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Tensor?

 Two ways to look at it:
— As a representation of objects
— As a representation of relations



Tensor represents objects

 Can be regarded as generalization of matrices
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More dimensions: multiple features, conditions, etc.
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Is this a matrix (tensor)?

Images

Not obvious if a given data is naturally a tensor or not.

We should ask whether tensor representation helps or not.

——Tensor is a special matrix, matrix is a special vector



Another view: tensor represents relations

Examples:

* John likes Starwars

* Steve is the CEO of Microsoft
* Drug A binds to protein B




Typical questions

* Missing data imputation (%) Hayashi-san’s talk)
— Some sensors broken.

— Predict the relation between objects (drug-target
interaction, recommendation, etc.)

e Uncover latent low-dimensional structure

— Multi-linear generalization of singular value
decomposition

— What are the hidden components?

[> Tucker decomposition (HOSVD) / CP decomposition



Recap: Singular value decomposition

N I
I N

m X =mUrZr VT

where U, V: Orthogonal (UTU=I, VTV=l)

01

o;: jth largest singular value

—

r: rank (number of non-zero

singular values)

* Note: r <= min(m,n)

* Can be computed efficiently even for very large matrices
(see Mark Tygert’s pca.m)



Tucker decomposition [Tucker 66]
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* rank is defined for each mode (dimension)
* core is nhot diagonal!
* Orthogonal ambiguity



Computing Tucker decomposition

1. Unfolding (matricization)

Mode-1 unfolding X(l)
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Computing the core
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Singular-values of random matrices:
Marchenko-Pastur distribution

Gaussian, size= [200 500]
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No similar result known for Tucker decomposition.



“A tensor higher-order singular value decomposition for

integrative analysis of DNA microarray data from
different studies” Omberg et al. PNAS 2007

nditions  Fyll-rank Tucker
decomposition

Mode-1 unfolding = 4,329 x 39

Mode-2 unfolding = 13 x 12,987

Mode-3 unfolding =3 x 56,277

4,329 genes

Note: maximum rank = 39x13x3
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Fig. 1. Significant HOSVD subtensors, after rotation of the approximately degenerate subtensor spaces §(4, 2+3, 1), 8(5+2, 1, 3), S(8+2, 4, 3), and 5(3+7, 2,
3). (a) Bar chart of the fractions of the 11 most significant subtensors. The higher-order singular values corresponding to subtensors highlighted in gray are <0.
The entropy of the data tensor is 0.27. (b) Line-joined graphs of the first (red), second (blue), third (green), and fourth (orange) x-eigengenes and the
superposition of the second and third x-eigengenes (violet), which define the expression variation across time in these subtensors. The time points are color-coded
according to their cell cycle classification in the control time course: M/G (yellow), G4 (green), S (blue), S/G; (red), and G2/M (orange). The grid lines mark the
dissipation of the response to a-factor in the control time course (dashed) and the start of exposure to either HP or MD, at =20 and 25 min, respectively.
(c) Line-joined graphs of the first y-eigengene (red), and the second (blue) and third (green) rotated y-eigengenes, which define the expression variation across

the oxidative stress conditions.

[Omberg, Golub, Alter 2007]



CP decomposition

» CP = CANDECOMP [Carroll & Chang 70] /
PARAFAC [Harshman 70]

minimal R
is called
the rank

Special case of Tucker decomp. with diagonal core C= g



Properties of CP decomposition

* Tensor rank is NP complete [Hastad 90]
— computing the minimal decomposition is NP hard.

— In practice, alternate least squares is used.

 CPis unigue up to permutation and scaling if

ka + kB +kc > 2R+ 2.

k-rank: maximum number s.t. any k columns
of a given matrix is linearly independent.



Issues

* How do we deal with noise and missing data?
— SVD cannot be used.

— alternate least squares can over-fit.

* How do we choose the rank?
— Tucker: three numbersr,, r,, ry
— CP: single number R



Our recent work: “Statistical Performance
of Convex Tensor Decomposition”

* Formulate Tucker decomposition as |8
a convex optimization problem convex

Optimization

— Convex optimization is fast and reliable

— Instead of choosing ranks (r,,r,,r;) choose the
regularization constant A (like in SVM)

— Statistical analysis of the performance

[Tomioka, Suzuki, Hayashi, Kashima 2011]



Empirical Performance

Tensor completion result [Tomioka+ 10]
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size=50x50x20, rank=7x8x9 (No noise)
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Can we predict this theoretically?



Estimation error

Theoretical analysis

* Normalized rank predicts the empirical scaling
size = 50x50x20 true rank 7x8x9 or 40x9x7
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Summary

 Two views for tensor data
— as a representation of objects
— as a representation of relations

* Two tensor decomposition methods
— Tucker decomposition
— CP decomposition

* Convex optimization based tensor
decomposition with performance guarantee.
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