., 2016a; Szegedy et al., 2015).

These observations may suggest that stacking more layers
to a network will always lead to performance improve-
ments. However, this behavior is not observed in prac-
tice, even for recently proposed models. The problem lies
in the fundamental challenge of training deep networks.
There are many obstacles to an effective training, including
vanishing/exploding gradients (Bengio et al., 1994) due to
saturating activation functions and poor weight initializa-
tion (Glorot & Bengio, 2010a). Techniques such as unsu-
pervised pre-training (Bengio et al., 2016), non-saturating
activation functions (Nair & Hinton, 2010) and normaliza-
tion (Ioffe & Szegedy, 2015) target these issues, but alone
are insufficient for training networks with over a hundred
layers.

A key idea behind recent deep network models, such as
Residual Networks (He et al., 2016a) and Highway Neural
Networks (Srivastava et al., 2015), is to allow information
to flow more freely through the network. Usually achieved
by using a shortcut connection between layers, this clever
layer design greatly facilitates optimization due to shorter
paths between the lower layers and the network’s error
function, providing stronger supervision (Huang et al.). In
particular, these models can more easily learn identity map-
pings, converting the layer’s input into an output that is
almost unaltered. As a consequence, these much deeper
networks can learn more abstract representations, and have
been highly successful in many computer vision tasks (Fe-
ichtenhofer et al., 2016; Dai et al., 2016).

Although present in such recent models, the operational
details of shortcut connections vary significantly among
them. For example, in Highway Neural Networks the short-
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Figure 1. Adding Residual Gates to a plain network. The key dif-
ference with Highway Neural Networks is that only a scalar (k) is
used to regulate the gates instead of a tensor.

cut connection suffers a non-linear transformation that de-
pends on additional parameters and incoming data, while
in pre-activation Residual Networks the input traverses the
shortcut connection unaltered. In particular, the details of
shortcut connections has profound impact on learning iden-
tity mappings. In Highway Neural Networks, learning a
true identity mapping is non-trivial since the gating mech-
anism depends on the incoming data, while for Residual
Networks it suffices to learn an all-zero tensor.

Intuitively, shortcut connections should facilitate learning
identity mappings without hindering network performance.
This work approaches this problem by proposing Resid-
ual Gates, a novel mechanism to handle shortcut connec-
tions. It consist of a simple linear gating mechanism which
is added to a network layer, as illustrated in Figure 1. It
introduces a single scalar parameter, k, and can be ap-
plied to any network model, including Residual Networks.
Note that both the shortcut and residual connections are
controlled by gates parameterized by a scalar k. When
g(k) = 0 we have a true identity mapping, while when
g(k) = 1 the shortcut connection does not contribute to the
output.

Figure 2 illustrates Residual Gates used on ResNets.
Note that the residual layer simply becomes u =
g(k)fr(x,W ) + x, where fr denotes the layer’s residual
function. Thus, the shortcut connection allows the input to
flow freely through the layer without any interference from
g(k). However, the residual function fr is modulated by
g(k) which can amplify or diminish its signal relative to
the shortcut.

In what follows we provide empirical and theoretical sup-
port for the advantages of Residual Gates. In particular, we
show:

• Easier learning of identity mappings: in comparison
to Highway Neural Networks and Residual Networks,
Residual Gates can more easily learn identity map-
pings. We provide some theoretical support for this
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Figure 2. Adding Residual Gates to a ResNet. Note that the resul-
tant layers have unaltered shortcut connections, while g(k) mod-
ulates the residuals fr(x,W ).

intuitive argument in Section 2.

• Superior performance: adding Residual Gates im-
proves the performance of network models. This
was observed in all different models (Plain Networks,
Residual Networks, and Wide Residual Networks),
different network depths, and different datasets
(MNIST, CIFAR-10, and CIFAR-100) evaluated (see
Section 3).

• Robustness to layer removal: Residual Gates increase
the robustness of networks to layer removal. In a
particular example with 50 residual blocks (100 lay-
ers), randomly removing 30 blocks (60 layers) of the
trained network only leads to a relative decrease of 8%
accuracy (see Section 3.1).

• Insensitivity to batch normalization: Residual Gates
diminish the role of batch normalization and shows
competitive performance in models where absolutely
no normalization is used (see Section 3.2). Its simple
and flexible design allows the optimizer to learn the
adequate modulation for residuals.

We conclude the paper in Section 4 with a brief discussion
on the importance of learning identity mappings and effec-
tive designs for shortcut connection mechanisms.

2. Residual Gates
As previously discussed, Residual Gates leverages the idea
of shortcut connections but with a simple weighted linear
combination between the original layer’s output and input,
as illustrated in Figure 1. More formally, adding Residual
Gates to a layer results in the following formulation:

u = g(k)f(x,W ) + (1− g(k))x (1)

where f(x,W ) is the output of the original layer, g(k) is
the gating function, and k is the gate parameter, a scalar
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value. Note that the new output u is a simple linear combi-
nation between the previous output and the input, weighted
by the gating function g(·).

With the proposed mechanism, a layer can degenerate and
perform an identity mapping when g(k) = 0. Using the
ReLU activation function as g, it suffices that k ≤ 0 for
g(k) = 0. Of course, the best value of k for each layer will
also be learned during the optimization procedure, along
with the layers’ other original parameters.

Note that adding a single scalar parameter to a layer in-
creases the dimensionality of the cost surface by one. This
new dimension, however, can be easily understood due to
the specific nature of the proposed mechanism. The orig-
inal surface is maintained on the g(k) = 1 slice, since
models with Residual Gates become equivalent to original
ones. On the g(k) = 0 slice we have an identity map-
ping since u = x. Under this last condition, the associated
cost for all points in this slice is the same as for the point
{g(k) = 1,W = I}: this follows since both parameter
configurations correspond to identity mappings, therefore
being equivalent. Last, assuming g(k) = k for 0 ≤ k ≤ 1,
such as with ReLU, we have a linear combination with
weight k, and consequently, all other slices 0 < k < 1
will be a linear combination of the slices k = 0 and k = 1.
Thus, the addition of the parameter k has a very specific
impact on the cost surface of the original model: it adds a
new axis that corresponds to a linear removal of its corre-
sponding layer.

Also as previously mentioned, the proposed mechanism
can be applied to Residual Networks, as illustrated in Fig-
ure 2. Although it may appear counterintuitive to add a
shortcut connection with a gating mechanism to a layer that
already has a shortcut connection, such augmentation pro-
vides a simple means to regulate the residuals, as we now
discuss. Let the original design of a residual layer be:

u = f(x,W ) = fr(x,W ) + x

where fr(x,W ) is the layer’s residual function – in our
case, BN-ReLU-Conv-BN-ReLU-Conv. Adding Residual
Gates to this layer yields:

u = g(k)f(x,W ) + (1− g(k))x

= g(k)(fr(x,W ) + x) + (1− g(k))x

= g(k)fr(x,W ) + x

The resulting layer maintains the shortcut connection un-
altered, granting free gradient flow through the network,
a much desired property when designing network mod-
els (He et al., 2016b). As (1− g(k)) vanishes from the for-
mulation, g(k) stops acting as a gating mechanism and can
be interpreted as a flow regulator. Note that g(k) modulates
the residual signal fr(x,W ) and can promote or demote it

with respect to the shortcut connection, x. This intuitively
provides better and easier control for each residual block,
that now relies on a single scalar parameter, k, to regulate
the relative importance between the shortcut and the resid-
ual. As we will see, this simple feature yields significant
benefits in practice.

2.1. Theoretical observations

As briefly discussed, shortcut connections on the layer de-
sign of both Highway Neural Networks and Residual Net-
works allows much deeper models to be trained. In partic-
ular, shortcut connections facilitate the learning of (near)
identity mappings but strongly depend on their specific me-
chanics. For Residual Networks a true identity mapping in
a layer is learned when the corresponding W = 0 (and
not W = I), since there is no gating. For Highway Net-
works, identity mappings are learned when the gating term
T (x,WT ) = 0 for all input x. However, this condition
strongly depends on the choice of the transform function
T , and is non-trivial when T is the sigmoid function, since
T−1(0) is not defined. Thus, intuitively, learning identity
mappings on Highway Nets seems reasonably harder than
in Residual Nets.

We thus focus on Residual Networks and analyze the diffi-
culty for them to learn (true) identity mappings. Consider-
ing a fully-connected residual layer u = ReLU(〈x,W 〉) +
x, we have (for W = 0):

u = ReLU(〈x, 0〉) + x = ReLU(0) + x = x

Intuitively, residual layers can degenerate into identity
mappings more effectively (in comparison to Plain Net-
works) since learning an all-zero matrix is easier than
learning the identity matrix (required for identity mappings
in Plain Networks). To support this argument, consider
weight parameters randomly initialized with zero mean but
non-zero variance. Hence, the point W = 0 is the expected
value for the random weights used in the initialization, and
thus closer to the actual values than the point W = I .
Moreover, recent work ((Zhang et al.)) suggests that the L2
norm of a critical point is an important factor regarding the
difficulty for an optimizer to reach it. Thus,W = 0 is more
accessible for the optimizer than W = I due its smaller L2
norm. In a nutshell, by having the identity mapping occur
at W = 0 as opposed to W = I , Residual Networks have
facilitated the learning of identity mappings.

However, assuming that residual layers can trivially learn
W = 0 implies ignoring the randomness in the weight
initialization scheme. We demonstrate this caveat by cal-
culating the expected distance between Wo and the origin
(W = 0), where Wo denotes the weight tensor right after
initialization and prior to any optimization. The expected
distance between Wo and the origin captures the effort for
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a network to learn identity mappings. Let µo and σ2
o denote

the mean and variance of the random variable Wo. The ex-
pected distance to the origin is given by:

E
[
(Wo − 0)2

]
= E

[
W 2

o

]
= σ2

o + µ2
o

However, there is no reason to assume that the variance
(and mean) are negligible. In particular, recent initializa-
tion schemes propose using µo = 0 and σ2

o = Θ( 1
n ) ((Glo-

rot & Bengio, 2010b), (He et al.)), where n is the size of
the layer’s input (e.g. number of feature maps for con-
stitutional layers). However this represents the variance
for each individual element of Wo, as each component is
initialized independently from one another. Thus, for ten-
sors with Θ(n2) parameters (e.g. weight matrices in fully-
connected networks), the component wise sum of the ex-
pected distance and the expected Euclidean distance be-
tween Wo and the origin are Θ(n), and thus not negligible.

In contrast. Residual Gates allows identity mappings to be
learned by adjusting just a single scalar parameter, k. In
particular, when g(·) = 0 the output is equal to the input.
Assuming that g(·) = 0 for k = 0, such as with ReLU
or g(k) = k, we immediately observe that the effort in
learning identity mappings (as measured by the distance
between the initialized value for k and k = 0) does not
depend on any model parameters, such as the size of the
layer’s input.

Initializing k either randomly (as long as the mean and vari-
ance do not depend on model parameters) or with a con-
stant value leads to a distance to the origin (k = 0) of Θ(1).
This observation is in sharp contrast with prior models, in-
cluding Residual Networks. In particular, it indicates that
learning identity mappings is much easier under the pro-
posed gating mechanism, an observation soon supported
by empirical results.

3. Experiments
All models were implemented on Keras (Chollet, 2015)
or Torch (Collobert et al., 2011), and were executed on
a Geforce GTX 1070. Larger models or more complex
datasets, such as the ImageNet (Russakovsky et al., 2015),
were not explored due to hardware limitations.

3.1. MNIST

The MNIST dataset (Lecun et al., 1998) is composed of
60, 000 greyscale images with 28 × 28 pixels. For prepro-
cessing, we divided each pixel value by 255, normalizing
their values to [0, 1]. Images represent handwritten dig-
its, resulting in a total of 10 classes. We explore Residual
Gates by applying it to two fully-connected models: clas-
sic Plain Networks (PlainNets) and ResNets. We compare
the performance of the original models with the models

Table 1. Test error (%) on the MNIST dataset for fully-connected
networks for different network depths (d). Values in parenthesis
show relative gains of gated models over their original counterpart
(Plain and Res denote PlainNets and ResNets, respectively).

d PLAIN RES G-PLAINNETS G-RESNETS

2 2.29 2.20 2.04 (11%) 2.17 (1.4%)
10 2.22 1.64 1.78 (20%) 1.60 (2.4%)
20 2.21 1.61 1.59 (28%) 1.57 (2.4%)
50 60.4 1.62 1.36 (∞) 1.48 (8.6%)
100 90.2 1.50 1.29 (∞) 1.26 (16%)

augmented with Residual Gates, naming them G-PlainNets
and G-ResNets.

The networks consist of a linear layer with 50 neurons, fol-
lowed by d layers with 50 neurons each, and lastly a soft-
max layer for classification. Only the dmiddle layers differ
between the four models – the first linear layer and the soft-
max layer are the same in all experiments.

For PlainNets, each layer performs dot product, followed
by Batch Normalization and a ReLU activation function.
A for ResNets, initial tests with pre-activations (He et al.,
2016b) resulted in poor performance on the validation set,
therefore we opted for the traditional Dot-BN-ReLU layer
structure for ResNets. Each residual block consists of two
layers, as conventional.

All networks were trained using Adam (Kingma & Ba)
with Nesterov momentum (Dozat) for a total of 100 epochs
using mini-batches of size 128. No learning rate decay was
used: we kept the learning rate and momentum fixed to
0.002 and 0.9 during the entire training.

3.1.1. IMPACT OF DEPTH

The training curves for PlainNets, G-PlainNets, ResNets
and G-ResNets with varying network depths are shown in
Figure 3. Note that the distance between the curves in-
crease with network depth, indicating that Residual Gates
is more effective in deeper models. Moreover, PlainNets
fail to converge for d = 50 and d = 100 (not shown in the
figure) while its gated counterpart (G-PlainNets) has com-
petitive performance.

Table 1 shows the test error for each depth and model. Note
that the gated models outperform their original counter-
parts in all experiments. Moreover, performance gains in-
crease with network depth, again indicating that the bene-
fits of Residual Gates are larger for deeper networks. Inter-
estingly, G-PlainNets outperformed ResNets on networks
with more depth (d = 20 or higher), suggesting that the
simple regulatory nature of the residual in Residual Gates
is effective.



Residual Gates

Figure 3. Train loss for PlainNets and ResNets, along with their gated counterparts, with d = {2, 10, 20, 50, 100}.

Table 2. Average k across all layers for G-PlainNets and G-
ResNets for different depths.

DEPTH G-PLAINNETS G-RESNETS

d = 2 10.57 5.58
d = 10 1.19 2.54
d = 20 0.64 1.73
d = 50 0.46 1.04
d = 100 0.41 0.67

An important consideration are the values for parameter k
learned for each network layer. Table 4 shows the aver-
age k value (across all layers) for different network depths.
Note that for both models, the average k decreases as the
network becomes deeper. This important observation sug-
gests that in order for deep networks to be effective, higher
layers should receive enough information from lower lay-
ers. Indeed, learning smaller k allows information to flow
more freely to through the network, providing more stabil-
ity to gradient signals during backpropagation. In fact, this
is consistent with the intuition for why ResNets outperform
PlainNets as the depth increases (namely, the shortcut con-
nections allow information to flow more freely).

Last, the significant difference between average k values
for G-PlainNets and G-ResNets has an intuitive explana-
tion: in order to suppress the residual signal against the
shortcut connection, G-PlainNets require that k < 0.5 (oth-
erwise the residual signal will be enhanced). Conversely,
G-ResNets suppresses the residual signal when k < 1.0,
and enhance it otherwise.

Beyond average values, it is interesting to consider the
structure induced by the learned values for k across the lay-
ers of a deep network. Figure 4 shows the final values for
k for our deepest network, d = 100 (50 different values, as
each block has two layers), for each layer. Note that k first
tends to decrease and then increase towards the end of the
network. Interestingly, the middle layers tend to have the
smallest k values, and is thus the region where information
flows more freely in the network.

3.1.2. ROBUSTNESS TO LAYER REMOVAL

We consider the impact on performance when removing
layers in ResNets and G-ResNets after the model has been
trained. Intuitively, a well-trained deep network should
learn representations in small refinements (Greff et al.),
thus removing layers should not significantly impact per-
formance.

In order to assess this intuition, we consider the test per-
formance of our deepest network (d = 100) as residual
blocks are completely removed from the trained network.
We consider two strategies for block removal: greedy and
random. In the greedy strategy blocks are removed in in-
creasing order of k, while in the random strategy a block
is chosen uniformly at random to be removed. Thus, the
greedy strategy removes first blocks that are intuitively less
important, since they are closer to performing a true iden-
tity mappings. Note that since ResNets lacks the parameter
k, we consider only the random strategy for this model.

Results are shown in Figure 5, comparing both models and
both strategies (for G-ResNets). Note that G-ResNets is
extremely robust to layer removal. In particular, accuracy
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Figure 4. Values for k according to ascending order of residual
blocks. The first block, consisted of the first two layers of the net-
work, has index 1, while the last block – right before the softmax
layer – has index 50.

is above 96% even after removing 40% of the layers. More
surprisingly, there is very little difference between greedy
and random removal for G-ResNets when removing half
of the layers. This shows that G-ResNets has learned re-
dundant representations across the network and not just in
particular layers, and can thus operate under severe layer
removal. The findings are quite different for ResNets, as
accuracy decays much faster with random layer removal.
Note that accuracy is only around 60% when removing
40% of the layers (20 blocks).

These findings indicate that Residual Gates generate net-
works that are not only robust to layer removal but can
deliver good performance even when a significant fraction
of the layers of the trained network is removed. Thus, a
trained deep network can be pruned to make much faster
predictions (say, in 60% of the time after removing 40% of
the layers) while still delivering good performance.

3.2. CIFAR

The CIFAR datasets (Krizhevsky, 2009) consists of 60, 000
color images with 32 × 32 pixels each. CIFAR-10 has a
total of 10 classes, including pictures of cats, birds and air-
planes. The CIFAR-100 dataset is composed of the same
number of images, however with a total of 100 classes.
ResNets are currently the state-of-the-art methodology for
classifying the CIFAR dataset. We apply the proposed gat-
ing mechanism to ResNets and Wide ResNets (Zagoruyko
& Komodakis, 2016) and compare the performance with
their original counterpart.

For pre-activation ResNets, as described in (He et al.,
2016b), we follow the original implementation details. We
set an initial learning rate of 0.1, and decrease it by a fac-
tor of 10 after 50% and 75% epochs. SGD with Nesterov
momentum of 0.9 is used for optimization, and the only
pre-processing consists of mean subtraction. Weight decay
of 0.0001 is used for regularization, and Batch Normaliza-
tion’s momentum is set to 0.9.

Figure 5. Test accuracy (%) according to the number of removed
layers. Gated Residual Networks are more robust to layer re-
moval, and maintain decent results even after half of the layers
have been removed.

Table 3. Test error (%) on the CIFAR-10 dataset for ResNets,
Wide ResNets and their gated counterparts (value in parenthesis
indicates relative gains with respect to original counterpart). k
decay is when weight decay is also applied to the k parameters
in the gated network. Results for ResNets and Wide ResNets are
as reported in the original paper (He et al., 2016a; Zagoruyko &
Komodakis, 2016).

MODEL ORIGINAL GATED k DECAY

RESNETS 5 7.16 6.67 (6.8%) 7.04

WIDE RESNETS
(4,10) + DROPOUT 3.89 3.65 (6.2%) 3.74

We follow the implementation from (Zagoruyko & Ko-
modakis, 2016) for Wide ResNets. The learning rate is ini-
tialized as 0.1, and decreases by a factor of 5 after 30%,
60% and 80% epochs. Images are mean/std normalized,
and a weight decay of 0.0005 is used for regularization.
We also apply 0.3 dropout (Srivastava et al., 2014) between
convolutions, whenever specified. All other details are the
same as for ResNets.

We use moderate data augmentation for both models: im-
ages are padded with 4 pixels, and we take random crops
of size 32×32 during training. Additionally, each image is
horizontally flipped with 50% probability. We use a mini-
batch size 128 for all experiments.

For all gated networks, we initialize k with a constant value
of 1. An important consideration is whether weight decay
should also be applied to the parameter k. We will explore
weight decay for parameter k using the same magnitude as
for the rest of the model parameters: 0.0001 for G-ResNet
(Gated ResNets) and 0.0005 for G-WResNet (Gated Wide
ResNets).

Table 3 shows the test error for the two models: ResNets
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Table 4. Test error (%) on the CIFAR-10 dataset for Wide ResNets
and its gated counterpart. Results for Wide ResNets are from the
original paper (Zagoruyko & Komodakis, 2016).

MODEL ORIGINAL GATED

WIDE RESNETS (2,4) 5.02 4.66
WIDE RESNETS (4,10) 4.00 3.82
WIDE RESNETS (4,10) + DROPOUT 3.89 3.65
WIDE RESNETS (8,1) 6.43 6.10
WIDE RESNETS (6,10) + DROPOUT 3.80 3.63

Table 5. Test error (%) on the CIFAR-100 dataset for Wide
ResNets and its gated counterpart. Results for Wide ResNets are
from the original paper (Zagoruyko & Komodakis, 2016).

MODEL ORIGINAL GATED

WIDE RESNETS (2,4) 24.03 23.29
WIDE RESNETS (4,10) 19.25 18.89
WIDE RESNETS (4,10) + DROPOUT 18.85 18.27
WIDE RESNETS (8,1) 29.89 28.20

with n = 5 and Wide ResNets with n = 4 and widening
factor of 10, along with their gated counterparts. Note that
for both models, their gated counterparts exhibited superior
performance, surpassing by around 6%. Interestingly, the
gated counterparts with weight decay for parameter k also
exhibited superior performance, but not as high as without
regularization. This indicates that regularization of param-
eter k should be more subtle, as a strong regularization is
promoting identity mappings at the layers, which can harm
the model. Thus, for the remainder of the experiments we
do not consider any regularization for parameter k. Last,
note that the gated model adds only 15 and 12 parameters
(a different k for each block) to their respective original
counterparts which have millions of parameters.

We proceed to evaluate other models – having different
depths and widening factors – to evaluate the effectiveness
and robustness of Residual Gates. Tables 4 and 5 show that
G-WResNets outperforms the original counterpart in all
scenarios without changing any hyperparameter, for both
CIFAR-10 and CIFAR-100 datasets. This is a strong evi-
dence of the advantages in the workings of Residual Gates.

Figure 6 shows the loss curves for G-WResNets(4,10)
+ Dropout, both on CIFAR-10 and CIFAR-100.
The optimization behaves similarly to the original
model (Zagoruyko & Komodakis, 2016), suggesting that
Residual Gates does not have any significant side effects
on the network’s training, beyond yielding an overall
superior performance.

We again consider the final k values for each block of the

Figure 6. Training and test curves for G-WResNets (4,10) with
0.3 Dropout, showing error (%) on training (dashed lines) and
test (solid lines) sets for CIFAR-10.

Figure 7. Learned values for k for the various network layers
(blocks) for the G-WResNets (4,10) model on CIFAR-10.

network to understand the behavior of the gating mecha-
nism. Figure 7 shows the result for G-WResNets (4,10) on
CIFAR-10. Note that k values follow an intriguing pattern:
the lowest values are for the blocks 1, 5 and 9, which are ex-
actly the ones that decrease the spatial size of feature maps
within the network. This indicates that the projection in the
shortcut connection is enhanced relative to the non-linear
transformations in the residual path. Interestingly, this indi-
cates that pure projections (without non-linearities) might
be better suited for spatial size reduction. Last, the peak
value for the last residual block suggests that its shortcut
connection is of very little importance. Indeed, this block
generates the final representations which are used by the
softmax layer.

As a final comparison, Table 6 shows the results of prior
models in increasing order of performance for both the
CIFAR-10 and CIFAR-100 datasets. Note that Residual
Gates applied to Wide ResNet (4,10) + Dropout yields the
best performance among these very recent works and thus
competitive with state-of-the-art. The corresponding train-
ing and test error for this network is shown in Figure 6.
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Table 6. Test error (%) for various networks on the CIFAR-10 and
CIFAR-100 datasets. All results are with standard data augmen-
tation (crops and flips), as described in the text.

METHOD C10+ C100+

NETWORK IN NETWORK 8.81 -
(CHEN ET AL., 2016)
FITNET 8.39 35.04
(ROMERO ET AL.)
HIGHWAY NEURAL NETWORK 7.76 32.39
(SRIVASTAVA ET AL., 2015)
ALL-CNN 7.25 33.71
(SPRINGENBERG ET AL.)
RESNET-110 6.61 -
(HE ET AL., 2016A)
RESNET IN RESNET 5.01 22.90
(TARG ET AL.)
STOCHASTIC DEPTH 4.91 -
(HUANG ET AL., 2016)
RESNET-1001 4.62 22.71
(HE ET AL., 2016B)
WIDE RESNET (4,10) 3.89 18.85
(ZAGORUYKO & KOMODAKIS, 2016)
DENSENET 3.74 19.25
(HUANG ET AL.)
G-WIDE RESNET (4,10) + DROPOUT 3.65 18.27

3.2.1. IMPACT OF NORMALIZATION

In order to further assess the optimization advantages of
Residual Gates, we investigate the model without using any
layer normalization. Particularly, batch normalization com-
bats the internal co-variate shift in deep networks, and has
been widely used to train networks with many layers.

With the removal of batch normalization, we adopt the
original residual block composed of Conv-ReLU-Conv-
ReLU, with ReLU before addition (He et al., 2016a). To
each model considered, we apply Residual Gates, introduc-
ing a single parameter k per block.

Table 7 shows results for three different Wide ResNets
models on CIFAR-10. Original models fail to converge,
yielding the highest possible error even with He initial-
ization (He et al.). In sharp contrast, the gated models
achieve excellent performance, comparable to their coun-
terparts with batch normalization (see Table 4). Surpris-
ingly, our gating mechanism seems to diminish the need
for normalization layers, even though it does not directly
address the internal co-variate shift problem. Unlike batch
normalization, our technique does not require the computa-
tion of moving averages, nor adds computational complex-
ity to the running time.

Table 7. Test error (%) on the CIFAR-10 dataset for Wide ResNets
models with no batch normalization and their gated counterparts.

MODEL ORIGINAL GATED

WIDE RESNETS (2,4) 90.0 5.36
WIDE RESNETS (4,10) 90.0 4.48
WIDE RESNETS (8,1) 90.0 6.57

4. Conclusion and discussion
Shortcut connections have shown to be instrumental to
deep networks as they facilitate training by allowing layers
to more easily learn identity mappings. The key idea is that
shortcut connections allow information to flow more freely
through the network, thus allowing the backpropagated er-
ror to play a more pronounced role in lower layers. How-
ever, there are various mechanisms to establish shortcut
connections, such as the proposed by Residual Networks
and Highway Neural Networks. These mechanisms have a
significant impact on the learning ability of the network, as
they regulate information flow.

This paper introduced Residual Gates, a simple gating
mechanism that can be applied to any network model, in-
cluding Residual Networks. The simplicity of the proposed
mechanisms leverages two key ideas: (1) single scalar pa-
rameter to regulate each gate; (2) output is a weighted sum
of the shortcut connection with the corresponding residual.

A diverse set of experimental results indicate the various
and significant advantages of Residual Gates. In all sce-
narios, introducing Residual Gates to the network model
led to superior performance, including for different mod-
els (PlainNets, ResNets and Wide ResNets) and datasets
(MNIST, CIFAR-10, CIFAR-100). For CIFAR-10 and
CIFAR-100, performance was competitive with the state-
of-the-art. Networks trained with the gating mechanism
are also much more robust to layer removal, with perfor-
mance decaying slowly even if layers are randomly re-
moved. Last, the proposed gating mechanism challenges
the need of batch normalization, as gated networks with no
normalization layers exhibited performance comparable to
their original non-gated, batch normalized counterparts.

Why is this so? The key to understanding the benefits
observed with Residual Gates lies behind the difficulty in
learning identity mappings, we believe. If learning identity
mappings is easier, then the optimization can more easily
push signals from lower layers to higher ones, with benefits
increasing with the network depth. Thus, it does not suffice
that a network model enables the learning of identity map-
pings – they should also be easy to learn.
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