
Supplementary Information for the following manuscript: 

Qingming Tang, Sheng Wang, Jian Peng, Jianzhu Ma and Jinbo Xu. Bermuda: Bidirectional de novo 

assembly of transcripts with new insights for handling uneven coverage  

 

1. Data structures for De Bruijn graph in memory 

We use a (k+1)-mer to represent an edge in a k-mer de Bruijn graph. Due to sequencing errors, there 

may be a huge number of different (k+1)-mers when k is big (e.g., k=30). To achieve a tradeoff between 

memory consumption and running time, we store the edges (i.e., the (k+1)-mers) in both hash tables 

and balanced trees. A hash table offers almost a constant retrieval time, but may contain many unused 

entries and thus, waste some memory. This may prevent our software from running on a computer with 

relatively small physical memory. A balanced tree does not contain any unused nodes, but offers only a 

logarithmic retrieval time. In summary, we use hash tables to store most of the (k+1)-mers appearing 

only once in the reads while balanced trees for the remaining (k+1)-mers.  

Let Pre(X) and Suf(X) denote the prefix and suffix of a (k+1)-mer X, respectively. By default, Pre(X) 

contains the first 5 bps of the (k+1)-mer and Suf(X) the remaining bps. Accordingly, we use 45 hash 

tables and balanced trees to store a k-mer de Bruijn graph. X is stored in either a hash table or a 

balanced tree indexed by Pre(X). Each node in a balanced tree corresponds to one (k+1)-mer, consisting 

of two components: Suf(X) and the occurring frequency of X in the reads. Let H(X) denote the hash value 

of Suf(X). For any (k+1)-mer X, if it appears more than once or there is another (k+1)-mer X’ such that 

H(X)=H(X’), we add X to a balanced tree, otherwise to a hash table indexed by Pre(X).  

2. Parallel path detection algorithm 

There may be more than two parallel paths between a pair of given nodes since one position could be 

mistakenly sequenced in several different ways. We design a heuristic parallel path search algorithm 

which can identify multiple parallel paths among two nodes, and also those complicated parallel paths 

(e.g. paths share internal nodes with some true paths. Our path search algorithm is based upon the 

observation that there are far fewer parallel paths (than the total number of paths) and that two parallel 

paths differ from each other by only a very small number of positions, so we can apply a pruning 

strategy at early stage to save running time. Let ExpandList and ParaPaths denote the set of paths that 

could be potentially expanded into parallel paths and the set of identified parallel paths, respectively. 

Given a node u as input, our search algorithm detects all the parallel paths starting from u as follows.  

Step 1: Let v1, v2, …, vt (t≤4) denote all the nodes pointed to by the node u. If t<1, our algorithm 

terminates and returns no parallel path at all. Otherwise, we add 
(t−1)t

2
 node pairs (v1, v2), (v1, v3), …., (v1, 

vt), …, (v(t-1), vt) to ExpandList. Each node in a pair is a path, which may be expanded into one parallel 

path later. 



Step 2: Remove one path pair (Pi, Pj) from ExpandList. Let Xi and Xj denote the sets of nodes pointed to 
by the last nodes of the paths Pi and Pj, respectively. For any two nodes xi ϵ Xi and xj ϵ Xj, we append xi 
and xj to Pi and Pj, respectively, to form a pair of new paths Qi and Qj. There are three cases. 

Case 1. If xi is the same as xj, then Qi and Qj form a pair of parallel paths. We add the pair (Qi, Qj) 
to ParaPaths.  

Case 2. If xi is different from xj but Qi and Qj are still very similar, we add the pair (Qi, Qj) to 
ExpandList since Qi and Qj could be expanded to a pair of parallel paths later.  

Case 3. If Qi and Qj are quite different, Qi and Qj cannot form a pair of parallel paths. Therefore, 
we just discard this path pair.  

Step 3. We repeat Step2 until ExpandList is empty. Afterwards, we cluster all the parallel paths in 

ParaPaths. In each cluster we treat the path with the largest read support as the correct one and the 

others as erroneous.  

Step 2 runs fast since cases 1 and 3 occur much more frequently than case 2 (because two parallel paths 

differ only in very few positions). To speed up Step 2, we keep only those path pairs with min( 
|𝑄𝑗|

|𝑄𝑖|
,

|𝑄𝑖|

|𝑄𝑗|
)  

smaller than 0.2, where the notion |.| denotes the number of reads supporting one path. The 
underlying intuition is that if 𝑄𝑖(𝑄𝑗) is a variant of 𝑄𝑗(𝑄𝑖) due to sequencing errors, their support ratio 

shall not deviate too much from the sequencing error ratio.  

3. Read correction with ‘N’s 

The main text describes how to correct errors in reads without considering ‘N’s. When there are ‘N’s in 

sequences, we correct read errors as follows: 

1) We divide a sequence into segments at all the ‘N’ positions and then correct each segment using the 

method described in the main text. If the total number of errors in the sequence is no larger than a 

given threshold (2 by default), the sequence is corrected and kept, otherwise discarded.  

2) For any two adjacent segments with x ‘N’s in between, if in the de Bruijn graphs we can find a 

unique path with length x connecting these two segments, then we replace the x ‘N’s by this path to 

form a corrected read. 

4. More details for fragment construction 

Determining if the Source and Target shall be connected or not 

When using reverse direction construction, we need to determine if the Source and the Target are 

connected or not. When there is a number L (5 < 𝐿 < 𝑘𝑚𝑖𝑛) such that the L-length prefix of the Target 

is exactly same as the L-length suffix of the Source, the Source and the Target shall be connected. To tell 

if this condition holds or not, we first construct the suffix tree using the last 𝑘𝑚𝑖𝑛 bases of the Source. 

Then, we find a path in the suffix tree that exactly matches the prefix of the Target, as shown in Figure 

S4A. If the path length is between 5 and𝑘𝑚𝑖𝑛, the Source and Target are connected and merged 

together. Otherwise, the Source and Target are still disconnected. 



Fragment growth using nodes in the Target 

After the last node of the Source has been examined, we set one node in the Target as red node and 

continue the basic fragment construction process. When the Source and Target are not connected 

(Figure S4B), we set the first node of the Target as the red node and the following nodes as blue. When 

the Source and Target are already connected (Figure S4C), we set the first node in the Target but not in 

the Source as the red node and the following nodes as blue.  

 


