TOYOTA TECHNOLOGICAL INSTITUTE AT CHICAGO

Introduction

Referring expressions describe an object or region in the image, with the goal of identifying it uniquely to a listener.

RE Generation: generating a discriminative referring expression for an object in an image.

RE Comprehension: localizing an object in an image given a referring expression.

Generation

Comprehension

Motivation: use a standalone comprehension model to "tell" the generator how to improve the expressions it produces.

Base Models

Generation model: takes inputs of an image I and an internal region r, and outputs an expression W.

$$G: I \times r \to w$$

The model is a standard CNN+LSTM which is trained to maximize $P_G(w|I)$.

Comprehension model: The comprehension task is to select a region (bounding box) \hat{r} from a set of regions $\mathcal{R} = \{r_i\}$ given a query expression q and the image I.

$$C: I \times q \times \mathcal{R} \to r, \ r \in \mathcal{R}$$

The model is trained to maximize $P_C(r^*|I, q, \mathcal{R})$.

COMPREHENSION-GUIDED REFERRING EXPRESSIONS Greg Shakhnarovich Ruotian Luo

TTI-Chicago rluo@ttic.edu

left bird

shirt LSTM

< eos >

(1)

Generate and rerank

This method composes the comprehension model during test time. The pipeline is as follows: 1. Generate candidate expressions $\{w^1, \ldots, w^n\}$ according to $P_G(\cdot | I, r)$. 2. Select w^k with $k = \operatorname{argmax}_i score(w^i)$.

The score function is a weighted combination of the log perplexity and comprehension loss.

$$score(w) = \frac{1}{T} \sum_{t=1}^{T} \log (w) + \gamma \log (w)$$

where w_k is the k-th token of w, T is the length of w.

Training by proxy

In this method the generation and comprehension model are connected and the generation model is optimized to lower discriminative comprehension loss (in addition to the cross entropy loss)

The comprehension model must correctly identify the target (blue) region based on the generated referring expression; comprehension loss (dashed) is back-propagated to update the generator.

Differentiable approximation: to be able to back-propogate, we use the softmax output of the generation model instead of the one-hot sampled output as the input of the comprehension model.

TTI-Chicago

greg@ttic.edu

 $s p_G(w_t | r, w_{1..t-1})$ $\log p_C(r|I,\mathcal{R},w),$

Results

Comprehension result: with the same visual feature and simpler model our model can achieve competitive results. It proves our model can provide useful signal to generation.

> Baseline MMI visdif+] neg bag Ours

	RefCOCO				RefCOCO+			RefCOCOg		
	Test A		Test B		Test A		Test B		val	
	Acc	Bleu 1	Acc	Bleu 1	Acc	Bleu 1	Acc	Bleu 1	Acc	Bleu 1
Max Likelihood	74.80%	0.477	72.81%	0.553	62.10%	0.391	46.21%	0.331	61.96%	0.437
MMI	78.78%	0.478	74.01%	0.547	67.79%	0.370	55.21%	0.324	70.38%	0.428
CL	80.14%	0.4586	75.44%	0.5434	68.54%	0.3683	55.87%	0.3409	70.74%	0.4439
MSS	79.94%	0.4574	75.93%	0.5403	69.41%	0.3763	55.59%	0.3386	70.80%	0.4377
SMIXEC	79.99%	0.4855	75.60%	0.5536	69.05%	0.3847	54.71%	0.3275	70.02%	0.4338
sample	78.38%	0.5201	73.08%	0.5842	62.45%	0.3925	47.86%	0.3354	66.72%	0.4406
Rerank	97.23%	0.5209	94.96%	0.5935	77.32%	0.3956	67.65%	0.3368	76.65%	0.4410

Human evaluation results (human comprehension accuracy on generated expressions):

Sample results:

MLE: person in blue

MMI: person in black

CL: left person MSS: left person SMIXEC: second from left Rerank: second guy from left

Conclusion

In this paper, we propose to use a learned comprehension model to guide generating better referring expressions. Our training by proxy method and generate and rerank method is shown to be promising, with the generate-and-rerank method obtaining particularly good results across datasets.

	RefC	OCO	RefC	CO+	RefCOCOg
	Test A	Test B	Test A	Test B	Val
le	63.15%	64.21%	48.73%	42.13%	55.16%
	71.72%	71.09%	52.44%	47.51%	62.14%
MMI	73.98%	76.59%	59.17%	55.62%	64.02%
5	75.6%	78.0%	-	-	68.4 %
	74.04%	73.43%	60.26%	55.03%	65.36%

Generation result: 'Acc' is the "comprehension accuracy" of the generated expressions according to our comprehension model. Higher 'Acc' proves the effectiveness of differentiable approximation.

G D P

July 21-26 2017

Our generate-and-rerank model gets consistently better results on automatic comprehension accuracy and on fluency-based metrics like BLEU, showing benefit from comprehension-guided reranking.

CL, MSS and SMIXEC are three training schedules of training-by-proxy. They perform less well than Rerank, but they are still better than the baseline from the human evaluation result.

	RefC	OCO	RefCOCO+		
	Test A	Test B	TestA	TestB	
MMI	53%	61%	39%	35%	
SMIXEC	62%	68%	46%	25%	
Rerank	66%	75%	43%	47%	

MLE: left most sandwich MMI: left most piece of sandwich

CL: left most sandwich MSS: left most sandwich SMIXEC: left bottom sandwich Rerank: bottom left sandwich

MLE: hand holding the MMI: hand

CL: hand closest to us MSS: hand closest to us SMIXEC: hand closest to us Rerank: hand closest to us

MLE: giraffe with head down MMI: tallest giraffe

CL: big giraffe MSS: big giraffe SMIXEC: giraffe with head up Rerank: giraffe closest to us

