
LATEX TikZposter

COMPREHENSION-GUIDED REFERRING EXPRESSIONS
Ruotian Luo

TTI-Chicago
rluo@ttic.edu

Greg Shakhnarovich
TTI-Chicago

greg@ttic.edu

COMPREHENSION-GUIDED REFERRING EXPRESSIONS
Ruotian Luo

TTI-Chicago
rluo@ttic.edu

Greg Shakhnarovich
TTI-Chicago

greg@ttic.edu

Introduction

Referring expressions describe an
object or region in the image, with
the goal of identifying it uniquely to a
listener.

RE Generation: generating a discrimi-
native referring expression for an object
in an image.
RE Comprehension: localizing an ob-
ject in an image given a referring ex-
pression.

left bird

Generation

Comprehension

Motivation: use a standalone comprehension model to “tell” the generator how to improve the
expressions it produces.

Base Models

Generation model: takes inputs of an image I and an internal region r, and outputs an expression
w.

G : I × r → w

The model is a standard CNN+LSTM which is trained to maximize PG(w|I, r).

CNN

white shirt<bos>

<eos>white shirt

LSTMImage

Comprehension model: The comprehension task is to select a region (bounding box) r̂ from a set
of regionsR = {ri} given a query expression q and the image I .

C : I × q ×R → r, r ∈ R (1)

The model is trained to maximize PC(r∗|I, q,R).

Query D
ot

 p
ro

du
ct

W
or

d 
Em

be
dd

in
g

CNN

Image

w
hi

te
sh

irt
<e

os
>

CNN

CNN

CNN

So
ftM

ax

B
i-L

ST
M

Av
er

ag
e 

Po
ol

in
g

Generate and rerank

This method composes the comprehension model during test time. The pipeline is as follows:

1. Generate candidate expressions {w1, . . . , wn} according to PG(·|I, r).
2. Select wk with k = argmaxi score(w

i).

The score function is a weighted combination of the log perplexity and comprehension loss.

score(w) =
1

T

T∑
t=1

log pG(wt|r, w1..t−1)

+γ log pC(r|I,R, w),
where wk is the k-th token of w, T is the length of w.

Generation	
model

Comprehension	
model

Sampled	
expressions

Best	expression

Generation

RE

Comprehension

lo
ss

Generation	
model

Comprehension	
model

Sampled	
expressions

Best	expression

Generation

. . .

Comprehension

Figure 4: Top: Training by proxy. The comprehension
model must correctly identify the target (blue) region based
on a RE; identification loss (dashed) is propagated to the
generator. Bottom: Generate and rerank. Generator pro-
duces multiple REs; comprehension model evaluates them
based on its ability to identify the true (blue) region from
them, and selects (dashed) the best RE.

4. Comprehension-guided generation
Once we have trained the comprehension model, we can

start using it as a proxy for human comprehension, to guide
expression generator.

4.1. Training by proxy

Consider a referring expression generated by G for a
given training example of an image/region pair (I, r). The
generation loss Lgen will inform the generator how to mod-
ify its model to maximize the probability of the ground truth
expression w. The comprehension model C can provide
an alternative, complementary signal: how to modify G to
maximize the discriminativity of the generated expression,
so that C selects the correct region r among the proposal set
R. Intuitively, this signal should push down on probability
of a word if it’s unhelpful for comprehension, and pull that
probability up if it is helpful.

Ideally, we hope to minimize the comprehension loss of
the output of the generation model Lcom(r|I, R, Q̃), where

Q̃ is the 1-hot encoding of q̃ = G(I, r), with K rows (vo-
cabulary size) and T columns (sequence length).

We hope to update the generation model according to the
gradient of loss with respect to the model parameter ✓G. By
chain rule,

@Lcom

@✓G
=

@Lcom

@Q̃

@Q̃

@✓G
(12)

However, Q̃ is inferred by some algorithm which is not dif-
ferentiable. To address this issue, [27, 2, 37] applied rein-
forcement learning methods. However, here we use an ap-
proximate method borrowing from the idea of soft attention
mechanism [35, 5].

We define a matrix P which has the same size as Q̃. The
i-th column of P is – instead of the one-hot vector of the
generated word i – the distribution of the i-th word produced
by PG, i.e.

Pi,j = PG(wi = j). (13)

P has several good properties. First, P has the same size
as Q̃, so that the we can still compute the query feature by
replacing the Q̃ by P, i.e. h = fLSTM (EP). Secondly,
the sum of each column in P is 1, just like Q̃. Thirdly, P is
differentiable with respect to generator’s parameters.

Now, the gradient of ✓G is calculated by:

@Lcom

@✓G
=

@Lcom

@P

@P

@✓G
(14)

We will use this approximate gradient in the following
three methods.

4.1.1 Compound loss

Here we introduce how we integrate the comprehension
model to guide the training of the generation model.

The cross-entropy loss (3) encourages fluency of the gen-
erated expression, but disregards its discriminativity. We
address this by using the comprehension model as a source
of an additional loss signal. Technically, we define a com-
pound loss

L = Lgen + �Lcom (15)

where the comprehension loss Lcom is either the logistic (8)
or the softmax (10) loss; the balance term � determines the
relative importance of fluency vs. discriminativity in L.

Both Lgen and Lcom take as input G’s distribution over
the i-th word PG(wi|I, r, w<i), where the preceding words
w<i are from the ground truth expression.

Replacing Q̃ with P (Sec. 4.1) allows us to train the
model by back-propogation from the compound loss (15).

Training by proxy

In this method the generation and comprehension model are connected and the generation model
is optimized to lower discriminative comprehension loss (in addition to the cross entropy loss)

Generation	
model

Comprehension	
model

Sampled	
expressions

Best	expression

Generation

RE

Comprehension

lo
ss

Generation	
model

Comprehension	
model

Sampled	
expressions

Best	expression

Generation

. . .

Comprehension

Figure 4: Top: Training by proxy. The comprehension
model must correctly identify the target (blue) region based
on a RE; identification loss (dashed) is propagated to the
generator. Bottom: Generate and rerank. Generator pro-
duces multiple REs; comprehension model evaluates them
based on its ability to identify the true (blue) region from
them, and selects (dashed) the best RE.

4. Comprehension-guided generation
Once we have trained the comprehension model, we can

start using it as a proxy for human comprehension, to guide
expression generator.

4.1. Training by proxy

Consider a referring expression generated by G for a
given training example of an image/region pair (I, r). The
generation loss Lgen will inform the generator how to mod-
ify its model to maximize the probability of the ground truth
expression w. The comprehension model C can provide
an alternative, complementary signal: how to modify G to
maximize the discriminativity of the generated expression,
so that C selects the correct region r among the proposal set
R. Intuitively, this signal should push down on probability
of a word if it’s unhelpful for comprehension, and pull that
probability up if it is helpful.

Ideally, we hope to minimize the comprehension loss of
the output of the generation model Lcom(r|I, R, Q̃), where

Q̃ is the 1-hot encoding of q̃ = G(I, r), with K rows (vo-
cabulary size) and T columns (sequence length).

We hope to update the generation model according to the
gradient of loss with respect to the model parameter ✓G. By
chain rule,

@Lcom

@✓G
=

@Lcom

@Q̃

@Q̃

@✓G
(12)

However, Q̃ is inferred by some algorithm which is not dif-
ferentiable. To address this issue, [27, 2, 37] applied rein-
forcement learning methods. However, here we use an ap-
proximate method borrowing from the idea of soft attention
mechanism [35, 5].

We define a matrix P which has the same size as Q̃. The
i-th column of P is – instead of the one-hot vector of the
generated word i – the distribution of the i-th word produced
by PG, i.e.

Pi,j = PG(wi = j). (13)

P has several good properties. First, P has the same size
as Q̃, so that the we can still compute the query feature by
replacing the Q̃ by P, i.e. h = fLSTM (EP). Secondly,
the sum of each column in P is 1, just like Q̃. Thirdly, P is
differentiable with respect to generator’s parameters.

Now, the gradient of ✓G is calculated by:

@Lcom

@✓G
=

@Lcom

@P

@P

@✓G
(14)

We will use this approximate gradient in the following
three methods.

4.1.1 Compound loss

Here we introduce how we integrate the comprehension
model to guide the training of the generation model.

The cross-entropy loss (3) encourages fluency of the gen-
erated expression, but disregards its discriminativity. We
address this by using the comprehension model as a source
of an additional loss signal. Technically, we define a com-
pound loss

L = Lgen + �Lcom (15)

where the comprehension loss Lcom is either the logistic (8)
or the softmax (10) loss; the balance term � determines the
relative importance of fluency vs. discriminativity in L.

Both Lgen and Lcom take as input G’s distribution over
the i-th word PG(wi|I, r, w<i), where the preceding words
w<i are from the ground truth expression.

Replacing Q̃ with P (Sec. 4.1) allows us to train the
model by back-propogation from the compound loss (15).

The comprehension model must correctly identify the target (blue) region based on the
generated referring expression; comprehension loss (dashed) is back-propagated to update the
generator.

Differentiable approximation: to be able to back-propogate, we use the softmax output
of the generation model instead of the one-hot sampled output as the input of the comprehen-
sion model.

Results

Comprehension result: with the same visual feature and simpler model our model can achieve compet-
itive results. It proves our model can provide useful signal to generation.

RefCOCO RefCOCO+ RefCOCOg
Test A Test B Test A Test B Val

Baseline 63.15% 64.21% 48.73% 42.13% 55.16%
MMI 71.72% 71.09% 52.44% 47.51% 62.14%
visdif+MMI 73.98% 76.59% 59.17% 55.62% 64.02%
neg bag 75.6% 78.0% - - 68.4%
Ours 74.04% 73.43% 60.26% 55.03% 65.36%

Generation result: ‘Acc’ is the “comprehension accuracy" of the generated expressions according to our
comprehension model. Higher ‘Acc’ proves the effectiveness of differentiable approximation.
Our generate-and-rerank model gets consistently better results on automatic comprehension accuracy and
on fluency-based metrics like BLEU, showing benefit from comprehension-guided reranking.
CL, MSS and SMIXEC are three training schedules of training-by-proxy. They perform less well than
Rerank, but they are still better than the baseline from the human evaluation result.

RefCOCO RefCOCO+ RefCOCOg
Test A Test B Test A Test B val

Acc Bleu 1 Acc Bleu 1 Acc Bleu 1 Acc Bleu 1 Acc Bleu 1
Max Likelihood 74.80% 0.477 72.81% 0.553 62.10% 0.391 46.21% 0.331 61.96% 0.437
MMI 78.78% 0.478 74.01% 0.547 67.79% 0.370 55.21% 0.324 70.38% 0.428
CL 80.14% 0.4586 75.44% 0.5434 68.54% 0.3683 55.87% 0.3409 70.74% 0.4439
MSS 79.94% 0.4574 75.93% 0.5403 69.41% 0.3763 55.59% 0.3386 70.80% 0.4377
SMIXEC 79.99% 0.4855 75.60% 0.5536 69.05% 0.3847 54.71% 0.3275 70.02% 0.4338
sample 78.38% 0.5201 73.08% 0.5842 62.45% 0.3925 47.86% 0.3354 66.72% 0.4406
Rerank 97.23% 0.5209 94.96% 0.5935 77.32% 0.3956 67.65% 0.3368 76.65% 0.4410

Human evaluation results (human comprehension accuracy on generated expressions):

RefCOCO RefCOCO+
Test A Test B TestA TestB

MMI 53% 61% 39% 35%
SMIXEC 62% 68% 46% 25%
Rerank 66% 75% 43% 47%

Sample results:

MLE: person	in	blue
MMI: person	in	black

CL: left	person
MSS: left	person
SMIXEC: second	from	left
Rerank: second	guy	from	left

MLE: left	most	sandwich
MMI: left	most	piece	of	sandwich

CL: left	most	sandwich
MSS: left	most	sandwich
SMIXEC: left	bottom	sandwich
Rerank: bottom	left	sandwich

MLE: hand	holding	the
MMI: hand

CL: hand	closest	to	us
MSS: hand	closest	to	us
SMIXEC: hand	closest	to	us
Rerank: hand	closest	to	us

MLE: giraffe	with	head	down
MMI: tallest	giraffe

CL: big	giraffe
MSS: big	giraffe
SMIXEC: giraffe	with	head	up
Rerank: giraffe	closest	to	us

Conclusion

In this paper, we propose to use a learned comprehension model to guide generating bet-
ter referring expressions. Our training by proxy method and generate and rerank method
is shown to be promising, with the generate-and-rerank method obtaining particularly good
results across datasets.


