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Linear Local Models for Monocular
Reconstruction of Deformable Surfaces

Mathieu Salzmann, Pascal Fua

Abstract—Recovering the 3D shape of a nonrigid surface from a single viewpoint is known to be both ambiguous and challenging.
Resolving the ambiguities typically requires prior knowledge about the most likely deformations that the surface may undergo. It often
takes the form of a global deformation model that can be learned from training data. While effective, this approach suffers from the fact
that a new model must be learned for each new surface, which means acquiring new training data and may be impractical.
In this paper, we replace the global models by linear local ones for surface patches, which can be assembled to represent arbitrary
surface shapes as long as they are made of the same material. Not only do they eliminate the need to retrain the model for different
surface shapes, they also let us formulate 3D shape reconstruction from correspondences as either an algebraic problem that can be
solved in closed-form or a convex optimization problem whose solution can be found using standard numerical packages.
We present quantitative results on synthetic data, as well as qualitative ones on real images.

Index Terms—Deformable surfaces, Monocular shape recovery, Deformation models
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1 INTRODUCTION

Being able to recover the 3D shape of deformable surfaces
using a single camera would make it possible to field recon-
struction systems that run on widely available hardware. How-
ever, because many different 3D shapes can have virtually the
same projection, such monocular shape recovery is inherently
ambiguous. The solutions that have been proposed over the
years mainly fall into two classes: Those that involve physics-
inspired models [32], [8], [19], [18], [22], [21], [35], [3]and
those that learn global models from training data [9], [4], [7],
[6], [1], [33], [17], [2], [15], [36], [39], [28]. The former
solutions often entail designing complex objective functions
and require hard-to-obtain knowledge about the precise ma-
terial properties of the target surfaces. The latter require vast
amounts of training data, which may not be available either,
and only produce models for specific object shapes. As a
consequence, one has to learn a specific deformation model
for each individual object, even when all objects are made of
the same material.

To overcome these limitations, we note that

• locally all parts of a physically homogeneous surface
obey the same deformation rules;

• the local deformations are more constrained than those
of the global surface and can be learned from fewer
examples.

To take advantage of these facts, we represent the manifold of
local surface deformations, and regularize the reconstruction
of a global surface by encouraging its patches to conform to
the local models. As shown in Fig. 1, this allows us to recover
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complex surface deformations for surfaces made of different
materials from singleinput images when correspondences can
be established with areferenceimage in which the surface
shape is known.

In earlier work [29], we used nonlinear Gaussian Process
Latent Variable Models to represent the space of local surface
deformations. This has proved effective to recover the 3D de-
formations of relatively featureless surfaces from imagesfrom
which only limited shape information can be extracted. This
ability, however, came at a price: Using nonlinear deformation
models results in highly non-convex objective functions, which
requires good initialization. Furthermore, truly capturing the
behavior of a material stills requires acquiring training data,
which involves a painstaking motion capture process.

In this work, we advocate using simpler linear models
instead to represent the local deformations in conjunction
with inextensibility constraints. We show that, depending
on whether the constraints are formulated as equalities or
inequalities on distances between vertices of the mesh that
represents the surface, reconstruction can be formulated either
as a algebraic problem that can be solved in closed form or
as a convex one whose solution can be found using standard
numerical routines [5]. Either way, this relieves us from the
need of an initialization and allows automatic reconstruction
of sharply folding shapes such as those of Fig. 1 from
single images. Furthermore, this entails no loss of accuracy
with respect to the nonlinear models, especially when using
inequality constraints as we first proposed in [25] rather than
the equality constraints we introduced in [27]. Finally, if
necessary, the linear models can be learned from synthetically
generated data without even having to acquire motion capture
data, which makes our approach practical even when such
motion capture cannot be performed.

In short, we propose a generally applicable approach to re-
covering 3D shape from single images that is fully automated
and can handle very complex deformations including sharp
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Fig. 1. Reconstruction of deformable surfaces undergoing complex deformations. Top Row: Reconstructed 3D mesh
overlaid on the input image. Bottom Row: Side view of the same mesh.

folds and potentially featureless parts of the surface which we
believe to be beyond the current state-of-the-art.

2 RELATED WORK

3D reconstruction of nonrigid surfaces from single images
is a severely under-constrained problem since many different
shapes can produce very similar projections. Many methods
have therefore been proposed over the years to favor the most
likely shapes and disambiguate the problem.

The earliest approaches were inspired by physics and in-
volved minimizing the sum of an internal energy representing
the physical behavior of the surface and an external one
derived from image data [32]. Many variations, such as
balloons [8], deformable superquadrics [19] and thin-plates
under tension [18], have since been proposed. Modal anal-
ysis has been applied to reduce the number of degrees of
freedom of the problem by modeling the deformations as
linear combinations of vibration modes [22], [21]. Since these
formulations oversimplify reality, especially in the presence
of large deformations, more accurate nonlinear models were
proposed [35], [3]. However, to correctly reflect reality, these
models need to be carefully hand-crafted, and give rise to
highly nonlinear energy terms. In short, even though incor-
porating physical laws into the algorithms seems natural, the
resulting methods suffer from two major drawbacks. First, one
must specify material parameters that are typically unknown.
Second, making them accurate in the presence of large defor-
mations requires designing very complex objective functions
that are often difficult to optimize.

Methods that learn global models from training data were
introduced to overcome these limitations. As in modal anal-
ysis, surface deformations can be expressed as linear com-
binations of deformation modes. These modes, however, are
obtained from training examples rather than from stiffness
matrices and can therefore capture more of the true variabil-
ity. For faces, Active Appearance Models [9] pioneered this
approach in 2D and were quickly followed by 3D Morphable
Models [4]. In previous work [28], we used a similar approach
for general nonrigid surfaces and introduced a practical way
of generating synthetic training data.

Nonrigid structure-from-motion methods also rely on
learned linear models to constrain the relative motion of 3D
points. Early approaches [7], [1] used known basis vectors,
but the idea was expanded to simultaneously recover the shape
and the modes from image sequences [6], [33], [39], [2], [15],
[38]. However, since they rely on tracking points over long
sequences, these methods often fail in practice. Only very
recently has this problem been alleviated by using hierarchical
priors [34], which assumes that the image measurements
and 3D shapes come from a common probability distribu-
tion whose parameters are unknown. In any event, while
learning deformation modes online is a very attractive idea,
the resulting methods are only effective for relatively small
deformations since using a large number of deformation modes
makes the solution more ambiguous. Furthermore, whether
learned offline or online, global models have the drawback
of only being valid for a particular surface shape.

Recently, we proposed to replace the global deformation
models by local ones that can be learned from smaller amounts
of training data [29]. We represented the deformations of local
patches of a surface with Gaussian Process Latent Variable
Models (GPLVM) [13], and showed that a global deformation
prior could be obtained by combining the local ones following
a Product of Experts (PoE) [12] paradigm. This let us build
models valid for any shape made of a particular material, and
thus avoided the need to learn a new model for every new
object shape. However, using a nonlinear representation of
the local deformation yields non-convex objective functions.
Therefore, to be effective, these models require good initial-
ization and can only be used for tracking purposes.

Several methods have recently been proposed to recover the
shape of inextensible surfaces without an explicit deformation
model. Some are specifically designed for applicable surfaces,
such as sheets of paper [11], [14], [23]. Others explicitly
incorporate the fact that the distances between surface points
must remain constant as constraints in the reconstruction
process [27], [10], [24], [31]. This approach is very attractive
because many materials do not perceptibly shrink or stretch
as they deform. However, in our experience, additional reg-
ularization is still required when the surface is not textured
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Fig. 2. Establishing 3D-to-2D correspondences. Given the reference mesh and image, we compute correspondences
between 3D mesh locations given in barycentric coordinates and 2D feature points. From a new input image, we
compute SIFT [16] matches with the reference image, which links the 3D surface points to 2D locations on the input
image. The 3D shape is then obtained by deforming the mesh to make the 3D points best reproject on the input image.

enough. Furthermore, as will be discussed below, the constant
distance assumption may be violated in the presence of sharp
folds, which introduces inaccuracies.

3 APPROACH AND FORMULATION

In this paper, we present a method that combines the strengths
of inter-vertex distance constraints with those of local defor-
mation models. It incorporates the following ingredients:

• Shape from correspondences: We show that reconstruct-
ing 3D shape from 3D-to-2D correspondences amounts
to solving an ill-conditioned linear problem.

• Linear local models: To regularize the reconstruction
and handle untextured surface parts, we introduce linear
local models that can be learned either from motion-
capture data or from easy-to-generate synthetic training
data.

• Inter-Vertex Distance Constraints: Distance constraints
are inherently non-linear and therefore not effectively en-
forced by the linear models. We therefore introduce them
as non-linear constraints in our optimization scheme. We
will show that this results in either an algebraic problem
that can be solved in closed-form or a convex optimiza-
tion problem, depending on whether the constraints are
formulated as equalities or inequalities.

In the remainder of the paper, we discuss each one of these
three ingredients in more detail. We then evaluate quantita-
tively the resulting algorithms.

To this end, we represent a surface as a triangulated mesh
made ofnv verticesvi = [xi, yi, zi]

T , 1 ≤ i ≤ nv connected
by ne edges. LetX = [vT

1 , · · · ,vT
nv

]T be the vector of
coordinates obtained by concatenating thevi.

We assume that we are given a set ofnc 3D-to-2D corre-
spondences between the surface and an image. As depicted by
Fig. 2, each correspondence relates a 3D point on the mesh,
expressed in terms of its barycentric coordinates with respect
to the facet to which it belongs, and a 2D feature in the image.

Additionally, we assume the camera to be calibrated and,
therefore, the matrix of intrinsic parametersA to be known. To
simplify our notations without loss of generality, we express
the vertex coordinates in the camera referential. Note that,
since we allow all the mesh vertices to move simultaneously,
rigid surface motion is possible.

4 SHAPE FROM CORRESPONDENCES

In this section, we formulate 3D surface reconstruction from
3D-to-2D correspondences as a linear problem. We then show
that the resulting linear system is ill-conditioned and thus
requires additional constraints.

4.1 Linear Formulation

Following [26], we first show that, given a set of 3D-to-2D
correspondences, the vector of vertex coordinatesX can be
found as the solution of a linear system.

Let p be a 3D point belonging to facetf with barycen-
tric coordinates[b1, b2, b3]. Hence, we can write it asp =
∑3

i=1
bivf,i , where {vf,i}i=1,2,3 are the three vertices of

facet f . The fact thatp projects to the 2D image location
(u, v) can now be expressed by the relation

A (b1vf,1 + b2vf,2 + b3vf,3) = k





u
v
1



 , (1)

where k is a scalar accounting for depth. Since, from the
last row of Eq. 1,k can be expressed in terms of the vertex
coordinates, we have

[

b1H b2H b3H
]





vf,1

vf,2

vf,3



 = 0 , (2)

with

H = A2×3 −

[

u
v

]

A3 , (3)

where A2×3 contains the first two rows ofA, and A3 is
the third one.nc such correspondences between 3D surface
points and 2D image locations therefore provide2nc linear
constraints such as those of Eq. 2. They can be jointly
expressed by the linear system

MX = 0 , (4)

whereM is a2nc×3nv matrix obtained by concatenating the
[

b1H b2H b3H
]

matrices of Eq. 2.
Although solving the system of Eq. 4 yields a surface that

reprojects correctly on the image, there is no guarantee that its
3D shape corresponds to reality. Indeed, not only is the rankof
M not full due to the well-known global scale ambiguity, but,



4

50 100 150 200
0

0.5

1

1.5

2

2.5

3
x 10

6

Fig. 3. Top row: Original and side views of a surface
used to generate a synthetic sequence. The 3D shape
was reconstructed by an optical motion capture system.
Bottom row: Eigenvalues corresponding to the linear sys-
tem of Eq. 4 written from correspondences randomly
established for the mesh of the top left figure. The system
was written in terms of 243 vertex coordinates. One third
of the eigenvalues are close to zero.

for all practical purposes, it is even lower. More specifically,
even where there are many correspondences, one third, i.e.
nv, of the eigenvalues ofMTM are very close to zero, as
illustrated by Fig. 3. In [26], we showed that this corresponds
to one depth ambiguity per mesh vertex. As a result, even small
amounts of noise produce large instabilities in the recovered
shape.

This suggests that additional constraints have to be added
to guarantee a unique and stable solution. In the following,
we will show that using linear local deformation models in
conjunction with inter-vertex distance constraints does the job
and yields effective solutions.

5 LINEAR LOCAL MODELS

In this section we introduce our surface deformation model
and show that it lets us introduce a regularization term that
greatly constrains the deformations the surface can undergo.
However, this does not remove all ambiguities, which makes
the length constraints of Section 6 necessary.

5.1 Learning Local Models

Representing the shape of a non-rigid surface as a linear
combination of basis vectors is a well-known technique. Such
a deformation basis can be obtained by modal analysis [22],
[21], from training data [9], [4], [28], or directly from the
images [39], [2], [15], [34], [38].

As shown in Fig. 4, we follow a similar idea, but, rather
than introducing a single model for the whole surface, we
subdivide the mesh into sets of overlapping patches and model
the deformation of each one as a linear combination of modes.
This lets us derive a deformation energy for each patch, and

Fig. 4. Instead of modeling the whole surface, we subdi-
vide the mesh into overlapping patches and model their
deformations as linear combinations of modes. This lets
us represent surfaces of arbitrary shape or topology by
adequately assembling local patches.

we take the overall mesh deformation energy to be the sum of
those. In the appendix, we use motion capture data to provide
empirical evidence that an energy formulated in this manner
can be understood as the negative log of a shape prior.

Assuming that all parts of the surface follow similar defor-
mation rules, the modes are the same for all patches and can
be learned jointly, which minimizes the required amount of
training data. Since patches can be assembled into arbitrarily-
shaped global meshes, only one deformation model need be
learned, irrespective of mesh shape and topology. Furthermore,
local models also let us explicitly account for the fact that
parts of the surface are much less textured than others and
should therefore rely more strongly on the deformation model.
This would not be possible with a global representation.
Depending on parameter settings, it would either penalize
complex deformations excessively, or allow the poorly textured
regions to assume unlikely shapes.

Let Xi be thex-, y-, z-coordinates of annl × nl square
patch of the mesh. We model the variations ofXi as a linear
combination ofnm modes, which we write in matrix form as

Xi = X0
i + Λci , (5)

where X0
i represents the coordinates of the patch in the

reference image,Λ is the matrix whose columns are the
modes, andci is the corresponding vector of mode weights.
In practice, the columns ofΛ contain the eigenvectors of
the training data covariance matrix, and were computed by
performing Principal Component Analysis on a set of de-
formed5× 5 meshes. As in [28], these meshes were obtained
by simulating inextensible deformations. More specifically,
we assigned random values uniformly sampled in the range
[−π/6, π/6] to a determining subset of the angles between the
facets of the mesh. Some of the resulting modes are depicted
in Fig. 5. Note that the same modes were used forall our
experiments, independently of the material or shape of the
surface of interest.

In [29], we introduced nonlinear local models. While they
offer a more accurate representation of the space of possible
deformations, which is known to be nonlinear, they suffer
from two drawbacks. First, they yield a highly non-convex
shape likelihood function, which only makes them practical
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Fig. 5. Visual interpretation of the local deformation modes. We show the effect of adding (blue) or subtracting (green)
some of the modes to the mean shape (red). Note that, despite the fact that all the training examples were inextensible
deformations of a mesh, PCA yields extension modes.

for tracking purposes. Second, to accurately capture the space
of feasible deformations of a particular material, they need
training examples acquired from a real object, which involves
a painstaking process. Our linear local models have the advan-
tage that they can be learned from synthetic training data, that
can easily be generated. Furthermore, as long as sufficiently
many modes are kept, they define an hyper-ellipsoid that
encompasses the true nonlinear deformation space. Therefore,
they can model arbitrarily complex shapes. In practice, to
remain as general as possible, we keepall the modes and
enforce deformations to remain plausible by regularizing their
coefficients according to their importance, as described below.

5.2 Local Models for Shape Recovery

When using a linear model for shape recovery, the usual
approach is to replace the original unknowns by the modes
weights. However, since we model the global surface with
overlapping local patches, doing so would not constrain the
shapes predicted by the weights associated to two such patches
to be consistent. Fortunately, since the deformation modes
are orthonormal, the coefficientsci of Eq. 5 can be directly
computed fromXi as

ci = ΛT
(

Xi − X0
i

)

. (6)

We therefore use the vector of surface coordinatesX intro-
duced in Section 4.1. To enforce the individual surface patches
to conform to our linear local model, we use all the modes
and introduce the penalty term

∥

∥

∥
Σ−1/2ci

∥

∥

∥
=

∥

∥

∥
Σ−1/2ΛT

(

Xi − X0
i

)

∥

∥

∥
, (7)

where Σ is a diagonal matrix that contains the eigenvalues
associated to the eigenvectors inΛ. It measures how far the
ci, and therefore theXi, are from the training data. We then
write the global regularization term as the solution to the
optimization problem

minimize
X

∥

∥WlL
(

X − X0
)
∥

∥

2
, (8)

whereL is annpn
2
l ×nv matrix which concatenatesnp copies

of Σ−1/2ΛT spread over the global meshX according to
the vertices of thenp patchesXi, and X0 is the reference
shape of the global mesh.Wl is a diagonal matrix containing
np individual valueswi

l designed to account for the fact
that poorly-textured patches should rely more strongly on the
model than well-textured ones. In other words,wi

l should be

inversely proportional to the number of correspondences in
patchi. We take it to be

wi
l = exp

(

−
ni

in

median(nk
in > 0 , 1 ≤ k ≤ np)

)

, (9)

wherenj
in is the number of inlier matches in patchj. Note

that the formulation of the shape regularization of Eq. 8 spares
us the need to explicitly introduce additional latent variables
as was the case for the nonlinear local models [29].

To prevent us from obtaining the trivial solutionX = X0

to the problem of Eq. 8, we solve it in conjunction with the
projection equations of Eq. 4. This lets us express the shape
reconstruction problem as the solution of

minimize
X

‖MX‖
2

+
∥

∥WlL
(

X − X0
)
∥

∥

2
. (10)

Since, within theL2-norms, both terms are linear inX, this
is equivalent to solving in the least-squares sense the linear
system

S

[

X

1

]

= 0 , (11)

where

S =

[

M 0

WlL −WlLX0

]

. (12)

In Fig. 6, we plot the eigenvaluesSTS for the mesh of
Fig. 3. As we can see, much fewer eigenvalues are close to
zeros than before. This suggests that our linear local models
truly improve the conditioning of our problem. However, some
eigenvalues remain small, which implies that some ambiguities
are still unresolved. This, for example, is the case of the global
scale ambiguity that can be modeled by the extension modes
depicted in Fig. 5. Therefore, additional constraints needto be
introduced to fully disambiguate the problem.

6 NONLINEAR CONSTRAINTS

In this section, we introduce the additional nonlinear con-
straints that, in conjunction with the linear local models of
the previous section, make shape recovery from 3D-to-2D
correspondences well-posed. We first introduce inextensibility
constraints, and show that they yield a closed-form solution
of the reconstruction problem. Then, because these constraints
may be violated in the presence of sharp folds, we replace
them by distance inequalities, which results in a convex
formulation.
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Fig. 6. Eigenvalues corresponding to the linear system of
Eq. 11 for the mesh of Fig. 3. Note that fewer eigenvalues
are close to zero than when relying on texture only.
However, some remain small, which suggests that the
linear local models do not fully disambiguate the problem.

6.1 Distance Equality Constraints

Several recent approaches [24], [10], [27] rely on the fact that
many deformable surfaces, such as clothes or paper, are nearly
inextensible. In our case, this means enforcing constraints
expressed as

‖vj − vk‖
2 = l2j,k , ∀(j, k) ∈ E , (13)

where E represents the set ofne edges of the mesh, and
lj,k is the length of the edge joining vertexj and vertexk
in the reference configuration. A typical way to solve such
quadratic constraints in closed-form is to linearize the system,
which involves introducing new unknowns for the quadratic
terms. In our case, this would yield3nv(3nv+1)/2 unknowns,
which, for meshes of reasonable size, would quickly become
intractable. Instead, we propose to describe the solutionsof
Eq. 11 with a reduced number of unknowns, which lets us
effectively enforce inextensibility constraints.

Following the idea introduced in [20], we write the solution
of the linear system of Eq. 11 as a weighted sum of the
eigenvectorssi , 1 ≤ i ≤ ns of ST S, which are associated
with the ns smallest eigenvalues. Therefore we write

[

X

1

]

=

ns
∑

i=1

βisi , (14)

since any such linear combination ofsi is in the kernel ofSTS

and produces a mesh that simultaneously projects correctly
on the image and conforms to the linear local models. Our
problem now becomes one of finding appropriate values for
the βi, which are the new unknowns.

We are now in a position to exploit the inextensibility of the
surface by choosing theβi so that edge lengths are preserved.
Suchβi can be expressed as the solution of a set of quadratic
equations of the form

‖

ns
∑

i=1

βis
j
i −

ns
∑

i=1

βis
k
i ‖

2 = l2j,k , (15)

where s
j
i is the 3×1 sub-vector ofsi corresponding to the

coordinates of vertexvj . In addition to these quadratic con-
straints, we need to express the fact that the last elements of

Fig. 7. Schematic representation of why inextensibility
constraints are ill-suited for sharp folds. Left: Two points
of the discrete representation of a continuous surface in
its rest configuration. Right: When deformed, while the
geodesic distance between the two points is preserved,
the Euclidean one decreases. This suggests that distance
inequality constraints should be used rather than equali-
ties.

the productsβisi must sum up to one. This yields the linear
equation

ns
∑

i=1

βis
3nv+1

i = 1 , (16)

which we solve together with the quadratic edge constraints.
Since ns ≪ 3nv, linearization becomes a viable option

to solve our quadratic equations. To this end, we consider
the quadratic terms as additional variables, and define the
new (ns(ns + 3)/2)-dimensional vector of unknows asb =
[bl

T ,bq
T ]T , such that

bl = [β1, · · · , βns
]
T

, and

bq = [β1β1, · · · , β1βns
, β2β2, · · · , β2βns

, · · · , βns
βns

]T .

Finding a shape that satisfies the constraints described above
can now be expressed as solving the optimization problem

minimize
b

‖Dbq − d‖
2

+ ws

(

s3nv+1bl − 1
)2

, (17)

whereD is anne×ns(ns +1)/2 matrix built from the known
si, d is the ne × 1 vector of edge lengths in the reference
configuration, ands3nv+1 is the row vector containing the last
element of eachsi. ws is a weight that sets the influence of
the constraint of Eq. 16, and was always set to 1e6. Note that,
with our new unknowns, this problem is equivalent to solving
a linear system in the least-squares sense, which can be done
in closed-form.

However, solving the problem of Eq. 17 directly would
yield a meaningless solution since nothing links the linear
terms with the quadratic ones. To overcome this problem, we
multiply the linear equation of Eq. 16 by the individualβj ,
which yieldsns new equations of the form

ns
∑

i=1

βjβis
3nv+1

i = βj . (18)

Adding these equations to Eq. 17 provides the missing link
between linear and quadratic terms. Note that this does not
truly guarantee consistency between the linear and quadratic
terms, but, in practice, it proved sufficient to yield meaningful
reconstructions. We therefore solve the optimization problem

minimize
b

‖Dbq − d‖
2
+ws

(

(

s3nv+1bl − 1
)2

+ ‖Dlqb‖
2
)

,

(19)
whereDlq is an ns × ns(ns + 3)/2 matrix. Note that this
problem can still be solved in closed-form. Given its solution,
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Fig. 8. With a perspective camera model, lines-of-sight
are not parallel. Therefore, maximizing the area of a mesh
can be achieved by pushing it away from the camera. Top:
In the absence of noise this can be done by maximizing
the depth of the point along the line-of-sight. Bottom: With
noise, we replace the depth di by the projection of the
point on the line-of-sight.

we can compute the shape of the deforming surface from
Eq. 14 with the linear terms of vectorb. Selecting the correct
numberns of eigenvectors to take into account is done by
testing for all values smaller than a predefined threshold, and
by picking the one that gives the smallest mean edge length
variation. In practice the maximum value forns was set to 20.

6.2 Distance Inequality Constraints
As we will show in the results section, the inextensibility
constraints yield good reconstruction of smoothly deforming
surfaces. However, as illustrated by Fig. 7, such constraints
are violated when folds appear between mesh vertices, be-
cause the Euclidean distance between points on the surface
may decrease. It is therefore truer to reality to replace the
inextensibility constraints by constraints that allow vertices
to come closer to each other, but not to move further apart
than their geodesic distance [25]. For all pairs of neighboring
verticesvj and vk, we therefore replace the constraints of
Eq. 13 by inequality constraints written as

‖vk − vj‖ ≤ lj,k . (20)

Note that, contrary to inextensibility constraints, thesedistance
inequalities are convex [5]. As a consequence, there is no need
to linearize them, and we could directly solve the problem

minimize
X

‖MX‖ +
∥

∥WlL
(

X − X0
)∥

∥ (21)

subject to ‖vk − vj‖ ≤ lj,k , ∀(j, k) ∈ E .

This could be done using available convex optimization pack-
ages [30] by introducing a slack variable to minimize the
norm [5].

(a) (b)

(c) (d)

Fig. 9. Synthetic data acquired with a motion capture
system. (a,b) Mesh and corresponding textured image of
a smoothly deforming piece of cardboard. (c,d) Similar
images for a piece of cloth with sharper folds.

However, while our inequalities prevent the mesh from
expanding, they still allow it to shrink to a single point. This
could be remedied by maximizing the mesh area under our
constraints. However, this would yield a non-convex problem.
Instead, we exploit the fact that, in the perspective camera
model, the lines-of-sight are not parallel, as depicted by the
top drawing of Fig. 8. Thus the largest distance between two
points is reached when the surface is furthest away from the
camera. Therefore, a nontrivial reconstruction can be obtained
by maximizing the depthdi of each point along its line-of-
sight qi. While, with noise-free correspondences, 3D surface
points are completely defined by their position along the
lines-of-sight, they should be allowed to move away from
them in the presence of noise, as depicted by the bottom
of Fig. 8. Therefore, rather than maximizingdi, we consider
the projections ofpi on its line-of-sightqi, which can be
computed as

pT
i qi = XT BT

i qi , (22)

where Bi is the 3 × 3nv matrix containing the barycentric
coordinates of pointi placed to correctly match the vertices
of the facet to which the point belongs.

We can then add the maximization of the terms of Eq. 22
to the optimization problem of Eq. 21, which yields the new
convex problem

minimize
X

‖MX‖ +
∥

∥WlL
(

X − X0
)∥

∥ − wd

nin
∑

i=1

XT BT
i si

subject to ‖vk − vj‖ ≤ lj,k , ∀(j, k) ∈ E , (23)

wherewd is a weight that controls the relative influence of
depth maximization and image error minimization. In practice,
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Fig. 10. Reconstruction error for the cardboard sequence.
Mean vertex-to-vertex distance to ground-truth meshes
from synthetic correspondences (top) and SIFT corre-
spondences (bottom). We compare our results with those
of the methods in [27] (cyan) and [29] (green). Results
obtained with equality constraints are shown in red and
with inequalities in blue.

we set wd to 2/3 because computing depths involves3nin

values against2nin projection equations. Since we simply
added linear terms to the previous objective function, this
optimization problem remains convex.

7 EXPERIMENTAL RESULTS

We now present results obtained on synthetic and real data by
using our linear local models with either the inextensibility
constraints of Section 6.1 or the distance inequalities of Sec-
tion 6.2. Note that the meshes we used to produce these results
all have different dimensions. Nevertheless, thanks to ourlocal
models, we only had to compute the deformation modes once
for 5x5 pacthes and then to combine them appropriately for
the different meshes.

7.1 Synthetic Data

We applied our two approaches to synthetic data to quantita-
tively evaluate their performance. Furthermore, we compare
them against our closed-form solution relying on a global
deformation model and inextensibility constraints [27], and
against nonlinear local deformation models [29]. Note that
the latter method relies on template matching instead of
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Fig. 11. Similar plots as in 10 for the deformations of a
piece of cloth.

correspondences and tracks the deformation from frame to
frame due to the non-convexity of its objective function.

To make our experiments as realistic as possible, we ob-
tained 3D meshes, such as those of Fig. 9(a,c), by deforming
a sheet of cardboard and a more flexible piece of cloth in
front of an optical motion capture system. We then created
correspondences in two different manners. We first created
completely synthetic correspondences by randomly sampling
the barycentric coordinates of the mesh facets, projecting
them with a known camera, and adding zero-mean Gaussian
noise with variance 2 to the image locations. To simulate
real data even more accurately, we textured the meshes and
generated images, such as the ones of Fig. 9(b,d), with uniform
intensity noise in the range[−10, 10]. We then obtained
correspondences by matching SIFT [16] features between a
reference image and the input images. To cope with the outliers
resulting from this procedure, we implemented an iterated
reweighting procedure that decreases a radius inside which
correspondences are considered as inliers. In practice, we
initialized this radius to 50 pixels and divided it by 2 at each
iteration. We then weighted each valid line of the matrixM

of Eq. 4 by a weight

wi = exp

(

−
ei

median(ej , 1 ≤ j ≤ nin)

)

, (24)

whereei is the reprojection error of correspondencei, andnin

is the number of inliers. The same procedure was used with
the synthetic outliers described below and with real images
discussed in Section 7.2.
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(a) (b) (c) (d) (e)

Fig. 12. Visual comparison of the recovered meshes for the deformation of Fig. 9(a). (a) Ground truth. Mesh recovered
with (b) non-linear local models, (c) global model with equality constraints, (d) local models with equality constraints,
(e) local models with inequality constraints. Beacause the deformation is fairly smooth, all recovered shapes are fairly
similar.

(a) (b) (c) (d) (e)

Fig. 13. Visual comparison of the recovered meshes for the deformation of Fig. 9(c). (a) Ground truth. Mesh recovered
with (b) non-linear local models, (c) global model with equality constraints, (d) local models with equality constraints, (e)
local models with inequality constraints. Because the folds are sharp, using equality constraints tends to oversmooth
whereas inequalities or nonlinear models yields better results.

In Figs. 10 and 11, we compare the results of the four
different techniques on the sheet of cardboard and the pieceof
cloth, respectively. We plot the mean vertex-to-vertex distance
between the reconstructed mesh and the ground-truth one. On
the top plot of each figure, we show the results obtained with
synthetic matches, and on the bottom one, the errors obtained
with SIFT matches. In Figs. 12 and 13, we visually compare
the results of all approaches for the frames in which the
deformation is largest, i.e. frames 100 and 60, respectively.
From these curves, we can observe that using inequality
constraints gives better results, especially for the pieceof cloth.
This was to be expected since sharp folds are better modeled
by inequalities. Furthermore, we can observe that local and
global models used in conjunction with equality constraints
perform similarly. While this might seem disappointing, local
models still have the advantage of being more general than
the global ones in the sense that they let us model arbitrary
shapes. Finally, while nonlinear local models perform well,
they involve tracking the surface throughout the sequence,
which can result in drift, as can be observed at the end of
the cardboard sequence. Additionally, they are much more
computationally expensive than the closed-form or convex
optimization methods.

To test the robustness of our approaches to the lack of
texture, we used the synthetic correspondences, and removed
randomly selected subsets of them. In Fig. 14, we plot the
average reconstruction error over the sequences as a function
of the percentage of removed correspondences. As shown by
the plots, accuracy does not decrease significantly until most
correspondences are gone. Finally, we tested the robustness of

our approach to outliers by assigning random image locations
to a given percentage of the synthetic correspondences. In
Fig. 15, we plot the mean reconstruction error over the
sequences as a function of the outlier rate. As we can see,
both methods are robust to up to 50% outliers. However, the
distance equality constraints are more stable for higher outlier
rates.

In Figs. 16 and 17, we show the limitations of our approach
when there is little texture concentrated in a single area ofthe
surface, which almost amounts to a worst-case scenario. To
this end, we textured the same cardboard and cloth surfaces
as before to create images such as the ones of Fig. 17(a,d), and
computed sift correspondences from them. Fig. 16 depicts the
reconstruction errors for the different frames of the sequences.
Note that the values are significantly higher than those of
Figs. 10 and 11. In Fig. 17(b,c,e,f), we plot the recovered
3D shapes for the same frames as in Fig. 12 and 13 to quan-
titatively evaluate these results. Note that the reconstructed
surfaces are much flatter than before. This was to be expected
since we only have shape information for the textured part, and
suggests that additional image cues, such as edges or shading,
should be used.

7.2 Real Images

We tested our approach on real images taken with a 3-CCD
DV camera. In each one of the following figures, we show the
mesh recovered overlaid on the input image and the same mesh
seen from a different viewpoint. Note that, even though our
results were obtained from video sequences, nothing links the
shape recovered in the consecutive frames. We first used the
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Fig. 14. To evaluate the influence of the lack of texture on
our methods, we removed randomly selected subsets of
correspondences. We plot the mean reconstruction error
over the whole sequence as a function of the percentage
of removed matches for the cardboard data (top) and the
cloth sequence (bottom). The stars indicate the standard
deviation of the error.

equality constraints to recover the deformations of smoothly
deforming objects such as the sheets of paper of Fig. 18. In
Fig. 19, we show that, if the mesh is fine enough, the equality
constraints can still reconstruct folds. However, if the folds on
the surface do not correspond to mesh edges as in the case in
Fig. 20, these constraints are not appropriate anymore. As can
be observed in the bottom row of the figure, the folds cannot be
modeled correctly, and the recovered shapes are too smooth.
This is not the case anymore with distance inequalities, as
shown in the second row. Fig. 21 depicts results obtained
with our distance inequality constraints on two other flexible
surfaces. Finally, we applied our method to recover the shape
of the non-rectangular surface depicted by Fig. 22. In this case,
the correspondences were obtained by tracking markers on the
sail. In Fig. 22(g), we show how we covered the entire sail
with local models. Note that the additional vertices required by
our local models have no negative influence on the recovered
shapes since they do not contain any correspondences.

8 CONCLUSION

In this paper, we have presented linear local deformation
models for 3D shape reconstruction from monocular images.
We have shown that these models have the advantage of being
more general than global ones, and of being easier to deploy
than nonlinear local models. Furthermore, we have shown
that, when used in conjunction with distance constraints, they
yield accurate solutions to the shape recovery problem. In
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Fig. 15. We evaluated the robustness of our approaches
to outliers by setting random values to the image locations
of some correspondences. We plot the mean recon-
struction error over the whole sequence as a function
of the outlier rate for the cardboard data (top) and the
cloth sequence (bottom). The stars indicate the standard
deviation of the error.
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Fig. 16. Reconstruction errors from SIFT correspon-
dences on the poorly textured surfaces of Fig. 17(a,d) for
a piece of cardboard (left) and for a piece of cloth (right)
Note that these errors are significantly larger than those
of Figs. 10 and 11.
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(a) (b) (c) (d) (e) (f)

Fig. 17. Recovering the shape of poorly textured surfaces (a,d). (b,e) 3D reconstruction using equality constraints.
(c,f) 3D reconstruction using inequality constraints. Since we only exploit shape information in the center of the image,
the recovered surfaces are far too smooth.

Fig. 18. Recovering the shape of a piece of paper. First and third rows: Mesh recovered using equality constraints
overlaid on the input image. Second and fourth rows: Side view of that mesh.

particular, we have introduced distance equality constraints
and have proposed a closed-form solution to the reconstruction
problem. Due to the limitation of these constraints to recover
sharp folds, we have shown how to replace them with distance
inequalities, which yield a convex optimization problem.

In the future, we intend to study the use of our models,
and potentially of our constraints to remove the requirement
of a reference image. In [36], we started investigating this
problem under the assumption that the surface remains locally
planar. While this assumption is valid for smoothly deforming
surfaces, such as the one of Fig. 18, it is not for sharp folds
such as the one that appears in Fig. 19. Handling those, will
require generalizing that approach.

Furthermore, we also intend to study the use of sources
of information other than correspondences. In particular,the

use of shading and silhouettes would give additional cues that
could paliate the lack of texture. Ultimately, we hope such
cues could be formulated in a similar convex optimization
framework as our current approach.
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APPENDIX: PROBABILISTIC INTERPRETATION

In Section 5, we took the deformation energy of a mesh
to be the sum of deformation energies over individual and
overlapping patches. In probabilistic terms, this means that we
compute the likelihood of a specific 3D shape as the product
of the likelihood of its component patches. Since the patches
share vertices, there are not independent from each other and
it is therefore not completely obvious why this would result
in the effective regularizer that our results show it to be. In
this appendix, we provide empirical evidence as to why this
is indeed the case.

To this end, we used motion capture data similar to what
we used in Section 7.1. It was acquired by sticking 3mm wide
hemispherical reflective markers on a rectangular surface and
deforming it arbitrarily in front of six infrared ViconTM cam-
eras that reconstruct the 3D positions of individual markers.
We did this both for a9x7 grid of markers on a piece of
cloth and a9x9 grid of markers on a piece of cardboard,
the latter being of course much stiffer than the former. Let
Xt = [x1, y1, z1, ..., xP×Q, yP×Q, zP×Q]T be the vector of
the corresponding concatenated coordinates acquired at timet,
with P = 7 andQ = 9 for the cloth andP = 9 andQ = 9 for
the cardboard. In this manner, we acquired several thousand
Xt vectors for each. The left column of Fig. 23 depicts the
corresponding normalized covariance matrices and the right
column their inverses, known as theprecisionmatrices.

In this figure, dark red represents positive values, dark blue
negative values, and light blue values close to zero. Therefore,
if one treats these small values as truly being zero, theP

precision matrices only have a few non zero diagonals for
materials as different as cloth and cardboard. This is significant
because, assuming that theXt vectors are normally distributed,
the likelihood of an arbitraryX vector can be estimated as

P (X) ∝ exp(−XTPX) . (25)

Because closer examination of theP matrix reveals that
its non-zero diagonals correspond to interactions between
neighboring mesh vertices, this means that the likelihood of
Eq. 25 can be rewritten as

P (X) ∝
∏

i

exp(−XT
i PiXi) , (26)

where theXi are the coordinates of the vertices of square
patches such as those introduced in Section 5.1.log(P (X))
is therefore close to being a sum of terms computed over
individual patches, which constitutes empirical evidencethat
our energy formulation is true to reality.

Fig. 23. Top row: Normalized covariance and precision
matrices for the cloth data. Bottom row: The same ma-
trices for the cardboard data. Note that the precision
matrices are clearly banded if one treats the light blue
areas as being zeros.
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