
CMSC 39600 Oct 23, 2007

Problem Set 1

• Due Date: Nov 8 (Thurs), 2007

• It is recommended that you try to solve all 10 problems, but it is sufficient if you
submit the writeup for any 8 problems.

• Collaboration is encouraged, but all writeups must be done individually.

• Indicate names of all collaborators.

• Indicate all other sources (text books, lecture notes, other material available online)
other than the course lecture notes.

1. [gap preserving reductions]

A reduction from one gap problem gap-Aα to gap-Bβ (for some 0 < α, β < 1) is said
to be a gap preserving reduction if it maps YES instances of gap-Aα to YES instances
of gap-Bβ and NO instances of gap-Aα to NO instances of gap-Bβ . The existence of
a gap preserving reduction from gap-Aα to gap-Bβ implies that if it is NP-hard to
approximate problem A to within α, then it is NP-hard to approximate problem B
to within β.

For every α > 0, show that there exists a and ε, β and a gap preserving reduction
from gap-3SATα to gap-2SAT1−ε,β. Hence, conclude that there exists a β ∈ (0, 1)
such that approximating MAX2SAT to within β is NP-hard.

2. [three vs. two queries]

In class, we stated that H̊astad proved the following strengthening of the PCP Theo-
rem which shows that every language in NP has a PCP with 3 queries and soundness
error almost 1/2.

[H̊astad] ∀ε > 0,Circuit-SAT ∈ PCP1−ε,1/2+ε[O(log n), 3].

Suppose we were able to further strengthen the above result to prove that Circuit-SAT
has a 2 query PCP (i.e., Circuit-SAT ∈ PCP1,s[O(log n), 2] for some 0 < s < 1), then
show that then NP = P !

Thus, H̊astad’s PCP is optimal with respect to the number of queries till the status
of the P vs. NP question is resolved.

3. [optimal inapproximability of MAX3SAT]

The optimal query PCP theorem of H̊astad stated in the earlier problem has the
following additional property: the verifier’s predicate for all random coins is of the
form “πi1 ⊕ πi2 + πi3 = b mod 2”, for some b ∈ {0, 1}, where πi1 , πi2 and πi3 are
the three (3) proof bits queried by the verifier. Using this strong form of the PCP
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Theorem, show that for every δ > 0, approximating MAX3SAT to within 7/8 + δ is
NP-hard.

[Recall that MAX3SAT is the problem of computing the maximum number of clauses
of the given 3CNF Boolean formula satisfied by any assignment.]

4. [inapproximability of clique via graph products]

In class, we proved the following theorem showing the inapproximability of clique.
3-COLOR ∈ PCPc,s[r, q] implies it is NP-hard to approximate MAXCLIQUE to
within a factor s/c as long as 2r+q = poly(·). This resulted in the following in-
approximability result for MAXCLIQUE assuming the PCP Theorem (3-COLOR ∈
PCP1,1/2[O(log n), O(1)]).

∃α ∈ (0, 1), it is NP-hard to approximate CLIQUE to within α (1)

We then applied sequential repetition on the PCP (i.e., PCPc,s[r, q] ⊆ PCPck,sk [kr, kq]
for all k ∈ Z≥0) to obtain the following strengthening of the above result.

∀α ∈ (0, 1), it is NP-hard to approximate CLIQUE to within α (2)

In this problem, we will discuss an alternative approach to prove this result using graph
products. For a graph G = (V,E) we define the square of G, G2 = (V ′, E′), as follows:
The vertex set V ′ equals V 2, the set of pairs of vertices of G. Two distinct vertices
(u1, u2) and (v1, v2) are adjacent in E′ if and only if (u1, v1) ∈ E and (u2, v2) ∈ E.

(a) Prove that the squaring operation defined above satisfies ω(G2) = (ω(G))2 where
ω(G) denotes the size of the largest clique in G.

(b) Use (a) to given an alternate proof of (2) from (1).

5. [recycling randomness via random walks on an expander]

In lecture, we showed that by sequential repetition of PCPs (i.e., PCPc,s[r, q] ⊆
PCPck,sk [kr, kq] for all k ∈ Z≥0) can be used to improve the hardness factor of ap-
proximating clique (also see earlier problem). In this problem, we will discuss a more
efficient way to perform repetition by recycling randomness using expander walks.

Let G = (V,E) be an (n, d, λ)-expander with λ < d. Let B ⊆ V be a set of vertices
with |B| = µn, where 0 < µ < 1. Suppose we pick a uniformly random vertex in G
and then perform a t-step random walk in G starting from this vertex. We wish to
upper-bound the probability p that all vertices encountered along this random walk
are in the set B.

(a) Let A denote the normalized adjacency matrix of G, and let P denote the matrix
corresponding to projection onto B; in other words, P is the n×n diagonal matrix
with 1’s in the positions corresponding to B. Show that p = ‖P (AP )tπ‖1, where
π is the vector (1/n, . . . |V |times . . . , 1/n) (ie., the probability distribution of a
random vertex in V ), and ‖z‖1 denotes the l1-norm of z (i.e., ‖z‖1 =

∑n
i=1 |zi|).
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(b) The matrix 2-norm of a matrix C is defined to be ‖C‖2 = maxy 6=0 ‖Cy‖2/‖y‖2.
Show that p ≤ µ‖PAPAP . . . AP‖2 ≤ ‖AP‖t

2.
(c) Show that ‖AP‖2 ≤

√
µ + (λ/d)2, and conclude p ≤ (µ + (λ/d)2)t/2.

[Hint:givenarbitraryy6=0,writez=Pyandexpressz=z‖+z⊥asin
Lecture8]

Extra Credit: show that in fact ‖PAP‖2 ≤ (λ/d) + µ(1 − λ/d) and show how
this can be used to conclude the sharper upper bound p ≤ µ(λ/d) + µ(1−λ/d)t.

(d) Use the earlier part (c) to conclude that PCP1,1−s[r, q] ⊆ PCP1,2−k [r+O(k), O(kq)]
for all k ∈ Z≥0.

(e) Conclude from (d) (setting k = log n) that it is NP-hard to approximate to
within n−δ for some δ ∈ (0, 1).

6. [linearity test of 3 functions]

Consider the following modification of the BLR-linearity test towards testing linearity
of 3 functions f, g, h : {0, 1}n → {1,−1} simultaneously.

BLR-3-Testf,g,h : “ 1. Choose y, z ∈R {0, 1}n independently
2. Query f(y), g(z), and h(y + z)
3. Accept if f(y)g(z)h(y + z) = 1. ′′

Clearly, if the three functions f, g, h are the same linear function, then the above test
accepts with probability 1. Suppose one of the three functions f, g, h (say f) and its
negation (i.e., −f) is δ-far from linear (this means maxα |f̂α| ≤ 1− 2δ), show that

Pr
y,z

[BLR-3-Testf,g,h rejects ] ≥ δ.

[Hint:TheCauchy-Schwarzinequality(∑aibi)
2
≤(∑a2

i)·(∑a2
i)may

comeuseful.]

7. [recycling queries in linearity test]

In lecture, we analyzed the soundness of the BLR-Test to show that if f is (1/2−ε)-far
from linear, then the test accepts with probability at most 1/2 + ε. If we repeat this
test k times, we obtain a linearity test which makes 3k queries and has the following
property: if f is (1/2 − ε)-far from linear, then the test accepts with probability at
most (1/2 + ε)k = 1/2k + δ. Thus every additional 3 queries improves the soundness
by a factor of 1/2. In this problem, we show that this can be considerably improved.

Assume that both f and −f are (1−ε)/2-far from linear (i.e., maxα |f̂α| ≤ ε). Consider
the following linearity test (parameterized by k).

Testfk : “ 1. Choose z1, z2, . . . , zk ∈R {0, 1}n

2. For each distinct pair (i, j) ∈ {1, . . . , k}
Check if f(zi)f(zj)f(zi + zj) = 1.

3. Accept if all the tests pass. ”
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Observe that this test makes at most k +
(
k
2

)
queries. We will show below that

the soundness of the test is roughly 2−(k
2), thus showing that every additional query

improves the soundness by a factor of 1/2 (almost).

Assume that both f and −f are (1− ε)/2-far from linear.

(a) Show that the acceptance probability of the above test is given by

Pr[acc] = Ez1,...,zk

∏
i,j

(
1 + f(zi)f(zj)f(zi + zj)

2

)
=

1

2(k
2)
·

∑
S⊆([k]

2 )

Ez1,...,zk

 ∏
(i,j)∈S

f(zi)f(zj)f(zi + zj)


(b) Consider any term in the above summation corresponding to a non-empty S

(i.e., Ez1,...,zk

[∏
(i,j)∈S f(zi)f(zj)f(zi + zj)

]
). Suppose (1, 2) ∈ S. Show that

Ez1,...,zk

[∏
(i,j)∈S f(zi)f(zj)f(zi + zj)

]
is upper bounded by Ez1,z2 [f(z1+z2)g(z1)h(z2)]

for some functions g, h : {0, 1}n → {0, 1}.

[Hint:Fixallthevariablesotherthanz1andz2suchthatthattheexpecta-
tionismaximized.]

(c) Use the result of Problem 6 to conclude that the expression in the above (for
non-empty sums) is at most ε (i.e., Ez1,...,zk

[∏
(i,j)∈S f(zi)f(zj)f(zi + zj)

]
≤ ε

for non-empty S).

(d) Conclude that Pr[acc] is at most 2−(k
2) + ε.

8. [parallelization: Boolean alphabet to non-Boolean alphabet]

Prove that for all functions r, q : Z≥0 → Z≥0 and ε : Z≥0 → [0, 1], we have

PCP1,1−ε[r, q] ⊆ PCPΣ
1,1−ε/q[r + log2 q, 2],

where Σ is any alphabet of size at least 2q (i.e, log2 |Σ| ≥ q).

9. [gap amplification towards parallel repetition theorem?]

In class, we proved the following version of the gap amplification lemma: There exists
α ∈ (0, 1) and an alphabet Σ such that

PCPΣ
1,1−ε[r, 2] ⊆ PCPΣ

1,1−ε′ [r + f(t), 2],

where ε′ = min{tε, α} and f(·) is some function.

The fact that ε′ = min{tε, α} allowed us to increase the gap all the way to α but
not any more. If we had instead had ε′ = tε, then we could potentially increase the
gap all the way to 1, obtaining some form of a parallel repetition theorem. In this
problem, we will explore that this approach is bound to fail showing that the “min”
is necessary and not merely an artifact of the proof of the gap amplification lemma.
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(a) It is known that for infinitely many constants d there exist (n, d, λ)-expanders
G for infinitely many n, with the following two properties: (a)λ(G) ≤ 2

√
d and

(b) G has girth at least 2
3 logd n, where the girth of a graph is the length of the

smallest cycle in it. Suppose we make such a graph G into a constraint graph
over the alphabet {0, 1} by putting an inequality constraint on every edge. Show
that UNSAT (G) ≥ 1

2 −O( 1√
d
).

(b) On the other hand, show that for any t, if n is large enough, then the graph G′ ob-
tained via powering in Dinur’s gap amplification procedure satisfies UNSAT (G′) ≤
1
2 , thus showing that the gap cannot be increased beyond 1/2 for this constraint
graph

[Hint:Considerarandomassignment,anduselinearityofexpectation]
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