
Supplementary Mater ial :  Figures  and Tables  

1 .  Non -uniform part i t ion  example  

 

Figure S1: Illustration of a non-uniform partition. White color indicates zero entries detected by covariance 

thresholding. Entries with the same color other than white belong to the same group.  

2.  Comparison of  hybrid,  c lass -specif ic  and g lobal  thresholding strategies  

In Figure S2, both global and class-specific covariance thresholding fail to decompose the variable set into 

smaller subsets. The parameters used are λ1 = 0.04 and λ2 = 0.02. Global thresholding can set entries (1,2) and 

(2,1) to zero, but cannot split the variable set into disjoint subsets. Class-specific thresholding sets entries 

(1,3) and (3,1) to zero for the first class and entries (2,3) and (3,2) to zero for the second class, respectively, 

but cannot split the problem into subproblems either. Only the hybrid thresholding can split the matrices into 

submatrices. 

 

Figure S2: Comparison of three thresholding strategies. The dataset contains 2 slightly different classes and 3 

variables. The two sample covariance matrices are shown on the top of the figure. The parameters used 

are λ1 = 0.04 and λ2 = 0.02.  

 



3.  Model  Se lect ion for Synthetic  Data  

We run the plain ADMM without screening using different values of the two hyper-parameters λ1 and λ2, and 

then compute the total absolute difference between the true precision matrices and the estimated values over 

all the classes. The difference on the three of data types is averaged and listed in the below table.  We choose 

the values of the hyper-parameters to minimize the absolute error. 

 

Table S1: Impact of hyper-parameters λ1 and λ2 on the three types of data (𝑝 = 1000, 𝐾 = 10) 

 λ1              

λ2 
0.0078 0.0082 0.0086 0.009 0.0094 

0.0005 84.6 84.1 83.4 84.1 85.2 

0.001 85.4 82.5 76.7 90.2 108.8 

0.0015 92.4 81.3 80.6 99.4 117.9 

 

According to the table, for  𝑝 = 1000 , we use  (𝜆1 = 0.009, λ2 = 0.0005) , (𝜆1 = 0.0086, λ2 = 0.001)  and 

(𝜆1 = 0.0082, λ2 = 0.0015) , respectively. Similarly, for  𝑝 = 10000 , we use  (𝜆1 = 0.009, λ2 = 0.0025) , 

(𝜆1 = 0.0094, λ2 = 0.002) and (𝜆1 = 0.0098, λ2 = 0.0015), respectively. 

4.  Convergence  of  our covariance  thresholding a lgori thm on Synthetic  Data  

We compare the convergence property of our HADMM with the plain ADMM (i.e., no screening used). In 

terms of the objective function value, both HADMM and ADMM quickly yield similar values, as shown in 

Figures S3-S5. In terms of the gap between the primal and dual variables, our HADMM is much better than 

the other three methods.  

 

Figure S3. Objective function values of HADMM and ADMM vs. the number of iterations on a type A dataset 

(two classes, p=1000,  λ1 = 0.009, λ2 = 0.0005 ). 



 

Figure S4. Objective function values of HADMM and ADMM vs. the number of iterations on a type B dataset 

(four classes, p=1000,  λ1 = 0.0086, λ2 = 0.001 ). 

 

Figure S5. Objective function values of HADMM and ADMM vs. the number of iterations on a type C dataset 

(six classes, p=1000,  λ1 = 0.0082, λ2 = 0.0015 ). 

5.  Est imated Computational  Complexi ty  of  Eigen -decomposi t ion  

 



 

Figure S6: Estimated computational complexity of matrix eigen-decomposition in the HADMM, LADMM 

and GADMM algorithms (type A, 𝑝 =  1000, λ1 = 0.009, λ2 = 0.0005) 

 

Figure S7: Estimated computational complexity of matrix eigen-decomposition in the HADMM, LADMM 

and GADMM algorithms (type A, 𝑝 = 1000, λ1 = 0.0086, λ2 = 0.001) 



 

Figure S8: Estimated computational complexity of matrix eigen-decomposition in the HADMM, LADMM 

and GADMM algorithms (type A, 𝑝 =  1000, λ1 = 0.0082, λ2 = 0.0015) 

 

Figure S9: Estimated computational complexity of matrix eigen-decomposition in the HADMM, LADMM 

and GADMM algorithms (type B, 𝑝 =  1000, λ1 = 0.009, λ2 = 0.0005) 



 

Figure S10: Estimated computational complexity of matrix eigen-decomposition in the HADMM, LADMM 

and GADMM algorithms (type B, 𝑝 =  1000, λ1 = 0.0086, λ2 = 0.001) 

 

Figure S11: Estimated computational complexity of matrix eigen-decomposition in the HADMM, LADMM 

and GADMM algorithms (type B, 𝑝 =  1000, λ1 = 0.0082, λ2 = 0.0015) 



 

Figure S12: Estimated computational complexity of matrix eigen-decomposition in the HADMM, LADMM 

and GADMM algorithms (type C, 𝑝 =  1000, λ1 = 0.009, λ2 = 0.0005) 

 

Figure S13: Estimated computational complexity of matrix eigen-decomposition in the HADMM, LADMM 

and GADMM algorithms (type C, 𝑝 =  1000, λ1 = 0.0086, λ2 = 0.001) 



 

Figure S14: Estimated computational complexity of matrix eigen-decomposition in the HADMM, LADMM 

and GADMM algorithms (type C, 𝑝 =  1000, λ1 = 0.0082, λ2 = 0.0015) 

6.  Experimental  Results  on Synthetic  Data  for  𝒑 = 𝟏𝟎𝟎𝟎𝟎 

This section includes all the figures summarizing the experiments on the synthetic dataset for 𝑝 = 10000. We 

compare the running time and estimated computational complexity of the three screening-based ADMM 

methods HADMM, GADMM and LADMM and also the plain ADMM (i.e., no screening is used at all). We 

only test real data with 2 or 3 classes. The advantage of our non-uniform screening-based ADMM (i.e., 

HADMM) over ADMM, GADMM and LADMM is significant even when the number of classes is small. 

Below are our observations from the experiments: 

1. As the number of classes increases to 6, HADMM is significantly faster than ADMM, LADMM and 

GADMM. In addition, HADMM is not very sensitive to the number of classes.  

2. According to our estimation of the eigen-decomposition complexity, GADMM deteriorates very fast as 

the number of classes increase. This is not surprising since GADMM requires that all the classes use 

the same block structure, which leads to very large blocks when there are many classes.  

3. Local screening strategy works poorly when p=10000. This implies that it is important to use the global 

information when p is large. 

 

Figure S15: Running time of HADMM, ADMM, GADMM and LADMM on type A data (𝑝 = 10000, λ1 =

0.0098, λ2 = 0.0015). Y-axis is the logarithm of the number of minutes needed for one iteration. 



 

Figure S16: Running time of HADMM, ADMM, GADMM and LADMM on type A data (𝑝 =  10000, 

λ1 = 0.0094, λ2 = 0.002). Y-axis is the logarithm of the number of minutes needed for one iteration. 

 

Figure S17: Running time of HADMM, ADMM, GADMM and LADMM on type A data (𝑝 =  10000, 

λ1 = 0.009, λ2 = 0.0025). Y-axis is the logarithm of the number of minutes needed for one iteration. 

 

Figure S18: Running time of HADMM, ADMM, GADMM and LADMM on type B data (𝑝 = 10000, λ1 =

0.0098, λ2 = 0.0015). Y-axis indicates the logarithm of the number of minutes needed for one iteration. 



 

Figure S19: Running time of HADMM, ADMM, GADMM and LADMM on type B data (𝑝 =  10000, 

λ1 = 0.0094, λ2 = 0.002). Y-axis is the logarithm of the number of minutes needed for one iteration. 

 

Figure S20: Running time of HADMM, ADMM, GADMM and LADMM on type B data (𝑝 =  10000, 

λ1 = 0.009, λ2 = 0.0025). Y-axis is the logarithm of the number of minutes needed for one iteration. 

 

Figure S21: Running time of HADMM, ADMM, GADMM and LADMM on type C data (𝑝 = 10000, λ1 =

0.0098, λ2 = 0.0015). Y-axis is the logarithm of the number of minutes needed for one iteration. 



 

Figure S22: Running time of HADMM, ADMM, GADMM and LADMM on type C data (𝑝 =  10000, 

λ1 = 0.0094, λ2 = 0.002). Y-axis is the logarithm of the number of minutes needed for one iteration. 

 

Figure S23: Running time of HADMM, ADMM, GADMM and LADMM on type C data (𝑝 =  10000, 

λ1 = 0.009, λ2 = 0.0025). Y-axis is the logarithm of the number of minutes needed for one iteration. 

 

Figure S24: Estimated computational complexity of matrix eigen-decomposition in the HADMM, LADMM 

and GADMM algorithms (type A, 𝑝 = 10000, λ1 = 0.0098, λ2 = 0.0015) 



 

Figure S25: Estimated computational complexity of matrix eigen-decomposition in the HADMM, LADMM 

and GADMM algorithms (type A, 𝑝 =  10000, λ1 = 0.0094, λ2 = 0.002) 

 

Figure S26: Estimated computational complexity of matrix eigen-decomposition in the HADMM, LADMM 

and GADMM algorithms (type A, 𝑝 =  10000, λ1 = 0.009, λ2 = 0.0025) 



 

Figure S27: Estimated computational complexity of matrix eigen-decomposition in the HADMM, LADMM 

and GADMM algorithms (type B, 𝑝 = 10000, λ1 = 0.0098, λ2 = 0.0015) 

 

Figure S28: Estimated computational complexity of matrix eigen-decomposition in the HADMM, LADMM 

and GADMM algorithms (type B, 𝑝 =  10000, λ1 = 0.0094, λ2 = 0.002) 



 

Figure S29: Estimated computational complexity of matrix eigen-decomposition in the HADMM, LADMM 

and GADMM algorithms (type B, 𝑝 =  10000, λ1 = 0.009, λ2 = 0.0025) 

 

Figure S30: Estimated computational complexity of matrix eigen-decomposition in the HADMM, LADMM 

and GADMM algorithms (type C, 𝑝 = 10000, λ1 = 0.0098, λ2 = 0.0015) 



 

Figure S31: Estimated computational complexity of matrix eigen-decomposition in the HADMM, LADMM 

and GADMM algorithms (type C, 𝑝 =  10000, λ1 = 0.0094, λ2 = 0.002) 

 

Figure S32: Estimated computational complexity of matrix eigen-decomposition in the HADMM, LADMM 

and GADMM algorithms (type C, 𝑝 =  10000, λ1 = 0.009, λ2 = 0.0025) 

7.  Gene networks  generated using dif ferent  parameters  

The following graphs are the networks generated by solving group graphical lasso using our hybrid  

covariance thresholding algorithm with parameters set to (λ1 = 0.1, λ2 = 0.5), (λ1 = 0.3, λ2 = 0.1) and (λ1 =

0.5, λ2 = 0.01), respectively. Due to space limit, we use Cytoscape (http://cytoscape.org/) to plot the network 

of the first 100 genes (ordered alphabetically). The full result is available upon request. 

The following are the 100 genes used to plot the figures.  

A1CF ABCA2 ABCC9 ABHD6 ACADM 

A2M ABCA3 ABCD1 ABHD8 ACADS 

A4GALT ABCA4 ABCD2 ABI1 ACADSB 

http://cytoscape.org/


A4GNT ABCA5 ABCD3 ABI2 ACADVL 

AAAS ABCA6 ABCD4 ABI3BP ACAN 

AACS ABCA7 ABCE1 ABL1 ACAP1 

AADAC ABCB11 ABCF1 ABL2 ACAP2 

AAGAB ABCB4 ABCF2 ABLIM1 ACAT1 

AAK1 ABCB6 ABCF3 ABLIM3 ACAT2 

AAMP ABCB7 ABCG1 ABO ACBD3 

AANAT ABCB8 ABCG2 ABP1 ACBD4 

AARS ABCB9 ABCG4 ABR ACD 

AARSD1 ABCC1 ABCG5 ABT1 ACE 

AASDHPPT ABCC10 ABHD10 ABTB2 ACE2 

AASS ABCC2 ABHD11 ACAA2 ACHE 

AATF ABCC3 ABHD14A ACACA ACIN1 

AATK ABCC4 ABHD2 ACACB ACLY 

ABAT ABCC5 ABHD3 ACAD10 ACN9 

ABCA1 ABCC6 ABHD4 ACAD8 ACO1 

ABCA12 ABCC8 ABHD5 ACADL ACO2 

 

 

 

 

 

 

 

 

 

 



 

Figure S33: Network of the first 100 genes in the first class (𝜆1 = 0.1, 𝜆2 = 0.5). 

 

Figure S34: Network of the first 100 genes in the second class (𝜆1 = 0.95, 𝜆2 = 0.1). 

 

Figure S35: Network of the first 100 genes in the third class (𝜆1 = 0.95,  𝜆2 = 0.1). 



 

Figure S36: Network of the first 100 genes in the first class (𝜆1 = 0.9, 𝜆2 = 0.15). 

 

Figure S37: Network of the first 100 genes in the second class (𝜆1 = 0.9, 𝜆2 = 0.15). 



 

Figure S38: Network of the first 100 genes in the third class (𝜆1 = 0.9, 𝜆2 = 0.15). 

 

Figure S39: Network of the first 100 genes in the first class (𝜆1 = 0.8, 𝜆2 = 0.2). 



 

Figure S40: Network of the first 100 genes in the third class (𝜆1 = 0.8, 𝜆2 = 0.2). 

 

Figure S41: Network of the first 100 genes in the third class (𝜆1 = 0.8, 𝜆2 = 0.2). 

 


