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Abstract
Recent approaches to multi-view learning have shown that factorizing the infor-
mation into parts that are shared across all views and parts that are private to each
view could effectively account for the dependencies and independencies between
the different input modalities. Unfortunately, these approaches involve minimiz-
ing non-convex objective functions. In this paper, we propose an approach to
learning such factorized representations inspired by sparse coding techniques.
In particular, we show that structured sparsity allows us to address the multi-
view learning problem by alternately solving two convex optimization problems.
Furthermore, the resulting factorized latent spaces generalize over existing ap-
proaches in that they allow having latent dimensions shared between any subset
of the views instead of between all the views only. We show that our approach
outperforms state-of-the-art methods on the task of human pose estimation.

1 Introduction

Many computer vision problems inherently involve data that is represented by multiple modalities
such as different types of image features, or images and surrounding text. Exploiting these multiple
sources of information has proven beneficial for many computer vision tasks. Given these multiple
views, an important problem therefore is that of learning a latent representation of the data that best
leverages the information contained in each input view.

Several approaches to addressing this problem have been proposed in the recent years. Multiple
kernel learning [2, 24] methods have proven successful under the assumption that the views are
independent. In contrast, techniques that learn a latent space shared across the views (Fig. 1(a)), such
as Canonical Correlation Analysis (CCA) [12, 3], the shared Kernel Information Embedding model
(sKIE) [23], and the shared Gaussian Process Latent Variable Model (shared GPLVM) [21, 6, 15],
have shown particularly effective to model the dependencies between the modalities. However, they
do not account for the independent parts of the views, and therefore either totally fail to represent
them, or mix them with the information shared by all views.

To generalize over the above-mentioned approaches, methods have been proposed to explicitly ac-
count for the dependencies and independencies of the different input modalities. To this end, these
methods factorize the latent space into a shared part common to all views and a private part for each
modality (Fig. 1(b)). This has been shown for linear mappings [1, 11], as well as for non-linear
ones [7, 14, 20]. In particular, [20] proposed to encourage the shared-private factorization to be non-
redundant while simultaneously discovering the dimensionality of the latent space. The resulting
FOLS models were shown to yield more accurate results in the context of human pose estimation.
This, however, came at the price of solving a complicated, non-convex optimization problem. FOLS
also lacks an efficient inference method, and extension from two views to multiple views is not
straightforward since the number of shared/latent spaces that need to be explicitly modeled grows
exponentially with the number of views.

In this paper, we propose a novel approach to finding a latent space in which the information is cor-
rectly factorized into shared and private parts, while avoiding the computational burden of previous
techniques [14, 20]. Furthermore, our formulation has the advantage over existing shared-private
factorizations of allowing shared information between any subset of the views, instead of only be-
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Figure 1: Graphical models for the two-view case of (a) shared latent space models [23, 21, 6, 15],
(b) shared-private factorizations [7, 14, 20], (c) the global view of our model, where the shared-
private factorization is automatically learned instead of explicitly separated, and (d) an equivalent
shared-private spaces interpretation of our model. Due to structured sparsity, rows Πs of α are
shared across the views, whereas rows Π1 and Π2 are private to view 1 and 2, respectively.

tween all views. In particular, we represent each view as a linear combination of view-dependent
dictionary entries. While the dictionaries are specific to each view, the weights of these dictionaries
act as latent variables and are the same for all the views. Thus, as shown in Fig. 1(c), the data is
embedded in a latent space that generates all the views. By exploiting the idea of structured spar-
sity [26, 18, 4, 17, 9], we encourage each view to only use a subset of the latent variables, and at
the same time encourage the whole latent space to be low-dimensional. As a consequence, and as
depicted in Fig. 1(d), the latent space is factorized into shared parts which represent information
common to multiple views, and private parts which model the remaining information of the individ-
ual views. Training the model can be done by alternately solving two convex optimization problems,
and inference by solving a convex problem.

We demonstrate the effectiveness of our approach on the problem of human pose estimation where
the existence of shared and private spaces has been shown [7]. We show that our approach correctly
factorizes the latent space and outperforms state-of-the-art techniques.

2 Learning a Latent Space with Structured Sparsity

In this section, we first formulate the problem of learning a latent space for multi-view modeling.
We then briefly review the concepts of sparse coding and structured sparsity, and finally introduce
our approach within this framework.

2.1 Problem Statement and Notations

Let X = {X(1),X(2), · · · ,X(V )} be a set ofN observations obtained from V views, where X(v) ∈
<Pv×N contains the feature vectors for the vth view. We aim to find an embedding α ∈ <Nd×N of
the data into anNd-dimensional latent space and a set of dictionariesD = {D(1),D(2), · · · ,D(V )},
with D(v) ∈ <Pv×Nd the dictionary entries for view v, such that X(v) is generated by D(v)α, as
depicted in Fig. 1(c). More specifically, we seek the latent embedding α and the dictionaries that
best reconstruct the data in the least square sense by solving the optimization problem

min
D,α

V∑
v=1

‖X(v) −D(v)α‖2Fro . (1)

Furthermore, as explained in Section 1, we aim to find a latent space that naturally separates the
information shared among several views from the information private to each view. Our approach
to addressing this problem is inspired by structured sparsity, which we briefly review below.

Throughout this paper, given a matrix A, we will use the term Ai to denote its ith column vector,
Ai,· to denote its ith row vector, and A·,Ω (AΩ,·) to denote the submatrix formed by taking a subset
of its columns (rows), where the set Ω contains the indices of the chosen columns (rows).

2.2 Sparse Coding and Structured Sparsity

In the single-view case, sparse coding techniques [16, 25, 13] have been proposed to represent the
observed data (e.g., image features) as a linear combination of dictionary entries, while encourag-
ing each observation vector to only employ a subset of all the available dictionary entries. More
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formally, let X ∈ <P×N be the matrix of training examples. Sparse coding aims to find a set of
dictionary entries D ∈ <P×Nd and the corresponding linear combination weights α ∈ <Nd×N by
solving the optimization problem

min
D,α

1

N
||X−Dα||2Fro + λφ(α) (2)

s.t. ||Di|| ≤ 1 , 1 ≤ i ≤ Nd ,

where φ is a regularizer that encourages sparsity of its input, and λ is the weight that sets the relative
influence of both terms. In practice, when φ is a convex function, problem (2) is convex in D for a
fixed α and vice-versa. Typically, the L1 norm is used to encourage sparsity, which yields

φ(α) =

N∑
j=1

‖αj‖1 =

N∑
j=1

Nd∑
i=1

|αi,j | . (3)

While sparse coding has proven effective in many domains, it fails to account for any structure in the
observed data. For instance, in classification tasks, one would expect the observations belonging to
the same class to depend on the same subset of dictionary entries. This problem has been addressed
by structured sparse coding techniques [26, 4, 9], which encode the structure of the problem in the
regularizer. Typically, these methods rely on the notion of groups among the training examples to
encourage members of the same group to rely on the same dictionary entries. This can simply be
done by re-writing problem (2) as

min
D,α

1

N
||X−Dα||2Fro + λ

Ng∑
g=1

ψ(α·,Ωg ) (4)

s.t. ||Di|| ≤ 1 , 1 ≤ i ≤ Nd ,

where Ng is the total number of groups, Ωg represents the indices of the examples that belong to
group g, and α·,Ωg is the matrix containing the weights associated to these examples. To keep the
problem convex in α, ψ is usually taken either as the L1,2 norm, or as the L1,∞ norm, which yield

ψ(α·,Ωg
) =

Nd∑
i=1

||αi,Ωg
||2 , or ψ(α·,Ωg

) =

Nd∑
i=1

||αi,Ωg
||∞ =

Nd∑
i=1

max
k∈Ωg

|αi,k| . (5)

In general, structured sparsity can lead to more meaningful latent embeddings than sparse coding.
For example, [4] showed that the dictionary learned by grouping local image descriptors into images
or classes achieved better accuracy than sparse coding for small dictionary sizes.

2.3 Multi-view Learning with Structured Sparsity

While the previous framework has proven successful for many tasks, it has only been applied to the
single-view case. Here, we propose an approach to multi-view learning inspired by structured sparse
coding techniques. To correctly account for the dependencies and independencies of the views, we
cast the problem as that of finding a factorization of the latent space into subspaces that are shared
across several views and subspaces that are private to the individual views. In essence, this can be
seen as having each view exploiting only a subset of the dimensions of the global latent space, as
depicted by Fig. 1(d). Note that this definition is in fact more general than the usual definition of
shared-private factorizations [7, 14, 20], since it allows latent dimensions to be shared across any
subset of the views rather than across all views only.

More formally, to find a shared-private factorization of the latent embedding α that represents the
multiple input modalities, we adopt the idea of structured sparsity and aim to find a set of dictionaries
D = {D(1),D(2), · · · ,D(V )}, each of which uses only a subspace of the latent space. This can be
achieved by re-formulating problem (1) as

min
D,α

1

N

V∑
v=1

‖X(v) −D(v)α‖2Fro + λ

V∑
v=1

ψ((D(v))T ) (6)

s.t. ||α·,i|| ≤ 1 , 1 ≤ i ≤ Nd .
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where the regularizer ψ((D(v))T ) can be defined using the L1,2 or L1,∞ norm. In practice, we chose
the L1,∞ norm regularizer which has proven more effective than the L1,2 [18, 17]. Note that, here,
we enforce structured sparsity on the dictionary entries instead of on the weights α. Furthermore,
note that this sparsity encourages the columns of the individual D(v) to be zeroed-out instead of the
rows in the usual formulation. The intuition behind this is that we expect each view X(v) to only
depend on a subset of the latent dimensions. Since X(v) is generated by D(v)α, having zero-valued
columns of D(v) removes the influence of the corresponding latent dimensions on the reconstruction.

While the formulation in Eq. 6 encourages each view to only use a limited number of latent di-
mensions, it doesn’t guarantee that parts of the latent space will be shared across the views. With
a sufficiently large number Nd of dictionary entries, the same information can be represented in
several parts of the dictionary. This issue is directly related to the standard problem of finding the
correct dictionary size. A simple approach would be to manually choose the dimension of the la-
tent space, but this introduces an additional hyperparameter to tune. Instead, we propose to address
this issue by trying to find the smallest size of dictionary that still allows us to reconstruct the data
well. In spirit, the motivation is similar to [8, 20] that use a relaxation of rank constraints to dis-
cover the dimensionality of the latent space. Here, we further exploit structured sparsity and re-write
problem (6) as

min
D,α

1

N

V∑
v=1

‖X(v) −D(v)α‖2Fro + λ

V∑
v=1

ψ((D(v))T ) + γψ(α) , (7)

where we replaced the constraints on α by anL1,∞ norm regularizer that encourages rows of α to be
zeroed-out. This lets us automatically discover the dimensonality of the latent space α. Furthermore,
if there is shared information between several views, this regularizer will favor representing it in a
single latent dimension, instead of having redundant parts of the latent space.

The optimization problem (7) is convex in D for a fixed α and vice versa. Thus, in practice, we
alternate between optimizing D with a fixed α and the opposite. Furthermore, to speed up the
process, after each iteration, we remove the latent dimensions whose norm is less than a pre-defined
threshold. Note that efficient optimization techniques for the L1,∞ norm have been proposed in the
literature [17], enabling efficient optimization algorithms for the problem.

2.4 Inference

At inference, given a new observation {x(1)
∗ , · · · ,x(V )

∗ }, the corresponding latent embedding α∗ can
be obtained by solving the convex problem

min
α∗

V∑
v=1

‖x(v)
∗ −D(v)α∗‖22 + γ‖α∗‖1 , (8)

where the regularizer lets us deal with noise in the observations.

Another advantage of our model is that it easily allows us to address the case where only a subset
of the views are observed at test time. This scenario arises, for example, in human pose estimation,
where view X(1) corresponds to image features and view X(2) contains the 3D poses. At inference,
the goal is to estimate the pose x

(2)
∗ given new image features x(1)

∗ . To this end, we seek to estimate
the latent variables α∗, as well as the unknown views from the available views. This is equivalent to
first solving the convex problem

min
α∗

∑
v∈Va

‖x(v)
∗ −D(v)α∗‖22 + γ‖α∗‖1 , (9)

where Va is the set of indices of available views. The remaining unobserved views x(v)
∗ , v /∈ Va

are then estimated as x(v)
∗ = D(v)α∗ .

3 Related Work

While our method is closely related to the shared-private factorization algorithms which we dis-
cussed in Section 1, it was inspired by the existing sparse coding literature and therefore is also
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Method ψ(D) φ(α) CD or Cα
PCA none none {D|DTD = I}
SC (e.g. [25]) none ‖αT ‖1,1 {D|‖Di‖2 ≤ 1 ∀i ≤ Nd}
Group SC [4] ‖DT ‖1,2

∑
Ωg
‖α·,Ωg‖1,2 none

SSPCA [9]
∑

Ωg
‖D·,Ωg‖ξ,2 † none {α|‖αi,·‖2 ≤ 1 ∀i ≤ Nd}

Group Lasso [26] none
∑

Ωg
‖(αΩg,·)

T ‖1,2 {D|DTD = I}
Our Method

∑
Ωg
‖(DΩg,·)

T ‖1,∞ ‖α‖1,∞ none
† Here ξ denotes the vector lα/l1 quasi-norm. See [9] for details.

Table 1: Properties of the different algorithms that can be viewed as special cases of RMF.

related to it. In this section, we first show that many existing techniques can be considered as special
cases of a general regularized matrix factorization (RMF) framework, and then discuss the relation-
ships and differences between our method and the existing ones.

In general, the RMF problem can be defined as that of factorizing a P×N matrix X into the product
of a P ×M matrix D and an M ×N matrix α so that the residual error is minimized. Furthermore,
RMF exploits structured or unstructured regularizers to constrain the forms of D and α. This can
be expressed as the optimization problem

min
D,α

1

N
‖X−Dα‖2Fro + λψ(D) + γφ(α) (10)

s.t. D ∈ CD , α ∈ Cα ,

where CD and Cα are the domains of the dictionary D and of latent embedding α, respectively.
These domains allow to enforce additional constraints on those matrices. Several existing algo-
rithms, such as PCA, sparse coding (SC), group SC, structured sparse PCA (SSPCA) and group
Lasso, can be considered as special cases of this general framework. Table 1 lists the regularization
terms and constraints used by these different algorithms.

Algorithms relying on structured sparsity exploit different types of matrix norm1 to impose sparsity
and different ways of grouping the rows or columns of D and α using algorithm-specific knowledge.
Group sparse coding [4] relies on supervised information such as class labels to define the groups,
while in our case, we exploit the natural separation provided by the multiple views. As a result,
while group sparse coding finds dictionary entries that encode class-related information, our method
finds latent spaces factorized into subspaces shared among different views and subspaces private to
the individual views.

Furthermore, while structured sparsity is typically enforced on α, our method employs it on the
dictionary. This also is the case of [9] in their SSPCA algorithm. However, while in our approach
the groups are taken as subsets of the rows of D, their method follows the more usual approach
of defining the groups as subsets of its columns. Their intuition for doing so was to encourage
dictionary entries to represent the variability of parts of the observation space, such as the variability
of the eyes in the context of face images.

Finally, it is worth noting that imposing structured sparsity regularization on both D and α naturally
yields a multi-view, multi-class latent space learning algorithm that can be deemed as a generaliza-
tion of several algorithms summarized here.

4 Experimental Evaluation
In this section, we show the results of our approach on learning factorized latent spaces from multi-
view inputs. We compare our results against those obtained with state-of-the-art techniques on the
task of human pose estimation.

4.1 Toy Example

First, we evaluated our approach on the same toy case used by [20]. This shows our method’s ability
to correctly factorize a latent space into shared and private parts. This toy example consists of two

1In our paper, we define the Lp,q norm of a matrix A to be the p-norm of the vector containing of the
q-norms of the matrix rows, i.e., ‖A‖p,q =

∥∥∥ (‖A1,·‖q, ‖A2,·‖q, · · · , ‖An,·‖q)
∥∥∥
p
.

5



−1

0

1

S
h

a
re

d
−1

0

1

P
ri
v
a

te
1

−1

0

1

S
h

a
re

d

−1

0

1

P
ri
v
a

te
2

−0.02

0

0.02

C
o

rr
e

la
te

d
N

o
is

e

−0.5

0

0.5

X
(1

)

−0.5

0

0.5

X
(2

)

(a) Generative Signal (View 1) (b) Generative Signal (View 2) (c) Observations

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

Dictionary for View 1

1 2 3

5

10

15

20

Dictionary for View 2

1 2 3

5

10

15

20

(d) CCA (e) Our Method (f) Dictionaries
Figure 2: Latent spaces recovered on a toy example. (a,b) Generative signals for the two views.
(c) Correlated noise and the two 20D input views. (d) First 3 dimensions recovered by CCA. (e)
3-dimensional latent space recovered with our method. Note that, as opposed to CCA, our approach
correctly recovered the generative signals and discarded the noise. (f) Dictionaries learned by our
algorithm for each view. Fully white columns correspond to zero-valued vectors; note that the
dictionary for each view uses only the shared dimension and its own private dimension.

views generated from one shared signal and one private signal per view depicted by Fig. 2(a,b). In
particular, we used sinusoidal signals at different frequencies such that

α(1) = [sin(2πt); cos(π2t))], α(2) = [sin(2πt); cos(
√

5πt))] , (11)

where t was sampled from a uniform distribution in the interval (−1, 1). This yields a 3-dimensional
ground-truth latent space, with 1 shared dimension and 2 private dimensions. The observations X(v)

were generated by randomly projecting the α(v) into 20-dimensional spaces and adding Gaussian
noise with variance 0.01. Finally, we added noise of the form ynoise = 0.02 sin(3.6πt) to both
views to simulate highly correlated noise. The input views are depicted in Fig. 2(c)

To initialize our method, we first applied PCA separately on both views, as well as on the con-
catenation of the views, and in each case, kept the components representing 95% of the variance.
We took α as the concatenation of the corresponding weights. Note that the fact that this latent
space is redundant is dealt with by our regularization on α. We then alternately optimized D and
α, and let the algorithm determine the optimal latent dimensionality. Fig. 2(e,f) depicts the recon-
structed latent spaces for both views, as well as the learned dictionaries, which clearly show the
shared-private factorization. In Fig. 2(d), we show the results obtained with CCA. Note that our
approach correctly discovered the original generative signals and discarded the noise, whereas CCA
recovered the shared signal, but also the correlated noise and an additional noise. This confirms
that our approach is well-suited to learn shared-private factorizations, and shows that CCA-based
approaches [1, 11] tend to be sensitive to noise.

4.2 Human Pose Estimation

We then applied our method to the problem of human pose estimation, in which the task is to recover
3D poses from 2D image features. It has been shown that this problem is ambiguous, and that shared-
private factorizations helped accounting for these ambiguities. Here, we used the HumanEva dataset
[22] which consists of synchronized images and motion capture data describing the 3D locations of
the 19 joints of a human skeleton. These two types of observations can be seen as two views of the
same problem from which we can learn a latent space.

In our experiments, we compare our results with those of several regression methods that directly
learn a mapping from image features to 3D poses. In particular, we used linear regression (Lin-
Reg), Gaussian Process regression with a linear kernel (GP-lin) and with an RBF kernel (GP-rbf),
and nearest-neighbor in the feature space (NN). We also compare our results with those obtained
with the FOLS-GPLVM [20], which also proposes a shared-private factorization of the latent space.
Note that we did not compare against other shared-private factorizations [7, 14], or purely shared
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Data Lin-Reg GP-lin GP-rbf NN FOLS Our Method
Jogging 1.420 1.429 1.396 1.436 1.461 0.954
Walking 2.167 2.363 2.330 2.175 2.137 1.322

Table 2: Mean squared errors between the ground truth and the reconstructions obtained by different
methods.
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Figure 3: Dictionaries learned from the HumanEva data. Each column corresponds to a dictionary
entry. (a) and (b) show the 2-view case, and (c) shows a three-view case. Note that in (c) our model
found latent dimensions shared among all views, but also shared between the image features only.

models [21, 6, 15, 23], since they were shown to be outperformed by the FOLS-GPLVM [20] for
human pose estimation.

To initialize the latent spaces for our model and for the FOLS-GPLVM, we proceeded similarly
as for the toy example; We applied PCA on both views separately, as well as on the concatenated
views, and retained the components representing 95% of the variance. In our case, we set α to be the
concatenation of the corresponding PCA weights. For the FOLS-GPLVM, we initialized the shared
latent space with the coefficients of the joint PCA, and the private spaces with those of the individual
PCAs. We performed cross validation on the jogging data, and the optimal setting λ = 0.01 and
γ = 0.1 was then fixed for all experiments.

At inference for human pose estimation, only one of the views (i.e., the images) is available. As
shown in Section 2.4, our model provides a natural way to deal with this case by computing the
latent variables from the image features first, and then recovering the 3D coordinates using the
learned dictionary. For the FOLS-GPLVM, we followed the same strategy as in [20]; we computed
the nearest-neighbor among the training examples in image feature space and took the corresponding
shared and private latent variables that we mapped to the pose. No special care was required for the
other baselines, since they explicitly take the images as inputs and the poses as outputs.

As a first case, we used hierarchical features [10] computed on the walking and jogging video
sequences of the first subject seen from a single camera. As the subject moves in circles, we used
the first loop to train our model, and the remaining ones for testing. Table 2 summarizes the mean
squared reconstruction error for all the methods. Note that our approach yields a smaller error than
the other methods. In Fig. 3(a,b), we show the factorization of the latent space obtained by our
approach by displaying the learned dictionaries 2. For the jogging case our algorithm automatically
found a low-dimensional latent space of 10 dimensions, with a 4D private space for the image
features, a 4D shared space, and a 2D private space for the 3D pose3. For the walking case, the

2Note that the latent space per se is a dense, low-dimensional space, and whether a dimension is private or
shared among multiple views is determined by the corresponding dictionary entries.

3A latent dimension is considered private if the norm of the corresponding dictionary entry in the other view
is smaller than 10% of the average norm of the dictionary entries for that view.
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Feature Lin-Reg GP-lin GP-rbf NN FOLS Our Method λ = 0 γ = 0

PHOG 1.190 1.167 0.839 1.279 1.277 0.778 2.886 0.863
RT 1.345 1.272 0.827 1.067 1.068 1.141 3.962 1.235
PHOG+RT 1.159 1.042 0.727 1.090 1.015 0.769 1.306 0.794

Table 3: Mean squared errors for different choices of image features. The last two columns show
the result of our method while forcing one regularization term to be zero. See text for details.
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Figure 4: Mean squared error as a function of the number of training examples using PHOG features
only, RT features only, or both feature types simultaneously.

private space for the image features was found to be higher-dimensional. This can partially explain
why the other methods did not perform as well as in the jogging case.

Next, we evaluated the performance of the same algorithms for different image features. In particu-
lar, we used randomized tree (RT) features generated by [19], and PHOG features [5]. For this case,
we only considered the walking sequence and similarly trained the different methods using the first
cycle and tested on the rest of the sequence. The top two rows of Table 3 show the results of the
different approaches for the individual features. Note that, with the RT features that were designed
to eliminate the ambiguities in pose estimation, GP regression with an RBF kernel performs slightly
better than us. However, this result is outperformed by our model with PHOG features.

To show the ability of our method to model more than two views, we learned a latent space by
simultaneously using RT features, PHOG features and 3D poses. The last row of Table 3 shows
the corresponding reconstruction errors. In this case, we used the concatenated features as input
to Lin-Reg, GP-lin and NN. For GP-rbf, we relied on kernel combination to predict the pose from
multiple features. For the FOLS model, we applied the following inference strategy. We computed
the NN in feature space for both features individually and took the mean of the corresponding
shared latent variables. We then obtained the private part by computing the NN in shared space
and taking the corresponding private variables. Note that this proved more accurate than using NN
on a single view, or on the concatenated views. Also, notice in Table 3 that the performance drops
when structured sparsity is only imposed on either D’s or α, showing the advantage of our model
over simple structured sparsity approaches. Fig. 3(c) depicts the dictionary found by our method.
Note that our approach allowed us to find latent dimensions shared among all views, as well as
shared among the image features only.

Finally, we studied the influence of the number of training examples on the performance of the
different approaches. To this end, we varied the training set size from 5 to 100, and, for each size,
randomly sampled 10 different training sets on the first walking cycle. In all cases, we kept the same
test set as before. Fig. 4 shows the mean squared errors averaged over the 10 different sets as a
function of the number of training examples. Note that, with small training sets, our method yields
more accurate results than the baselines.

5 Conclusion
In this paper, we have proposed an approach to learning a latent space factorized into dimensions
shared across subsets of the views and dimensions private to each individual view. To this end, we
have proposed to exploit the notion of structured sparsity, and have shown that multi-view learning
could be addressed by alternately solving two convex optimization problems. We have demonstrated
the effectiveness of our approach on the task of estimating 3D human pose from image features. In
the future, we intend to study the use of our model to other tasks, such as classification. To this end,
we would extend our approach to incorporating an additional group sparsity regularizer on the latent
variables to encode class membership.
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