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Abstract

Current methods for computing the M most probable configurations under a prob-
abilistic model produce solutions that tend to be very similar to the MAP solution
and each other. This is often an undesirable property. In this paper we propose an
algorithm for the M-Best Mode problem, which involves finding a diverse set of
highly probable solutions under a discrete probabilistic model. Given a dissimi-
larity function measuring closeness of two solutions, our formulation maximizes a
linear combination of the probability and dissimilarity to previous solutions. Our
formulation generalizes the M-Best MAP problem and we show that for certain
families of dissimilarity functions we can guarantee that these solutions can be
found as easily as the MAP solution.

1 Introduction

The introduction of sophisticated discrete optimization tools for inference in Markov Random Fields
(MRFs) over the last two decades has changed the scale of problems in machine learning. We can
quickly compute optimal or provably approximate solutions to certain problems that were previously
believed to be hopelessly intractable. For instance, since the introduction of max-flow/min-cut meth-
ods [4,16], it is perfectly natural now to expect that we will be able to handle a 2-Million-pixel image
(binary) segmentation problem, effectively searching 22:000:000 ~ 1(600,000 pogsible configurations,
and return the optimal solution in a matter of seconds.

Despite this progress, it is important to remember that optimization error [2] is only one component
of generalization error of a learning algorithm. Specifically, even if we can perform optimal infer-
ence in MRFs, the maximum a posteriori (MAP) solution might be very far from the ground-truth.
The source of this discrepancy may be approximation error, i.e. error arising from limitations of the
model class (e.g. pairwise binary submodular MRFs), and estimation error, i.e. error made because
parameters are learnt from finite training set.

This discrepancy is not merely a theoretical concern. In fact, large-scale empirical studies [20,32] on
a number of computer vision applications have repeatedly found that the MAP solution is of much
poorer quality than the ground-truth. Equivalently, the ground-truth has much lower probability than
the MAP solution under the model.

We believe that one way to mitigate this problem is to produce not just a single solution, but a diverse
set of highly probable solutions. Note that this is different from the M-Best MAP problem [8,
23, 38], which involves finding the M most probable solutions under a probabilistic model. The
key difference is the emphasis on “diversity”, i.e. to produce highly probable solutions that are
qualitatively different. This is because the literal definition of M-best MAP is not expected to work
well in practice. In a large state-space problem (~ 22:900:000) apy reasonable setting of M (10 —
50) would return solutions nearly identical to the MAP state. Ideally, we need to perform “mode-
hopping”!, where the next best state is defined as the most probable state at least some minimum
measure of distance away from the current best state.

Contributions. In this paper, we present an algorithm for the M-Best Mode problem, which in-
volves finding a diverse set of highly probable solutions under a discrete probabilistic model. Our

!"Throughout this manuscript, we use the word “mode” loosely, without the strict sense of a peak with local
optimality, but rather to mean a configuration with a high probability.



formulation assumes access to a dissimilarity function A(-, -) measuring the closeness of two solu-
tions. To extract diverse solutions, we solve the A-augmented energy minimization problem, which
minimizes a linear combination of the energy and similarity to previous solutions. This approach
is similar in flavor to the loss-augmented energy minimization solved in structural SVMs [34]. Our
formulation generalizes the M-Best MAP problem in a specific sense — for a particular choice of
A(-, -), our formulation reduces to the M-Best MAP. Perhaps our most important contribution is the
observation that for certain families of A-functions with nice structures, the A-augmented energy
minimization problem is as easily solvable as the original MAP problem. Thus if exact or provably
approximate algorithms exist for finding the MAP solution, those same algorithms are applicable
for finding the M-Best Modes.

Applications. We see a number of applications of an M-best Mode algorithm. First, using M
qualitatively distinct solutions can help speed up cutting-plane methods for training Structural
SVMs [12,34], which otherwise rely only on one MAP solution. Second, interactive applications
that work with a user in the loop (e.g. interactive segmentation) can greatly reduce the number of in-
teractions by presenting multiple distinct highly probable solutions, instead of one. Finally, in some
applications it is possible to rank multiple generated solutions via a secondary process [5]. Clearly,
having a diverse and small solution set is most beneficial for this ranking procedure.

Section 2 discusses and contrasts related work; Section 4 presents our proposed M-Best Mode for-
mulation in detail; Section 5 describes how to solve this formulation; Section 6 presents experiments
on the interactive segmentation problem.

2 Related Work

The problem of finding the top M solutions to a general combinatorial optimization problem (not
necessarily inference in MRFs) has typically been studied in the context of k-shortest paths [7] in a
search graph. Lawler [19] proposed a general algorithm to compute the top M solutions in a large
variety of discrete optimization problems. In fact, ideas used in Lawler’s algorithm form the basis
for most algorithms for M-Best MAP.

M-Best MAP. Most directly relevant to our work is literature on the M-Best MAP problem. The
first family of algorithms for M-Best MAP [23, 28] were junction-tree based algorithms, thus feasi-
ble only for low-treewidth graphs. Dechter and colleagues [6,21] have recently provided dynamic-
programming algorithms for M-Best MAP, but these are exponential in treewidth as well. Yanover
and Weiss [38] proposed an algorithm that requires access only to max-marginals. Thus, for cer-
tain classes of MRFs that allow efficient exact computation of max-marginals, e.g. binary pairwise
submodular MRFs [15], M-Best solutions can be found for arbitrary treewidth graphs. Moreover,
approximate M-Best solutions may be found by approximating the max-marginal computation, e.g.
via max-product BP. More recently, Fromer and Globerson [8] provided a Linear Programming (LP)
view of the M-Best MAP problem by studying the assignment-excluding marginal polytope. The
formulation proposed in this paper generalizes the M-Best MAP problem in a specific sense — for a
particular choice of A(-, -), our formulation reduces to the M-Best MAP.

A rather different approach is taken by Porway and Zhu in [25], whose C* algorithm explores mul-
tiple solutions using sampling of connected components in the MRF. This could allow “jumping”
between modes of the posterior distribution as the sampling proceeds, however there is no mecha-
nism to require the multiple solutions to be diverse, in contrast to our work.

Diverse Solutions. The need for diverse solutions arises in a number of problems in machine learn-
ing. Yu and Joachims [39] studied this problem in the context of document retrieval. They propose
to learn a predictor that selects a diverse subsets of documents, where diversity is based on topics
covered by the documents. Park and Ramanan [24] applied the max-marginal algorithm of Yanover
and Weiss [38] to decode multiple solutions from a deformable parts model, with an added con-
straint on non-overlapping parts. Their approach works for a fairly strict definition of dissimilarity
(A) between solutions, one that our formulation contains as a special case. We revisit this issue in
Section 4. Interestingly, spectral or eigenvector-based algorithms [22,29,36] encode a natural notion
of diversity — successive eigenvectors are always orthogonal, and thus maximally dissimilar w.r.t.
inner product similarity. However, it is unclear how to incorporate arbitrary dissimilarity functions
A(+,-), which is our goal in this paper.

Finally, at a high-level, the data re-weighting rules used in boosting algorithms can also be thought
of as searching for qualitatively different weak learners.



3 Preliminaries: MAP Inference in MRF's

Notation. For any positive integer n, let [n] be shorthand for the set {1,2,...,n}. We consider a
set of discrete random variables x = {x; | i € [n]}, each taking value in a finite label set, z; € Xj.
For a set A C [n], we use x4 to denote the tuple {z; | i € A}, and X 4 to be the joint label space
X je 4 X;. For ease of notation, we use x;; as a shorthand for z(; ;;.

MAP. Let G = (V,€) be a graph defined over these variables, i.e. V = [n], £ C (‘2}) and let
04: X4 — R, VA € VUCE be functions defining the energy at each node and edge for the labeling
of variables in scope. Let £ = {(i — j),(j — i) | {i,j} € €} be a set holding directed edges
for each undirected edge. The goal of MAP inference is to find the labeling x of the variables that
minimize this real-valued energy function:

min Z HA(xA):xrggl ZQi(xi)—i— Z 0i(xs, ;). (1)
Viev

xeX
Y AcvuE (5,5)€E

MAP Integer Program MAP inference is typically set up as an integer programming problem over
the boolean variables. Let g = {ua(s) | pa(s) € {0,1},s € Xa}, be a vector of indicator
variables for all possible configurations of z4,VA € VU E. Thus, {pa(s) =1 & x4 = s}.
Moreover, let 04 = {04(s) | s € Xa}, be a vector holding energies for all possible configurations
of xg,and p = {pa | A € VUCE} be a vector holding the entire configuration. Using this notation,
the MAP inference integer program can be written as:

H}}n Z O4-pa= Mmbnj Z 0; - pi+ Z 0 - 1ij (2a)
AeVUE =% (i,5)€€

st Y pi(s)=1 Viey (2b)
seX;
> mij(st) =pi(t)  Vi—j)ef (2¢)
seX;
ﬂi(s),ﬂij(svt) € {0’1}' (2d)

To be concise, we will use £(G) to denote the linear constraints in 2b,2c, i.e. L(G) = {pa,| A €
VUE D ex, 1ils) = 1,3 cx, wij(s,t) = p;(t) V(i — j) € E}. Thus, the above problem (2)
can be written concisely as:

min Z 04 -1a (3a)
o aevie

st. peL(Q) (3b)

wa(s) € {0,1}. (3c)

Problem (2) is known to be NP-hard in general [30]. A number of techniques [9, 17, 18,35] solve a
Linear Programming (LP) relaxation of this problem, also known as Schlesinger’s bound [27, 37],
which is given by relaxing the boolean constraints (2d) to the unit interval, i.e. 1;(s), w5 (s,t) > 0.

4 M-Best Mode: Formulation

We now describe our proposed M-Best Mode formulation. Recall that the goal is to produce a
diverse set of low-energy solutions. We approach this problem with an iterative algorithm, where the
next best state is defined as the lowest energy state at least some minimum measure of dissimilarity
away from the current best state. To do so, we assume access to a dissimilarity function A(u!, u?)
measuring how far two solutions are from each other. Let ul denote the MAP, and let us first search
for the second mode. We propose the following straightforward yet fairly general formulation:

min Z 04 s (4a)
® Aevue
st. pe L(G) (4b)
Alp,p') > k (4c)
pa(s) € {0,1}. (4d)

We refer to the above formulation as M Modes(A, k), since it is parametrized by the two design
choices. Intuitively, we can see that the above formulation searches for the lowest energy solution



such that they are at least k-units dissimilar to the MAP solution. The extension from 2nd-Best Mode
to Mth-Best Mode is fairly simple: we search for the lowest energy solution at least k-units distance
away from all previously found (M-1) solutions, i.e. A(p, p?) >k, Vje{l,...,M —1}.

We now show that this formulation is general enough to contain existing ones as special cases.

Special Case: M-Best MAP. The M-Best MAP problem can be seen as a special case of this
formulation (M Modes(A, k)), where A is a 0 — 1 dissimilarity (i.e. A(p, p') = [ # p']), where
[-] is an indicator function), and k& = 1. Thus the dissimilarity constraint in M Modes(A, k) simply
forces the next best solution to not be identical to MAP.

Special Case: N-Best Maximal Decoding of Park and Ramanan [24]. The recently proposed
approach of [24] uses the following dissimilarity function: A(p, pu') = max;ey A;(p;, p}) and
k = 1. Thus, their approach defines local dissimilarity functions at each node, and forces at least
one node to be 1-unit away from the corresponding MAP label at that node.

5 M-Best Mode: LP Relaxation

Having presented a general formulation for M-Best Mode, we now address the issue of solving the
optimization problem (4). We note that in general, M Modes(A, k) is at least as hard to solve the
MAP inference problem, which is NP-hard. However, similar to techniques for MAP inference, we
study the continuous relaxation of (4) where we replace (4d) with 14 (s) > 0. Moreover, we opti-
mize a specific form of the continuous relaxation, formed by dualizing the dissimilarity constraint
Ap, pt) > k:

min Z 04 pa—NA(p,pnt) (52)
o aevie

st. peL(G) (5b)

pa(s) = 0. (5¢)

Intuitively, we can see that this program M Modes(A, \) minimizes a linear combination of the
energy of the MRF and similarity (negative dissimilarity) to the MAP solution.

The reason for working with (5) instead of the continuous relaxation of (4) is that for some classes
of dissimilarity functions, we can find M-Best Modes simply by reusing the same algorithms used
for finding the MAP solution, by modifying the energy of the MRF fed into the algorithm. This
allows all the developments in the MAP inference literature to be directly translated to the M-Best
Mode problem, without any changes.

Example: Dot-Product Dissimilarity. Consider A(p, ') = —p- !, i.e. the negative dot-product
between the two solutions. For discrete solutions pu(s), u'(s) € {0, 1}, this dissimilarity function
is equivalent to the Hamming Distance between the two solutions. Moreover, note that

Pacvue 04 pa — AA(ppt) = 30000 — M) - pi + > jyee Bij - mij- Thus, the
M Modes(A, \) problem becomes the same as the MAP problem with modified unary energies
(that are biased away from the current solution). Thus, we can use any existing MAP inference
algorithm to solve this problem. Perhaps the most attractive feature of this formulation is that the
edge-energies are left unaffected. Thus, if they were submodular, they continue to be submodular;
if they were metric energies, they continue to be metrics. This allows us to use efficient max-flow
based algorithms [16, 18].

Example: Higher-order Dissimilarity. Another example of a useful dissimilarity function is one
that decomposes into functions of subsets of variables, i.e. A(u, u') = > Acpn) Ba (a, pky). If

each of the these terms A 4 (-, ) has some structure, e.g. cardinality potentials [10,33] or lower linear
envelope potentials [13] or sparse higher-order potentials [26], that allows messages to be efficiently
computed, this A-augmented energy minimization can be performed via message-passing based
coordinate descent algorithms. We refer the reader to Tarlow et al. [33] for more details about
message computation with high-order terms. For lack of space, we do not describe this example in
detail.

6 Experimental Setup

We apply the M-best mode formulation to the problem of interactive segmentation. In this setting
the user is interested in segmenting an image into foreground and background regions. Initially the



user provides annotations (via scribbles) for a small subset of pixels. The goal then is to provide
the M-best image segmentations for the user to choose from. Clearly, these segmentations must be
highly probable yet qualitatively different. The user selects the most accurate image segmentation
and applies corrections to regions by adding scribbles at which point the process is repeated until
a satisfactory segmentation is achieved. From the perspective of quantitative evaluation, we are
interested in determining the accuracy of M-best image segmentations returned by various methods.

Energy. Consider an image-scribble pair (x, S), where each image is a collection of n superpixels
to be labelled as either foreground or background, i.e. x = {z;|i € [n]} where each x; € {fg,bg},
and S C [n] is a subset of superpixels for whom labels are known. We chose to use superpixels
as opposed to pixels for computational efficiency and in order to produce segmentations that were
better aligned to boundaries in the image. We build a graph, G = (V, £), over the superpixels with
edges connecting adjacent superpixels. The pairwise MRF energy for this application is given by:

% (1,7)€€
where the first (data) term is the cost for assigning a superpixel to the foreground or background
classes, while the second (smoothness) term is the penalization for having different labelings of
neighboring superpixels. The data term depends on an appearance model A4 learned from the user
scribbles (S) and is defined below.

Data Term. The unary appearance model is based on the output of a linear Transductive SVM
(TSVM). Specifically, we extract feature vectors ¢(x;) from both labeled and unlabeled superpixels
and train a TSVM [31] to learn the appearance model. We extract colour features (C1-C4 as pro-
posed by [11]), a histogram of gradients (HOG features), and a histogram over SIFT codewords. Let
w be the learnt weight vector from the TSVM and s; = w7 ¢(z;) be the score for each superpixel.
The resulting data term is of the following form:

(e _ if s;, >0 o _f1-m, ifs;>0
bilei = T9) = {1 —mn, otherwise’ Oiwi = bg) = {7}, otherwise ’ 7

—lsi]?
where, and 7 = 0.5e 202 . We set 02 = var ({s; | j € S}), and « is set to a hand tuned constant
fixed for all images.

Smoothness Term. The pairwise smoothness term we used is the contrast sensitive Potts model:

0ij (i, ;) = [l # 5] - By - 772, (8)
where [[-]] is an indicator function that is 1 when its argument evaluates to true and 0 otherwise, d;;
is the distance between feature vectors at superpixels i and 7, and 3, 32° are scale parameters. The
effect of this smoothness term is to penalize for label transitions between neighboring superpixels,
but the penalization decreases as the distance in feature space between the corresponding feature
vectors increases.

Inference. The contrast-sensitive Potts model results in a submodular energy function for a two-
label problem so we can efficiently compute the MAP solution using the publicly available graph-cut
implementation of [14], [3]. Moreover, with negative dot-product dissimilarity, we can efficiently
and optimally compute the top M-Modes using graph-cuts as well.

6.1 Evaluation and Results

For each image-scribble pair in our dataset we ran interactive segmentation to get the MAP solution
along with the 5 next-best solutions returned by the M M odes method. We compared the highest
scoring of these next-best solutions, in terms of pixel accuracy, with the top-scoring solutions we
got from the baseline methods we describe next.

Baselines. We compared against three baselines. As a first baseline we implemented the M-best
MAP algorithm of Yanover and Weiss [38]. This M-Best MAP algorithm requires repeated compu-
tation of min-marginals, which we computed using the publicly available implementation of Kohli
and Torr [15]. The goal of including this baseline is to show that M-Best MAP solutions lack the
diversity offered by M-Best Modes. For the second baseline we flipped the labels of m randomly
selected superpixels, where m is the number of superpixels that changed labels from the MAP to our
M M odes solution. For the third baseline we flipped the label of the top m uncertain superpixels,

2 In the experiments 81 = 2 and 82 = /.05 max{d;;}.
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Figure 1: (bottom-to-top) Images where the pixel accuracies of erage over 50 training images.

M M odes are slightly less than, same as, slightly better than, and
significantly better than MAP solution.

Map M-Modes M-Best Random Confidence Ranked
Mean 91.542  95.157 91.590  91.676 93.174

Table 1: Absolute pixel accuracies averaged over 50 test images.

where we use the entropy of normalized min-marginals as a measure of uncertainty. The purpose
of the last two baselines is to show that our M-Best Mode formulation is better than methods that
introduce random perturbations to achieve diversity.

The dataset consisted of 100 images from Pascal VOC2010, with corresponding scribble locations
indicating foreground/background superpixels® in each image. Fifty of the images were used for
tuning the regularization weight, A, and the other 50 for testing. We ran grid search over values of
A in the range [0, 1]. The best results on the training images was achieved with A = .18, which we
fixed for experiments on the test set. Summaries of the improvement in pixel accuracies relative to
the MAP solution are reported in Figure 2 along with the absolute accuracies in Table 1. A selection
of the final segmentations is shown in Figure 1. Note that the 2"?-best MAP solution is nearly
identical to the MAP solution whereas the solution from M Modes is closer to the ground-truth
labeling. In fact, on average the solution from M M odes is more accurate compared to ground-truth
than the other baseline methods as well as M-best MAP. The first two rows of Figure 1 illustrate that
it is sometimes highly beneficial to find solutions that are further away from the MAP solution.

7 Conclusion and Future Work

In summary, we present the first algorithm for the M-Best Mode problem, which involves finding
a diverse set of highly probable solutions under a discrete probabilistic model. Our formulation
solves the A-augmented energy minimization problem, which minimizes a linear combination of
the energy and similarity to previous solutions. We showed that this framework is a generalization of
the M-best MAP formulation and that for certain classes of the A-function, the proposed M M odes
algorithm finds solutions that can be computed using the same algorithms for computing the MAP
solution. Our experiments show that our M M odes algorithm produces significant improvement in
pixel accuracies on the interactive segmentation problem as compared to the M-best MAP algorithm.

As future work we would like to investigate the performance and implications of other A-functions,
apply them to higher-order energy functions and also apply this method to speed up cutting-plane
methods for training Structural SVMs.

Acknowledgements. We thank Pushmeet Kohli for helpful discussions and suggesting applica-
tions.

3We used SLIC [1] to extract superpixels, with the desired number of superpixels in an image set to 3000.
The images contained roughly 150K-200K pixels.
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