
Robust PCPs of Proximity and Shorter

PCPs
by

Prahladh Harsha

Bachelor of Technology (Computer Science and Engineering),
Indian Institute of Technology, Madras, India. (1998)
S.M. (Electrical Engineering and Computer Science),

Massachusetts Institute of Technology, Cambridge MA. (2000)

Submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY.

September 2004

c©Massachusetts Institute of Technology 2004.
All rights reserved.

Author
Department of Electrical Engineering and Computer Science

September 1, 2004

Certified by
Madhu Sudan

Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by
Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

2

Robust PCPs of Proximity and Shorter PCPs
by

Prahladh Harsha

Submitted to the
Department of Electrical Engineering and Computer Science

on September 1, 2004 in partial fulfillment of the
requirements for the degree of Doctor of Philosophy.

Abstract

Probabilistically Checkable Proofs (PCPs) provide a format of rewriting and verifying mathematical

proofs that allow efficient probabilistic verification based on probing very few bits of the rewritten

proof. The celebrated PCP Theorem asserts that probing a constant number of bits suffices (in fact

just 3 bits suffice). A natural question that arises in the construction of PCPs is by how much does

this encoding blow up the original proof while retaining low query complexity.

We continue the study of the trade-off between the length of PCPs and their query complexity,

establishing the following main results (which refer to proofs of satisfiability of circuits of size n):

1. We present PCPs of length exp(o(log logn)2) · n that can be verified by making o(log logn)

Boolean queries.

2. For every ε > 0, we present PCPs of length exp(logε n) · n that can be verified by making a

constant number of Boolean queries.

In both cases, false assertions are rejected with constant probability (which may be set to be arbitrar-

ily close to 1). The multiplicative overhead on the length of the proof, introduced by transforming a

proof into a probabilistically checkable one, is just quasi-polylogarithmic in the first case (of query

complexity o(log logn)), and 2(log n)ε

, for any ε > 0, in the second case (of constant query complex-

ity).

Our techniques include the introduction of a new variant of PCPs that we call “Robust PCPs

of proximity”. These new PCPs facilitate proof composition, which is a central ingredient in con-

struction of PCP systems. Our main technical contribution is a construction of a “length-efficient”

Robust PCP of proximity.

We also obtain analogous quantitative results for locally testable codes. In addition, we intro-

duce a relaxed notion of locally decodable codes, and present such codes mapping k information

bits to codewords of length k1+ε, for any ε > 0.

Thesis Supervisor: Madhu Sudan
Title: Professor of Computer Science and Engineering

4

Credits

This thesis is a result of joint work with Eli Ben-Sasson, Oded Goldreich, Madhu Sudan and Salil

Vadhan. I thank all my co-authors for this collaboration. A preliminary version of the results

in this thesis appeared in [BGH+04a]. A more elaborate version of these results can be found at

[BGH+04b]. Some of the results mentioned in Chapter 5 (Propositions 5.3.4 and 5.3.5) are from the

work of Eli Ben-Sasson and Madhu Sudan [BS04]. I am thankful to them for letting me include

these results in this thesis.

I would also like to thank the many people who made useful suggestions to me in my research.

I would especially like to thank Eli Ben-Sasson, Irit Dinur, Oded Goldreich, Sofya Raskhodnikova,

Alon Rosen, Mike Sipser, Madhu Sudan, Salil Vadhan, and Avi Wigderson.

My thesis committee consisted of my advisor Madhu Sudan, Shafi Goldwasser and Mike Sipser.

5

6

Acknowledgments

This thesis would not have been possible but for the valuable advice and direction provided by

Madhu Sudan, Eli Ben-Sasson and Oded Goldreich. I thank my advisor, Madhu Sudan for his

invaluable guidance and support. I have greatly benefited from my collaboration with Eli over the

the past four years, who has always been there to discuss and clarify any matter. I thank Oded

Goldreich for his advice, direction and encouragement during our interaction over the last one

year.

I would also like to thank the many people with whom I had useful discussions during my

research. I would especially like to thank Sofya Raskhodnikova, Mike Sipser, and Salil Vadhan.

I am indebted to the the efforts of my math teachers – Kotteswara Rao, Sri Ramaiah, Sheshayya

Choudum and ammā, who instilled in me the love for mathematics.

I owe a lot to the research atmosphere at CSAIL. I also thank all the members of the theory

group for having created a very conducive atmosphere for me to work in. Special mention to

Alantha Newman, my office-mate of several years. I also greatly benefited from a summer at the

NEC Laboratories in the excellent company of Irit Dinur, Lance Fortnow, Joe Kilian, Kobbi Nissim

and Ronnit Rubinfeld.

Special Thanks to Mike Sipser both for patiently listening to me during various stages of my

research and offering me a teaching assistantship for his excellent course “Theory of Computation”.

I thank my apartment-mates over several years – Kripa Varanasi, Sridhar Ramachandran, Ra-

machandran Balakrishnan, and Rajappa Tadepalli for having created a home away from home. My

friends in Boston – Amit Deshpande, Krishnan Sriram and several others; have been very encour-

aging and greatly helped me get over my occasional blues.

Finally, no words can suffice to thank ammā, appā, Pavithra, Ramesh and Ajay for their endless

encouragement and who keep me going.

7

8

To�Pñ Pa (ammā) and �Hñ Ha (appā)

9

10

Contents

1 Introduction 17

1.1 Complexity Theory via Proofs . 18

1.2 Probabilistically Checkable Proofs . 20

1.3 Contributions of Thesis . 22

1.3.1 Short PCPs . 22

1.3.2 Why Short PCPs? . 23

1.3.3 Main Results . 23

1.3.4 New notions and main techniques . 25

1.3.5 Applications to coding problems . 26

1.4 Structure of this Thesis . 27

2 PCPs and variants 29

2.1 Standard PCPs . 30

2.2 PCPs of Proximity . 31

2.2.1 Related Work . 34

2.2.2 Relation to Property Testing . 35

2.3 Robust Soundness . 36

2.4 Various observations and transformations . 38

2.4.1 Queries vs. proximity . 38

2.4.2 Expected robustness . 39

2.4.3 Non-Boolean PCPs . 39

2.4.4 Robustness vs. proximity . 42

3 Composition of Robust PCPs of Proximity 45

3.1 Why composition? . 45

3.1.1 Proof Composition in earlier PCP constructions . 46

3.2 Composition Theorem . 48

3.3 Building block for composition . 50

3.4 Relation to Assignment Testers of Dinur and Reingold . 52

4 A constant-query, exponential-sized PCP of proximity 55

4.1 Constant query PCP of proximity . 55

11

I Proof of the PCP Theorem 59

5 Proof of the PCP Theorem 61

5.1 Introduction . 61

5.1.1 Overview of Proof . 62

5.2 Composing the Main Construct . 63

5.3 Robust PCPPs for Two Problems . 64

5.3.1 Low Degree Testing . 65

5.3.2 Zero on Subcube . 67

5.4 A robust PCPP for CIRCUIT VALUE . 72

5.4.1 A robust PCP for CIRCUIT SATISFIABILITY . 72

5.4.2 Augmenting with the proximity test . 78

5.4.3 Converting to Binary Alphabet . 80

II Short PCPs 83

6 Introduction 85

6.1 Introduction - Main Construct . 85

6.1.1 Outline of this Part . 86

6.2 Saving on Randomness . 86

6.3 Overview of Main Construct . 91

7 A randomness-efficient PCP 95

7.1 Introduction . 95

7.2 Well-structured Boolean circuits . 96

7.3 Arithmetization . 101

7.4 The PCP verifier . 104

7.5 Analysis of the PCP verifier . 108

8 A randomness-efficient PCP of proximity 113

8.1 Introduction . 113

8.2 Proof of Theorem 8.1.1 . 114

9 A randomness-efficient robust PCP of proximity 117

9.1 Introduction . 117

9.2 Robustness of individual tests . 118

9.3 Bundling . 123

9.4 Robustness over the binary alphabet . 130

9.5 Linearity of encoding . 131

10 Putting them together: Very short PCPs with very few queries 137

10.1 Main Construct - Recalled . 137

10.2 Composing the Main Construct . 138

10.2.1 Proof of Theorem 10.2.1 . 139

12

10.2.2 Corollaries to Theorem 10.2.1 . 143

III Coding Theory Applications 147

11 Introduction 149

11.1 Coding Theory . 149

11.2 Sublinear time algorithms . 151

11.3 Locally Testable Codes . 152

11.4 Locally Decodable Codes . 153

11.4.1 Relaxed Locally Decodable Codes . 154

12 Locally Testable Codes 155

12.1 Definitions . 155

12.2 Constructions . 156

13 Relaxed Locally Decodable codes 161

13.1 Definitions . 161

13.1.1 Definitional issues and transformations . 163

13.2 Constructions . 166

13.3 Linearity of the codes . 172

Appendix 175

A Low Degree Test 175

A.1 The Line-Point Test . 175

A.2 Randomness-efficient low-degree tests and the sampling lemma 176

A.2.1 λ-biased sets and the sampling lemma . 176

A.2.2 Randomness-Efficient Low Degree Tests . 177

Bibliograpy 179

13

14

List of Figures

1-1 Pictorial Representation of a Proof System . 18

1-2 The PCP Theorem . 21

2-1 PCP Verifier . 30

2-2 PCP of Proximity . 32

7-1 The wrapped de Bruijn graph G3,3 . 97

7-2 Embedding of a circuit into G3,3 . 98

7-3 Some gates of a well-structured circuit . 99

7-4 Example of legal and illegal assignments . 100

11-1 Sublinear Time Algorithms . 151

15

16

CHAPTER 1

Introduction

The notion of a proof is one of the most fundamental concepts in mathematics. A proof is the means

by which one person convinces another the truth of an assertion. But how does one convince

another of the truth of an assertion? In other words, What is a valid proof? For instance, do we

consider any of the following as plausible proofs of some assertion T ?

Assertion T is true since we have never observed it being falsified.

Assertion T is true since it has been published in journal J .

Assertion T is true because Richard Karp believes it to be so.

One of the attempts to formalize the concept of a proof is via the twin-notions of a proof-system

and proof-verification. A proof-system specifies a schema of allowable rules while proof-verification

involves checking if a proof satisfies this schema of rules. Thus, the person who provides the proof

(henceforth called the prover) writes the proof according to the rules specified by the proof-system

while the person verifying the proof (henceforth called the verifier) checks if the proof is written

according to these set of rules (i.e., checks if the proof is valid). Furthermore, we require the proof-

system to satisfy the following two properties - (a) For every true assertion, there exists a valid proof

in the proof-system, i.e, all true assertions have proofs. We call this requirement the completeness of

the proof-system. (b) For every false assertion, there does not exist a proof in the proof-system, i.e.,

false assertions do not have proofs. We call this the soundness of the proof-system.

The notion of a proof-system implicitly implies the existence of two parties - the prover and

the verifier. Is it necessary to have these two parties, do we need the prover? If the prover P can

produce the proof of the assertion, why can’t the verifier V produce the proof himself and convince

himself of the truth of the assertion without any aid from the prover P ?

Ideally, we believe that it is much harder to find the proof of an assertion than to check the

17

correctness of the proof once it is found. Thus, while it is the task of the prover P to derive a valid

proof for the assertion, the verifier V merely has to check the validity of the proof. Thus, proofs

can be viewed as a labor-saving mechanism. We believe that there exist assertions that take require

a huge labor from the prover’s side to obtain a valid proof, however, once such a valid proof is

found, it is possible to express it in sufficiently simple terms such that even a weak verifier V can

check its validity.

Figure 1-1: Pictorial Representation of a Proof System

A deterministic verifier checks the truth of an assertion by reading every bit of the proof.

1.1 Complexity Theory via Proofs

Several concepts in Computational Complexity can be phrased in the language of proofs. The two

important computational tasks associated with a proof-system are proof-production (i.e, the work

of the prover, the task of actually deriving the proof) and proof-verification (i.e., the work of the

verifier). A host of complexity classes can be described by considering the complexity of either

of these tasks. The complexity class P captures precisely the class of family of assertions whose

proofs can be obtained in polynomial time in the length of the assertion. On the other hand, the

complexity class NP is the class of family of assertions that have proofs whose validity can be

checked by the verifier in polynomial time in the length of the assertion. In this terminology, the

question, we had asked earlier, of whether there exist a family of assertions whose proofs can be

verified in polynomial time but cannot be obtained in polynomial time is precisely the question

“P 6= NP?”, the most famous open-problem today in computer science.

18

Similar to NP (and P), we can define the class NEXP (and EXP) which is precisely the class

of family of assertions whose proofs can be verified (produced) in time exponential in the length of

the assertion. When we consider the space-complexity of the prover and verifier instead of time-

complexity, we obtain the various space-complexity classes like PSPACE, L etc. For instance, the

class deterministic polynomial space, called PSPACE, is the class of family of assertions whose

proofs can be obtained by a prover using space polynomial in the length of the assertion. Thus

most of the concepts in complexity theory can be expressed in the language of proofs.

The class NP, by definition, is the class of family of assertions whose truth can be verified by a

deterministic polynomial time verifier. Goldwasser, Micali and Rackoff [GMR89] studied whether

a larger class of assertions could be verified by giving the verifier slightly more power. This led

to the notion of interactive proofs, called IP, due independently to Goldwasser, Micali and Rack-

off [GMR89] and Babai [Bab85]. The class IP is the class of family of assertions that can be verified

by a probabilistic polynomial time verifier (as opposed to a deterministic polynomial time verifier)

that interacts with the prover (as opposed to receiving a fixed proof of membership). In other

words, this model allows the verifier to both toss random coins and to talk with the prover (i.e.,

ask the prover questions). Following the work of Lund, Fortnow, Karloff and Nisan [LFKN92],

Shamir [Sha92] proved the surprising result that IP = PSPACE. In other words, proofs of asser-

tions that require polynomial space to construct, can be verified in probabilistic polynomial time by

a verifier that interacts with the prover. The work of Goldwasser, Micali and Rackoff [GMR89] also

introduced the notion of zero-knowledge proofs, proofs that reveal nothing more than the validity of

the assertion. A result due to Goldreich, Micali and Wigderson [GMW91] shows that any problem

in NP has a zero-knowledge proof-system, assuming that a certain cryptographic assumption is

true.

Ben-Or et al. [BGKW88] considered a model of interactive proofs where the verifier can inter-

act with more than one prover, who are all computationally unbounded but unable to commu-

nicate with each other once the interaction with the verifier begins. Their main result was that

any family of assertions in NP has a zero-knowledge proof in this multi-prover model (without

any cryptographic assumption). Fortnow, Rompel and Sipser [FRS94] further studied this model

of multi-prover interactive proofs (MIP) and showed that any family of assertions in MIP can be

characterized as those family of assertions that have exponentially long proofs, which can how-

ever be checked by a probabilistic polynomial time verifier. Shortly after the IP = PSPACE

result by Shamir [Sha92], Babai, Fortnow and Lund [BFL91] proved the surprising result that

MIP = NEXP. Combined with the characterization of Fortnow, Rompel and Sipser [FRS94],

this is a very surprising result, because it says that any proof whose validity can be checked in

exponential time, can be re-written in such a way that a probabilistic polynomial time verifier can

check the validity of the new proof. The verifier, being probabilistic, accepts valid proofs with

19

probability 1 and rejects invalid proofs with probability at least 1
2 . Thus, the verifier is convinced

of the validity of the (exponentially long) proof even though it looks at only a negligible (at most

polynomial) fraction of the proof.

It is natural to ask whether the above result scales down for polynomial-time verifiable proofs.

In other words, can proofs of assertions which are verifiable in deterministic polynomial time be

rewritten in such a way that they are checkable by a probabilistic poly-logarithmic time verifier?

On the face of it, this question seems meaningless since how can a verifier verify the proof of an

assertion without reading the assertion in its entirety (it takes linear time to read the assertion)!

However, Babai et al. [BFLS91] show that poly-logarithmic time verification is in fact possible pro-

vided both the assertion and the proof are encoded suitably. For the same reasons as before, this

result is surprising since the verifier reads at most poly-logarithmic bits in the polynomially-long

proof, yet is convinced of the validity of (a polynomially long) proof. Given this result, it is natural

to ask how many bits of the proof does the probabilistic verifier need to read in order to check the

validity of the proof. This leads us to the notion of probabilistically checkable proofs.

1.2 Probabilistically Checkable Proofs

Probabilistically Checkable Proofs [FGL+96, AS98, ALM+98] (a.k.a Holographic proofs [BFLS91])

provide a format of rewriting and verifying proofs that allow efficient probabilistic verification

based on probing very few bits of the the rewritten proof. The celebrated PCP Theorem [AS98,

ALM+98] asserts that any NP proof can be rewritten in such a manner that it is checkable by a

probabilistic verifier (as opposed to a deterministic verifier in the usual NP setting) by probing

merely a constant number of bits in the new proof. For obvious reasons, we will refer to the new

proof as a Probabilistically Checkable Proof (PCP). Furthermore, it turns out that there exist PCPs

for NP proofs that are checkable by a mere three bits; rejecting proofs of false assertions with prob-

ability almost 1/2 (and accepting proofs of valid assertions with probability 1 (cf. [Hås01, GLST98]).

Informally speaking, the PCP Theorem states that for every family of assertions in NP, there

exists a probabilistic verifier V that checks the validity of the proof of the assertion by probing

the proof in only a constant number of locations. The verifier V does so by tossing a logarithmic

number of random coins in the size of the assertion, probing the proof at a constant number of

bit positions and accepting the proof based on a boolean verdict depending on the assertion, the

random coins tossed and the bits read by it. The number of random coins tossed by the verifier

is referred to as randomness complexity (r) while the maximum number of probes performed by the

verifier is referred to as the query complexity (q) of the proof-system. Besides these two parameters,

the length of the PCP is another important parameter. It can easily be observed that the length of the

PCP is atmost q ·2r. Thus, since the randomness complexity is logarithmic in the size of the original

20

NP proof and the query complexity a constant, the new PCP is at most polynomially longer than

the original NP proof. The PCP Theorem is constructive in the sense that it indicates how to

construct this new probabilistically checkable proof (PCP) from the old NP proof. Furthermore,

this construction is both complete and sound, i.e., valid proofs are always accepted while invalid

proofs are accepted with probability at most 1/2.

Figure 1-2: The PCP Theorem

Any NP proof can be rewritten into a PCP checkable by a probabilistic verifier in at most a constant

number of bit locations.

PCPs have had a tremendous impact on the study of combinatorial optimization problems in

the last decade. Starting with the seminal result of Feige et al. [FGL+96] which demonstrates the

connection between this model of proof verification and the hardness of approximation of sev-

eral combinatorial optimization problems, PCPs have been very effectively used to show that the

approximation version of several NP-hard combinatorial optimization problems are themselves

NP-hard. This is a very active area of research and some of the notable papers in this direction in-

clude (just to mention a few) [PY91, FGL+96, AS98, ALM+98, LY94, BGLR93, BGS98, Fei98, Hås99,

Hås01, Kho04]. However, we will not dwell into this hardness connection of PCPs in this disserta-

tion.

21

1.3 Contributions of Thesis

1.3.1 Short PCPs

The main focus of this thesis is the following question. How much longer is the new PCP compared to

the original NP proof while retaining low query complexity? As mentioned before, the PCP Theorem

guarantees that the new proof is at most polynomially larger than the original proof. The main

question we address in this thesis is the following: how small can this polynomial be? Can we

construct PCPs which are at most a constant times larger than the original NP proof retaining

constant query complexity. Furthermore, can such a constant blowup be attained with the optimal

query complexity of 3 bits?

It is to be noted that historically, in the study of PCPs, optimizing the query complexity has

attracted a lot more attention, cheifly motivated by the significance of query complexity to inap-

proximabilty results (see, for example, [BGLR93, BGS98, Hås01, GLST98, ST00]). However, these

works only guarantee that the PCP is of length polynomial in the length of the original NP proof.1

Just to put things in perspective, the original proof of the PCP Theorem [ALM+98] constructed

PCPs of nearly cubic length with a query complexity roughly of the order of a million (in order to

reject proofs of false assertion with probability at least 1/2). On the other hand, the 3-query optimal

PCPs of [Hås01, GLST98] have length nearly n106

, still a polynomial!.

Work with regard to optimizing the length of the PCP was initiated by Babai, Levin, Fortnow

and Szegedy [BFLS91]. Polishchuk and Spielman [PS94], following the work of Babai et al. con-

structed PCPs for NP with a blowup factor of at most nε and checkable by O(1/ε) queries for

every ε > 0. By blowup, we refer to the ratio of the length of the new PCP constructed to that of

the original NP proof. Thus, the PCPs of [PS94] were of length n1+ε and checkable with O(1/ε)

queries for every ε > 0. Later, Harsha and Sudan [HS00] constructed PCPs with a slightly super-

quadratic (n2+ε for every ε > 0) blowup, checkable with just 17 queries. More recently, Ben-

Sasson et al. [BSVW03], building on the work of Goldreich and Sudan [GS02] constructed PCPs

with a blowup factor of just 2
√

log n, checkable with a constant number of queries. In this thesis,

we continue this research direction and construct even shorter PCPs. In informal terms, we con-

struct PCPs involving a blowup fact of at most 2(log n)ε

checkable with O(1/ε) queries for every

ε > 0. Furthermore, if we are willing to slightly increase the query complexity to a super-constant

o(log logn), then we show how to reduce the blowup factor to a mere quasipoly-logn factor (For an

exact statement of the results, refer to Section 1.3.3).

1We stress that in all the above works as well as in the current work, the PCP can be computed in polynomial-time from

the original NP proof.

22

1.3.2 Why Short PCPs?

Why are we interested in short PCPs? Why is the length of PCP an interesting parameter? To an-

swer these questions, we first feel that we should not limit ourselves to viewing PCPs as mere tools

to prove inapproximability results. In our view, the significance of PCPs extends far beyond their

applicability to deriving inapproximability results. The mere fact that NP-proofs can be trans-

formed into a format that supports super-fast probabilistic verification is remarkable. From this

perspective, the question of how much redundancy is introduced by such a transformation is a

fundamental one. PCPs provide a very robust means of rewriting the original NP proof in the fol-

lowing sense. Suppose a purported NP proof for a false assertion was erroneous at just a single bit

location. Yet, the PCP style of rewriting this (erroneous) proof scatters this error all over the place.

Thus, PCPs are to computation and proof-verification what error-correcting codes are to communication.

From this viewpoint, the blowup of the proof size is the natural analogue of the inverse of the rate

of the code and is thus a very natural parameter to study. PCPs, as the name suggests, provide

a mechanism for efficient automated proof-checking. One of the main reasons, why PCPs are not

being used today in practice for automated proof-checking is that the blowup of the proof-size in-

volved in all present constructions of PCPs makes it infeasible to do so. We do not claim that our

short PCPs make this feasible, however they are a significant step in that direction.

Furthermore, PCPs have been used not only to derive inapproximability results but also for

obtaining positive results (e.g., CS-proofs [Kil92, Mic00] and their applications [Bar01, CGH98]),

and the length of the PCP affects the complexity of those applications. PCP constructions are also

used to construct certain codes (locally testable codes and “relaxed locally decodable codes”), the

proof-size of the PCP is directly related to the rate of these codes.

In any case, the length of PCPs is also relevant to inapproximability results; specifically, it affects

their tightness with respect to the running time (as noted in [Sze99]). For example, suppose the op-

timization problem (exact) SAT has complexity 2Ω(n). The original PCP theorem [AS98, ALM+98]

implies that the approximation version of SAT, namely MaxSAT requires time 2nα

, for some (small)

α > 0. The work of Polishchuk and Spielman [PS94] makes α arbitrarily close to 1, whereas the

results of [GS02, BSVW03] further improve the lower-bound to 2n1−o(1)

. Our results reduce the o(1)

term.2

1.3.3 Main Results

How short can a PCP be? The answer may depend on the number of bits we are willing to read in

order to reject false assertions (say) with probability at least 1/2. To place our results in perspective,

we begin by citing the PCP constructions of Polishchuk and Spielman [PS94]. It is implicit in their

2A caveat: it is currently not known whether these improved lower-bounds can be achieved simultaneously with optimal

approximation ratios, but the hope is that this can eventually be done.

23

work [PS94] that, for NP proofs verifiable in time n, if we are willing to read n0.01 bits then the

length of the new PCP may be Õ(n). That is, stretching the NP proof by only a poly-logarithmic

amount, allows to dramatically reduce the number of bits read (from n to n0.01). More precisely:3

Theorem 1.3.1 (implicit in [PS94]) Any NP proof verifiable in time n can be encoded by a PCP of length

poly(logn) · n which can be probabilistically verified by probing at most no(1) bit locations. In fact, for

any value of a parameter m ≤ logn, there is a PCP having randomness complexity (1 −m−1) · log2 n +

O(log logn) +O(m logm) and query complexity poly(logn) · n1/m.

Recall that the proof length of a PCP is at most 2r · q, where r is the randomness complexity and

q is the query complexity of the PCP. Thus, the first part of the above theorem follows by setting

m = log logn/ log log logn in the second part.

Our first main result shows that the query complexity can be reduced dramatically if we are

willing to increase the length of the proof slightly. First, with a quasi-poly-logarithmic stretch, the

query complexity can be made double-logarithmic:

Main Theorem 1.3.2 Any NP proof verifiable in timen can be encoded by a PCP of length exp(o(log logn)2)·
n which can be probabilistically verified by probing at most o(log logn) bit-locations. In fact, it has a PCP

having randomness complexity log2 n+O
(
(log logn)2/ log log logn

)
and query complexity

O(log logn/ log log logn).

We mention that the only prior work claiming query complexity below exp(
√

logn) (cf. [GS02,

BSVW03]) required stretching the NP proof by at least a exp(
√

logn) factor. With approximately

such a stretch factor, these works actually achieved constant query complexity (cf. [GS02, BSVW03]).

Thus, Theorem 1.3.2 represents a vast improvement in the query complexity of PCPs that use

very short proofs (i.e., in the range between exp(o(log logn)2) · n and exp(
√

logn) · n). The sec-

ond main result on the other hand considers PCPs that allow probabilistic verification by a con-

stant number of queries. We reduce the best known stretch factor from exp(log0.5+ε n) (established

in [GS02, BSVW03]) to exp(logε n), for any ε > 0. That is:

Main Theorem 1.3.3 For every constant ε > 0, any NP proof verifiable in time n can be encoded by a

PCP of length exp(logε n) · n which can be probabilistically verified by probing at most a constant number

of bit-locations. In fact, it has a PCP having randomness complexity log2 n + logε n and query complexity

O(1/ε).

It may indeed be the case that the trade-off (between length blow-up factors and query complexity)

offered by Theorems 1.3.1–1.3.3 merely reflects our (incomplete) state of knowledge. In particular,

we wonder whether assertions in NP can be probabilistically verified by a PCP having proof-length

n · poly(logn) and constant query complexity.

3All logarithms in this work are to based 2, but in some places we choose to emphasize this fact by using the notation

log2 rather than log.

24

1.3.4 New notions and main techniques

A natural approach to reducing the query complexity in Theorem 1.3.1 is via the “proof composi-

tion” paradigm of [AS98]. However, that PCP, as constructed in [PS94], does not seem amenable

to composition (when the parameter m is non-constant). Thus, we begin by giving a new PCP

construction whose parameters match those in Theorem 1.3.1, but is suitable for composition. As

we will see, we cannot afford the standard proof composition techniques, and thus also introduce

a new, more efficient composition paradigm.

Our new “proof composition” method refers to two new notions: the notion of a PCP of proximity

and the notion of a robust PCP. Our method is related to the method discovered independently

by Dinur and Reingold [DR04]. (There are significant differences between the two methods; as

explained in Section 2.2.1.)

PCPs of Proximity. Recall that a standard PCP verifier tests the truth of an assertion by reading

the assertion in its entirety and “barely reading” the proof. That is, the PCP verifier is given explicit

access to the assertion, but only oracle access to the string that supposedly is a PCP. The verifier

checks the truth of the assertion by probabilistically probing this oracle and the query complexity is

precisely the maximum number of such oracle accesses. In contrast, in a PCP of proximity(PCPP),

the verifier is given oracle access to not only the PCP but also the assertion itself. In other words,

a PCPP verifier tests the truth of an assertion by “barely reading” both the assertion and its proof.

Needless to say, such a constrained verifier cannot distinguish true assertions from false ones, but

it is not required to do so. It is only expected to distinguish between assertions that are true and

those which are far from being true (i.e., far in Hamming distance from any true assertion). Thus it

only needs to check if the input assertion is close to being true, hence the name – PCP of proximity.

However, its queries to the input assertion oracle are also counted in its query complexity. As always, we

are interested in verifiers with low query complexity. Thus while the query complexity of PCPPs is

evaluated more stringently, they are required to do less (i.e., only distingush true assertions from

those that are far from true). PCPs of proximity are related to holographic proofs [BFLS91], “PCP

spot-checkers” [EKR99] and “Assignment-Testers” [DR04]; see further discussion in Section 2.2.1.

Robust PCPs. Robust PCPs are standard PCPs with a strenghtened soundness guarantee. To

discuss robust PCPs, let us recall the soundness guarantee of standard (non-adaptive) PCPs. The

standard PCP verifier based on its input assertion and internal random coins determines a set of

bit-locations to probe the PCP in and a boolean predicate (on these bit-locations) based on which

it accepts/rejects the PCP. The completeness of the verifier states that if the assertion is true, then

there is one PCP that causes the boolean predicate to always accept while the soundess guarantees

that if the assertion is false, then the boolean predicate rejects with high probability. In other words,

25

for most random coins, the actual bits in the PCP probed by the verifier do not satisfy the boolean

predicate. In a robust PCP, we strengthen this latter condition. We require that the bits read by the

verifier not only fail to satisfy the boolean predicate, but are in fact significantly far from satisfying

the boolean predicate. In other words, with high probability, a significant fraction of the bits read by

the verifier need to be flipped in order to satisfy the boolean predicate. We call this strenghthened

soundness guarantee, robust soundess.

Proof Composition. Our key observation is that “proof composition” works very smoothly when

we compose an outer “robust PCP” with an inner “PCP of proximity” instead of standard PCPs.

We stress that the flexibility in composing robust PCPs of proximity plays an important role in our

ability to derive quantitatively stronger results regarding PCPs. We believe that robust PCPs of

proximity may play a similar role in other quantitative studies of PCPs.

1.3.5 Applications to coding problems

The flexibility of PCPs of proximity makes them relatively easy to use towards obtaining results

regarding locally testable and decodable codes. In particular, using a suitable PCP of proxim-

ity, we obtain an improvement in the rate of locally testable codes (improving over the results

of [GS02, BSVW03]). Loosely speaking, a codeword test (for a code C) is a randomized oracle ma-

chine that is given oracle access to a string. The tester may query the oracle at a constant number

of bit-locations and is required to (always) accept every codeword and reject with (relatively) high

probability every string that is “far” from the code. The locally testable codes of [GS02, BSVW03]

used codewords of length exp(log0.5+ε k)·k in order to encode k bits of information, for any constant

ε > 0. Here we reduce the length of the codewords to exp(logε k) · k. That is:

Theorem 1.3.4 (loosely stated, see Section 12 for details): For every constant ε > 0, there exists locally

testable codes that use codewords of length exp(logε k) · k in order to encode k bits of information.

We also introduce a relaxed notion of locally decodable codes, and show how to construct such

codes using any PCP of proximity (and ours in particular). Loosely speaking, a code is said to

be locally decodable if whenever relatively few location are corrupted, the decoder is able to re-

cover each information-bit, with high probability, based on a constant number of queries to the

(corrupted) codeword. This notion was formally defined by Katz and Trevisan [KT00] and the best

known locally decodable code has codeword of length that is sub-exponential in the number of in-

formation bits. We relax the definition of locally decodable codes by requiring that, whenever few

location are corrupted, the decoder should be able to recover most of the individual information-

bits (based on few queries) and for the rest of the locations, the decoder may output either the right

message bit or a fail symbol (but not the wrong value). That is, the decoder must still avoid errors

26

(with high probability), but is allowed to say “don’t know” on a few bit-locations. We show that

this relaxed notion of local decodability can be supported by codes that have codewords of length

that is almost-linear in the number of information bits. That is:

Theorem 1.3.5 (loosely stated, see Section 13 for details): For every ε > 0, there exists relaxed locally

decodable codes that use codewords of length k1+ε in order to encode k bits of information.

1.4 Structure of this Thesis

Unfortunately, this thesis is not written in a probabilisitically checkable format that would enable

the reader to read just a couple of pages and be assured of the verity of the results. However, we

hope that the following outline of the thesis will help the reader.

We start by providing a definitional treatment of PCPs of proximity in Chapter 2 – we recall the

standard definition of PCPs in Chapter 2 and then proceed to define the two new variants of PCPs -

PCPs of proximity and robust-PCPs. The basic definitions as well as some observations and useful

transformations are presented in Section 2.

In Chapter 3, we present the composition theorem for robust PCPs of proximity. We also make

several remarks on proof-composition performed in earlier PCP constructions. We explain how our

two new PCP variants make composition simpler and smoother than in earlier PCP constructions

and help in constructing shorter PCPs.

For starters, we construct a polynomial sized constant query PCP of proximity based on the

Hadamard code in Chapter 4. This PCP of proximity though extremely efficient in terms of query

complexity performs poorly in terms of proof size (it has exponentially long proofs!). This PCP of

proximity is obtained by modifying the inner verifier from Arora et al. [ALM+98]. As in [ALM+98],

this PCP of proximity will be used in the innermost level of composition.

As mentioned earlier, our proof-composition not only improves the randomness complexity

but is also significantly simpler than earlier compositions. This composition can serve as substitute

for the original composition in [ALM+98] to yield a simpler proof of the PCP Theorem. However,

obtaining our improved parameters with respect to length requires a lot of technical work. Thus,

unfortunately we do not have a single construction that both yields a shorter proof of the PCP The-

orem and a short PCP simultaneously. So, we first give a simple construction of a robust PCP of

proximity (which does not perform great with respect to proof-size, only polynomially long proofs)

in Part I and then compose with itself to obtain a simpler proof of the PCP Theorem. In part II, we

considerably improve on the construction from Part I to obtain our short PCPs. The main technical

meat of this thesis lies in the construction of this short PCP (cf. Part II).

27

Part I (Proof of the PCP Theorem): In Chapter 5, we use the “new” composition theorem proved

in Chapter 3 to give a simpler proof of the PCP Theorem. For this purpose, we modify the (pre-

composition) verifiers of [ALM+98] to both test proximity and have robust soundness.

The first 4 chapters along with Part I give a proof of the PCP Theorem and can be read indepen-

dently of the rest of the thesis. The remaining chapters are devoted to improving the parameters of

the PCPs constructed. Part I gives a simpler and almost self-contained proof of the PCP Theorem

(modulo the proof of the low-degree test (Appendix A, which we cite from [ALM+98, BSVW03]).

Hopefully, this exposition will make the PCP Theorem accessible to a wider audience.

Part II (Short PCPs): The five chapters (Chapter 6–10) in this part contain the technical meat of

this thesis and are devoted to proving the main theorems (Theorem 1.3.2 and 1.3.3). We start this

part by providing an overview of the construction. The construction itself is presented in Chap-

ters 7–9. We start by presenting a (highly efficient) ordinary PCP (establishing Theorem 1.3.1),

which lends itself to the subsequent modifications. In Chapter 8, we augment this PCP with a test

of proximity, deriving an analogous PCP of proximity. In Chapter 9 we present a robust version

of the PCP of proximity derived in the previous sections. In Chapter 10, we show how to derive

Theorems 1.3.2 and 1.3.3, by composing this Robust PCP of proximity with itself multiple times.

Specifically, o(log log n) compositions are used to derive Theorem 1.3.2 and 1/ε compositions are

used to derive Theorem 1.3.3. robust PCP of proximity of the required complexities.

Part III (Applications to Coding): In Chapter III, we present certain application of our PCP con-

struction to Coding Theory. We present improved constructions of locally testable codes. We also

introduce a relaxed notion of locally decodable codes, and show how to construct such codes using

any PCP of proximity (and ours in particular).

Appendix A: Low-Degree Test: The low-degree test is a crucial ingredient in most construction of

PCPs including ours (with the significant exception of [DR04]). The low-degree test is procedure to

test if an arbitrary function is close to some polynomial of low degree. In Appendix A, we formally

define this problem and quote the required results in this area from [ALM+98, BSVW03].

28

CHAPTER 2

PCPs and variants

In this chapter, we recall the standard definition of PCPs (in Section 2.1) and then present the formal

definitions of our two variants of PCPs: PCPs of proximity and Robust PCPs (in Sections 2.2 and 2.3,

respectively). We discuss other related notions (holographic proofs, property testing, assignment

testers etc.) that have appeared in literature in Section 2.2.1. Finally, we conclude making several

observations on the two newly defined objects: PCPs of proximity and Robust PCPs (in Section 2.4).

First for some notation.

Notation: We will extensively refer to the relative distance between strings/sequences over some

alphabet Σ: For u, v ∈ Σℓ, we denote by ∆(u, v) the fraction of locations on which u and v differ

(i.e., ∆(u, v) , |{i : ui 6= vi}|/ℓ, where u = u1 · · ·uℓ ∈ Σℓ and v = v1 · · · vℓ ∈ Σℓ). We say that u is

δ-close to v (resp., δ-far from v) if ∆(u, v) ≤ δ (resp., ∆(u, v) > δ). The relative distance of a string to

a set of strings is defined in the natural manner; that is, ∆(u, S) , minv∈S{∆(u, v)}. Occasionally,

we will refer to the absolute Hamming distance, which we will denote by ∆(u, v) , |{i : ui 6= vi}|.

In this thesis, we will construct PCP verifiers for several languages based on circuits. Except

when otherwise noted, all circuits in this thesis have fan-in 2 and fan-out 2, and we allow arbitrary

unary and binary Boolean operations as internal gates. The size of a circuit is the number of gates.

We will refer to the following languages associated with circuits: the P-complete language CIRCUIT

VALUE, defined as CKTVAL = {(C,w) : C(w) = 1}; and the NP-complete CIRCUIT SATISFIABILITY,

defined as CKTSAT = {C : ∃wC(w) = 1}; and the also NP-complete NONDETERMINISTIC CIRCUIT

VALUE, defined as NCKTVAL = {C : (C,w) : ∃zC(w, z) = 1}. (In the latter, we assume that the

partition of the variables of C into w-variables and z-variables is explicit in the encoding of C.)

29

2.1 Standard PCPs

We begin by recalling the formalism of a PCP verifier. Throughout this work, we restrict our at-

tention to nonadaptive verifiers, both for simplicity and because one of our variants (namely robust

PCPs) only makes sense for nonadaptive verifiers.

Definition 2.1.1 (PCP verifiers)

• A verifier is a probabilistic polynomial-time algorithm V that, on an input x of length n, tosses

r = r(n) random coinsR and generates a sequence of q = q(n) queries I = (i1, . . . , iq) and a circuit

D : {0, 1}q → {0, 1} of size at most d(n).

We think of V as representing a probabilistic oracle machine that queries its oracle π for the positions

in I , receives the q answer bits π|I , (πi1 , . . . , πiq
), and accepts iff D(π|I) = 1.

• We write (I,D)
R←V (x) to denote the queries and circuit generated by V on input x and random coin

tosses, and (I,D) = V (x;R) if we wish to specify the coin tosses R.

• We call r the randomness complexity, q the query complexity, and d the decision complexity of

V .

Figure 2-1: PCP Verifier

The standard PCP verifier checks that the string x is in the language L be reading all of x and

probabilistically probing the proof π.

For simplicity in these definitions, we treat the parameters r, q, and d above (and other param-

eters below) as functions of only the input length n. However, at times we may also allow them to

30

depend on other parameters, which should be understood as being given to the verifier together

with the input. We now present the standard notion of PCPs, restricted to perfect completeness for

simplicity.

Definition 2.1.2 (standard PCPs) For a function s : Z
+ → [0, 1], a verifier V is a probabilistically

checkable proof system for a language L with soundness error s if the following two conditions hold for

every string x:

Completeness: If x ∈ L then there exists π such that V (x) accepts oracle π with probability 1. Formally,

∃π Pr
(I,D)

R←V (x)

[D(π|I) = 1] = 1.

Soundness: If x 6∈ L then for every oracle π, the verifier V (x) accepts π with probability strictly less than

s. Formally,

∀π Pr
(I,D)

R←V (x)

[D(π|I) = 1] < s(|x|).

If s is not specified, then it is assumed to be a constant in (0, 1).

Our main goal in this work is to construct short PCPs that use very few queries. Recalling that

the length of a (nonadaptive) PCP is upper-bounded by 2r(n) · q(n), we focus on optimizing the

(trade-off between) randomness and query complexities.

We will focus on constructing PCPs for the NP-complete problem CIRCUIT SATISFIABILITY,

defined as CKTSAT = {C : ∃w C(w) = 1}. Recall that every language in NTIME(t(n)) reduces

to CKTSAT in time O(t(n) log t(n)) (cf. [HS66, PF79, Coo88]), and so a nearly linear-sized PCP for

CKTSAT implies PCPs for NTIME(t(n)) of size nearly linear in t(n) for every polynomial t(n).

2.2 PCPs of Proximity

We now present a variation of PCPs in which the verifier checks the membership of a string in a

language by having oracle access not only to the proof but also to the string whose membership it

is checking, i.e., the verifier not only barely reads the proofs but also barely reads the string whose

membership it is checking. As expected, such a constrained verifier cannot distinguish between

strings which are in the language from ones that are not. This variant is only expected to distinguish

between string which are in the language from ones that are far from being in the language (where

far is measured in terms of Hamming distance). Thus these new verifiers check that the input is

close to an element of the language, hence the name – PCPs of Proximity. The advantage of this

variant is that they allow for very smooth composition (for more details refer Section 3.1).

For greater generality, we will divide the input into two parts (x, y), giving the verifier x ex-

plicitly and y as an oracle, and we only count the verifier’s queries to the latter. Thus we consider

31

languages consisting of pairs of strings, which we refer to as a pair language. One pair language to

keep in mind is the CIRCUIT VALUE problem: CKTVAL = {(C,w) : C(w) = 1}. For a pair language

L, we define L(x) = {y : (x, y) ∈ L}. For example, CKTVAL(C) is the set of satisfying assignments

to C. It will be useful below to treat the two oracles to which the verifier has access as a single

oracle, thus for oracles π0 and π1, we define the concatenated oracle π = π0 ◦ π1 as πb,i = πb
i .

Definition 2.2.1 (PCPs of proximity (PCPPs)) For functions s, δ : Z
+ → [0, 1], a verifier V is a proba-

bilistically checkable proof of proximity (PCPP) system for a pair language L with proximity parameter

δ and soundness error s if the following two conditions hold for every pair of strings (x, y):

Completeness: If (x, y) ∈ L, then there exists π such that V (x) accepts oracle y ◦ π with probability 1.

Formally,

∃π Pr
(I,D)

R←V (x)

[D((y ◦ π)|I) = 1] = 1.

Soundness: If y is δ(|x|)-far from L(x), then for every π, the verifier V (x) accepts oracle y ◦ π with

probability strictly less than s(|x|). Formally,

∀π Pr
(I,D)

R←V (x)

[D((y ◦ π)|I) = 1] < s(|x|).

If s and δ are not specified, then both are assumed to be constants in (0, 1).

Figure 2-2: PCP of Proximity

The PCPP verifier checks that the pair (x, y) is in the pair-language L by reading all of x and prob-

abilistically probing the string y and the proof π.

32

Note that the parameters (soundness, randomness, etc.) of a PCPP are measured as a function

of the length of x, the explicit portion of the input.

In comparing PCPPs and PCPs, one should note two differences that have conflicting effects.

On one hand, the soundness criterion of PCPPs is a relaxation of the soundness of PCPs. Whereas,

a PCP is required to reject (with high probability) every input that is not in the language, a PCPP

is only required to reject input pairs (x, y) in which the second element (i.e., y) is far from being

suitable for the first element (i.e., y is far from L(x)). That is, in a PCPP, nothing is required in

the case that y is close to L(x) and yet y 6∈ L(x). On the other hand, the query complexity of a

PCPP is measured more stringently, as it accounts also for the queries to the input-part y (on top of

the standard queries to the proof π). This should be contrasted with a standard PCP that has free

access to all its input, and is only charged for access to an auxiliary proof. To summarize, PCPPs are

required to do less (i.e., their performance requirements are more relaxed), but they are charged for

more things (i.e., their complexity is evaluated more stringently). Although it may not be a priori

clear, the stringent complexity requirement prevails. That is, PCPPs tend to be more difficult to

construct than PCPs of the same parameters. For example, while CIRCUIT VALUE has a trivial PCP

(since it is in P), a PCPP for it implies a PCP for CIRCUIT SATISFIABILITY:

Proposition 2.2.2 If CIRCUIT VALUE has a PCPP, then CIRCUIT SATISFIABILITY has a PCP with iden-

tical parameters (randomness, query complexity, decision complexity, and soundness).

An analogous statement holds for any pair language L and the corresponding projection on

first element L1 , {x : ∃y s.t. (x, y) ∈ L}; that is, if L has a PCPP then L1 has a PCP with identical

parameters.

Proof: A PCP π that C is satisfiable can be taken to be w ◦ π′, where w is a satisfying assignment

to C and π′ is a PCPP that (C,w) ∈ CKTVAL. This proof π can be verified using the PCPP verifier.

The key observation is that if C 6∈ CIRCUIT SATISFIABILITY then there exists no w that is 1-close to

CIRCUIT VALUE(C), because the latter set is empty.

Note that we only obtain a standard PCP for CIRCUIT SATISFIABILITY, rather than a PCP of

proximity. Indeed, CIRCUIT SATISFIABILITY is not a pair language, so it does not even fit syntacti-

cally into the definition of a PCPP. However, we can give a PCPP for the closely related (and also

NP-complete) pair language NONDETERMINISTIC CIRCUIT VALUE. Recall that is the language

NCKTVAL = {(C,w) : ∃zC(w, z) = 1} (where the variables of C are explicitly partitioned into

w-variables and z-variables).

Proposition 2.2.3 If CIRCUIT VALUE has a PCPP with proximity parameter δ(n), soundness s(n), ran-

domness r(n), query complexity q(n), and decision complexity d(n), then NONDETERMINISTIC CIRCUIT

33

VALUE has a PCPP with proximity parameter 2δ(4n), soundness s(4n), randomness r(4n), query complex-

ity q(4n), and decision complexity d(4n).

Proof: Given a circuit C(·, ·) of size n whose variables are partitioned into one group of size k and

another of size ℓ, we transform it into a new circuit C′(·, ·) of size n′ = 4n in which the first group

has size k′ ≥ ℓ and the second group has size ℓ. Specifically, we set t = ⌈ℓ/k⌉ and k′ = t · k, and

define C′(x′, y) to be a circuit that checks whether x′ = xt for some x such that C(x, y) = 1. It can

be verified that this can be done in size n+ 3tk ≤ 4n (over the full binary basis). In addition, if w is

δ-far from being extendable to a satisfying assignment of C, then wt is δ-far from being extendable

to a satisfying assignment of C′.

Now, the NCKTVAL-verifier, on explicit input C and input oracle w ∈ {0, 1}k, will construct C′

as above and expect a proof oracle of the form z ◦ π, where z ∈ {0, 1}m and π is a PCPP that wt ◦ z
satisfies C′ as constructed above. That is, the NCKTVAL-verifier will simulate the CKTVAL-verifier

on explicit input C′, input oracle wt ◦ z (which can easily be simulated given oracle access to w

and z), and proof oracle π. Completeness can be verified by inspection. For soundness, suppose

that w is 2δ-far from being extendable to a satisfying assignment of C. Then wt is 2δ-far from

being extendable to a satisfying assignment of C′, which implies that, for any z, wt ◦ z is δ-far from

satisfying C′. Thus, by the soundness of the CKTVAL-verifier, the acceptance probability is at most

s(n′) = s(4n), for any proof oracle π.

Various observations regarding PCPs of proximity are presented in Section 2.4.

2.2.1 Related Work

The notion of a PCP of proximity is related (and equivalent to) to notions that have appeared in

the literature. PCP of proximity are implicit in the low-degree testers that utilize auxiliary oracles

(e.g., an oracle that provides the polynomial representing the value of the function restricted to a

queried line); cf. [AS98, ALM+98] to test if a given function (given as a table of values) is close to a

low-degree polynomial.

Relation to holographic proofs. Firstly, the notion of a PCP of proximity generalizes the notion of

holographic proofs set forward by Babai, Fortnow, Levin, and Szegedy [BFLS91]. In both cases, the

verifier is given oracle access to the input, and we count its probes to the input in its query complex-

ity. The key issue is that holographic proofs refer to inputs that are presented in an error-correcting

format (e.g., one aims to verify that a graph that is represented by an error-correcting encoding of its ad-

jacency matrix (or incidence list) is 3-colorable). In contrast, a PCP of proximity refers to inputs that

are presented in any format but makes assertions only about their proximity to acceptable inputs

34

(e.g., one is interested in whether a graph, represented by its adjacency matrix (or incidence list), is

3-colorable or is far from being 3-colorable).

Relation to Assignment Testers [DR04] In addition, PCPPs play an important role also in the work

of Dinur and Reingold [DR04]; again. They define an identical object which they call “Assignment

Testers”, objects that check if a implicitly given assignment is close to a satisfying assignment of a

explicitly given circuit. Both our use and their use of PCPPs is for facilitating “proof composition”

(see Section 3.4 for more details). Our definition was motivated by our goal to construct short PCPs

while their motivation was to “combinatorialize” the proof of the PCP Theorem. Surprisingly both

these differing goals led to the same object and offers further evidence that this is a very natural

object to study.

2.2.2 Relation to Property Testing

Following Ergün et al. [EKR99], we view PCPs of proximity as an extension of property test-

ing [RS96, GGR98]. Loosely speaking, a property tester is given oracle access to an input and is

required to distinguish the case in which the input has the property from the case in which it is far

(say in Hamming distance) from any input having the property. Typically, the interest is in testers

that query their input on few bit-locations (or at the very least on a sub-linear number of such

locations).

In a PCP of proximity such a tester (now called a verifier) is also given oracle access to an alleged

proof. The requirements from a PCPP for a pair language L refer only to its performance on the

(“gap”) promise problem Π = (ΠY ,ΠN), where ΠY = L and ΠN = {(x, y) : y is δ-far from L(x)}.
That is, this PCPP is only required to (always) accept inputs in ΠY and reject (with high probability)

inputs in ΠN (whereas nothing is required with respect to inputs not in ΠY ∪ ΠN). Such a gap

problem corresponds to the notion of approximation in property testing [RS96, GGR98].1 Indeed,

property testers are equivalent to PCPP verifiers that have no access to an auxiliary proof π. Thus

the relation between property testing and PCPPs is analogous to the relation between BPP and NP

(or MA). Put differently, while property testing provides a notion of approximation for decision

procedures, PCP of proximity provides a notion of approximation for (probabilistic) verification

procedures. In both cases, approximation means that inputs in the language should be accepted

(when accompanied with suitable proofs) while inputs that are far from the language should be

rejected (no matter what false proof is provided). For example, the problem of testing Bipartiteness

can be cast by the pair language L = {(n,G) : the n-vertex graph G is bipartite}, where the first

(i.e., explicit) input is only used to specify the length of the second (i.e., non-explicit) input G,

1This notion of approximation (of decision problems) should not be confused with the approximation of (search) opti-

mization problems, which is also closely related to PCPs [FGL+96, ALM+98].

35

to which the tester has oracle access (measured in its query complexity). We comment that the

formulation of pair languages allows to capture more general property testing problems where

more information about the property (to be tested) itself is specified as part of the input (e.g., by a

circuit, as in CKTVAL).

In both property testers and PCPs of proximity, the interest is in testers/verifiers that query

their input (and proof oracle) in only a small (preferably constant, and certainly sublinear) number

of bit-locations. It turns out that PCPPs are provably stronger than property testers; that is, there

are (natural) separations between property testers and PCPs of proximity. (Some of the following

examples were pointed out in [EKR99].) In the adjacency matrix model (cf. [GGR98]), Bipartiteness

has a PCP of proximity in which the verifier makes onlyO(1/δ) queries and rejects any graph that is

δ-far from being bipartite with probability at least 2/3. (The proof-oracle consists of an assignment

of vertices to the two parts, and the verifier queries the assignment of the end-points of O(1/δ)

random edges. This construction also generalizes to k-colorability, and in fact any generalized

graph partition property (cf. [GGR98]) with an efficient one-sided tester.) In contrast, Bogdanov and

Trevisan [BT04] showed that any tester for Bipartiteness that rejects graphs that are δ-far from being

bipartite must make Ω(δ−3/2) queries. More drastic separations are known in in the incidence-lists

(bounded-degree) model (of [GR02]): testing Bipartiteness (resp., 3-colorability) of n-vertex graphs

has query complexity Ω(
√
n) [GR02] (resp., Ω(n) [BOT02]), but again a PCP of proximity will only

use O(1/δ) queries.

Another example comes from the domain of codes. For any good code (or “even” any code of

linear distance), there exists a PCP of proximity for the property of being a codeword that makes

a constant number of queries.2 This stands in contrast to the linear lower-bound on the query-

complexity of codeword testing for some (good) linear codes, proved by Ben-Sasson et al. [BHR03].

Needless to say, there may be interesting cases in which PCPs of proximity do not out-perform

property testers.

2.3 Robust Soundness

In this section, we present a strengthening of the standard PCP soundness condition. Instead of

asking that the bits that the verifier reads from the oracle are merely rejected with high probability,

we ask that the bits that the verifier reads are far from being accepted with high probability. The

main motivation for this notion is that, in conjunction with PCPPs, it allows for a very simple

composition without the usual costs of “parallelization”.

2Indeed, this is a special case of our extension of the result of Babai et al. [BFLS91], discussed in Section 2.2.1. On the

other hand, this result is simpler than the locally testable code mentioned in Section 1.3.5, because here the PCP of proximity

is not part of the codeword.

36

Definition 2.3.1 (robust soundness) For functions s, ρ : Z
+ → [0, 1], a PCP verifier V for a language L

has robust-soundness error s with robustness parameter ρ if the following holds for every x /∈ L: For

every oracle π, the bits read by the verifier V are ρ-close to being accepted with probability strictly less than

s. Formally,

∀π Pr
(I,D)

R←V (x)

[∃a s.t. D(a) = 1 and ∆(a, π|I) ≤ ρ] < s(|x|).

If s and ρ are not specified, then they are assumed to be constants in (0, 1). PCPPs with robust-soundness

are defined analogously, with the π|I being replaced by (y ◦ π)|I .

Note that for PCPs with query complexity q, robust-soundness with any robustness parameter

ρ < 1/q is equivalent to standard PCP soundness. However, there can be robust PCPs with large

query complexity (e.g. q = nΩ(1)) yet constant robustness, and indeed such robust PCPs will be the

main building block for our construction.

Robust PCPs are implicit in the “parallelized PCPs” of [ALM+98]. In fact, robust soundness

can be immediately obtained from “parallelized PCPs” (see Proposition 2.4.6). However, we will

not construct robust PCPs in this manner. We instead obtain robust soundness by “bundling”

the queries of the (non-robust) PCPs into a non-constant number of bundles so that robustness is

satisfied at the “bundle-level”. Robustness at the bit-level is then obtained by encoding the bundles

by a good error-correcting code.

Various observations regarding robust PCPs are presented in Section 2.4. We briefly mention

here the relation of robustness to parallelization; specifically, when applied to a robust PCP, the

simple query-reduction technique of Fortnow et al. [FRS94] performs less poorly than usual (i.e.,

the resulting soundness is determined by the robustness parameter rather than by the number of

queries).

37

2.4 Various observations and transformations

Most of this subsection refers to robust PCPs, but we start with an observation regarding PCPs of

proximity.

2.4.1 Queries vs. proximity

Intuitively, the query complexity of a PCPP should depend on the proximity parameter δ. The

following proposition confirms this intuition.

Proposition 2.4.1 (queries vs. proximity) Suppose pair-language L has a PCPP with proximity param-

eter δ, soundness error 1 − ε, and query complexity q. Suppose further that there exists (x, y) ∈ L such

that |x| = n and |y| = m, such that if we let z ∈ {0, 1}m be a random string of relative Hamming distance

δ′ , δ′(x) from y, we have

Pr
z

[z is δ-far from L(x)] ≥ γ , γ(x).

Then

q >
ε · γ
δ′

In particular, if L = CKTVAL, then q ≥ ε/(δ +O(1/n)).

The first part of Proposition 2.4.1 does not specify the relation of δ′ to δ (although, surely, δ′ > δ

must hold for any γ > 0, because ∆(z, L(x)) ≤ ∆(z, y) = δ′). The second part relies on the fact that,

for CKTVAL, one may set δ′ as low as δ +O(1/n).

Proof: By completeness, there exists an oracle π such that the PCPP verifier V (x) accepts oracle

y◦π with probability 1. Consider z = y⊕η, where η ∈ {0, 1}m is a uniformly distributed string with

relative Hamming weight δ′. If we invoke V (x) with oracle to z ◦ π, then the probability (over the

choice of η) that any of the positions read by V has been changed is at most q · δ′. Thus, V (x) rejects

oracle (y ⊕ η) ◦ π with probability at most q · δ′.
On the other hand, by assumption z is δ-far from L(x) with probability at least γ, in which case

V (x) should reject oracle z ◦ π with probability greater than ε, by the PCPP soundness. Thus V (x)

should reject with probability greater than γ · ε (over the choice of z and the coin tosses of V), and

we conclude that q · δ′ > γ · ε, as desired.

For the application to CKTVAL, let C : {0, 1}m → {0, 1} be a circuit of size n that accepts only

the all-zeroes string 0m, for m = Ω(n). Then we have (C, 0m) ∈ CKTVAL, but for every δ′ > δ and

every string z of relative Hamming weight δ′, we see that (C, z) is δ-far from satisfying C. Setting

γ = 1 and δ′ such that δ′m is the least integer greater than δm completes the proof.

38

2.4.2 Expected robustness

Occasionally, we will be interested in a variant of robust-soundness, which refers to distance on

average rather than with high probability.

Definition 2.4.2 (expected robustness) For a function ρ : Z
+ → [0, 1], a PCP has expected robust-

ness ρ if for every x /∈ L, we have

∀π,E
(I,D)

R←V (x)
[∆(π|I , D−1(1))] > ρ(|x|).

Expected robustness for PCPPs is defined analogously.

We now present several generic transformations regarding robustness and soundness. Al-

though we only state them for PCPs, all of these results also hold for PCPPs, with no change in

the proximity parameter. The following proposition relates robust-soundness to expected robust-

ness.

Proposition 2.4.3 (robust-soundness vs. expected robustness) If a PCP has robust-soundness error

1 − ε with robustness ρ, then it has expected robustness ε · ρ. On the other hand, if a PCP has expected

robustness ρ, then for every ε ≤ ρ, it has robust-soundness error 1− ε with robustness parameter ρ− ε.

Expected robustness can easily be amplified to standard robustness with low robust-soundness er-

ror, using any averaging (a.k.a. oblivious) sampler (cf., [Gol97]). Combined with Proposition 2.4.3,

we get a (soundness) error reduction for robust PCPs. For example, using the expander-neighborhood

sampler of [GW97], we have:

Lemma 2.4.4 (error reduction via expander neighborhoods) If a language L has a PCP with expected

robustness ρ, randomness complexity r, query complexity q, and decision complexity d, then for every two

functions s, γ : Z
+ → [0, 1], then L has PCP having

• robust-soundness error s with robustness parameter ρ− γ,

• randomness complexity r +O(log(1/s) + log(1/γ)),

• query complexity O(1/(sγ2)) · q, and

• decision complexity O(1/(sγ2)) · d

2.4.3 Non-Boolean PCPs

The next few transformations involve non-Boolean PCPs. That is, PCPs where the oracle returns

symbols over some larger alphabet Σ = {0, 1}a rather than bits; we refer to a = a(n) as the an-

swer length of the PCP. (Often non-Boolean PCPs are discussed in the language of multi-prover

interactive proofs, but it is simpler for us to work with the PCP formulation.)

39

Robust-soundness of a non-Boolean PCP is defined in the natural way, using Hamming distance

over the alphabet Σ. (In the case of a robust non-Boolean PCPP, we still treat the input oracle as

binary.)

The first transformation provides a way of converting non-Boolean PCPs to Boolean PCPs in a

way that preserves robust-soundness.

Lemma 2.4.5 (alphabet reduction) If a language L has a non-Boolean PCP with answer length a, query

complexity q, randomness complexity r, decision complexity d, and robust-soundness error swith robustness

parameter ρ, then L has a Boolean PCP with query complexity O(a · q), randomness complexity r, decision

complexity d+O(a · q), and robust-soundness error s with robustness parameter Ω(ρ). If, instead of robust-

soundness, the non-Boolean PCP has expected robustness ρ, then the Boolean PCP has expected robustness

Ω(ρ).

The proof uses a good error-correcting code (i.e., constant relative distance and rate). Furthermore,

to obtain decision complexity d + O(a · q) we should use a code having linear-size circuits for

encoding (cf. [Spi96]). Using more classical codes would only give decision complexity d+ Õ(a · q),
which is actually sufficient for our purposes.

Proof: This transformation is analogous to converting non-Boolean error-correcting codes to Boolean

ones via “code concatenation”. Let V be the given non-Boolean PCP verifier, with answer length

a. Let ECC : {0, 1}a → {0, 1}b for b = O(a) a binary error-correcting code of constant relative

minimum distance, which can be computed by an explicit circuit of size O(a). We will augment

the original oracle π having a-bit entries with an additional oracle τ having b-bit entries, where τi

is supposed to be ECC(πi). (We note that including the original oracle simplifies the argument as

well as frees us from assuming a noiseless decoding algorithm.)

Our new verifier V ′(x), on oracle access to π ◦ τ , will simulate V (x), and for each query i made

by V , will query the a bits in πi and the b bits in τi, for a total of q ·(a+b) binary queries. That is, if V

queries positions I = (i1, . . . , iq), V
′ will query positions I ′ = ((0, i1), . . . , (0, iq), (1, i1), . . . , (1, iq)).

If V outputs a decision circuit D : ({0, 1}a)q → {0, 1}, V ′ will output the circuit D′ : ({0, 1}a)q ×
({0, 1}b)q → {0, 1} defined by

D′(x1, . . . , xq, y1, . . . , yq) = D(x1, . . . , xq) ∧ C(x1, . . . , xq, y1, . . . , yq),

where

C(x1, . . . , xq, y1, . . . , yq) =

q∧

i=1

(yi = ECC(xi)).

Since ECC can be evaluated by a circuit of size O(a), we see that |D′| = |D|+O(a · q), as desired.

For completeness of V ′, we note that any accepting oracle π for V can be augmented to an

accepting oracle for V ′ by setting τi = ECC(πi) for all i. For soundness of V ′, suppose x /∈ L and let

40

(π, τ) be any pair of oracles. Define a “decoded” oracle π̂ by setting π̂i to be the string x ∈ {0, 1}a

which minimizes the distance between ECC(x) and τi. We will relate the robustness of V on oracle

π̂ to the robustness of V ′ on oracles π and τ . Specifically, let β > 0 be a constant such that the

(absolute) minimum distance of ECC is greater than 2β · (a+ b). Then we will show that for every

sequence R of coin tosses and for every α > 0, if the bits read by V ′(x;R) from π ◦ τ are αβ-close to

being accepted, then the bits read by V from π̂ are α-close to being accepted. Thus, both robustness

parameters (standard and expected) decrease by at most a factor of β.

Consider any sequenceR of coin tosses, let (I,D) = V (x;R), and write I = (i1, . . . , iq). Suppose

that (πi1 , . . . , πiq
, τi1 , . . . , τiq

) is αβ-close to some (π′i1 , . . . , π
′
iq
, τ ′i1 , . . . , τ

′
iq

) that satisfies D′ = D ∧C.

Then, for at least a 1−α fraction of j ∈ [q], the pair (πij
, τij

) is β-close to (π′ij
, τ ′ij

) = (π′ij
,ECC(π′ij

)).

For such j, the choice of β implies that ECC(π′ij
) is the closest codeword to τij

and hence π̂ij
= π′ij

.

Since the π′’s satisfy D, we conclude that π̂’s are α-close to satisfying D, as desired.

The usual “parallelization” paradigm of PCPs [LS91, ALM+98] converts a Boolean PCP with

many queries into a non-Boolean PCP with a constant number of queries, where this is typically the

first step in PCP composition. As mentioned in the introduction, we cannot afford parallelization,

and robust-soundness will be our substitute. Nevertheless, there is a close (but not close enough

for us) connection between parallelized PCPs and PCPs with robust-soundness:

Proposition 2.4.6 (parallelization vs. robustness)

1. If a language L has a non-Boolean PCP with answer length a, query complexity q, randomness com-

plexity r, decision complexity d, and soundness error s, then L has a (Boolean) PCP with query

complexityO(a ·q), randomness complexity r, decision complexity d+O(a ·q), and robust-soundness

error s with robustness parameter ρ = Ω(1/q).

2. If a language L has a (Boolean) PCP with query complexity q, randomness complexity r, decision

complexity d, and expected robustness ρ, then L has a 2-query non-Boolean PCP with answer length

q, randomness complexity r + log q, decision complexity d+O(1), and soundness error 1− ρ.

Thus, for constant soundness and constant robustness parameter, q-query robust (Boolean)

PCPs are essentially equivalent to constant-query non-Boolean PCPs with answer length Θ(q).

However, note that in passing from robust-soundness to a 2-query non-Boolean PCP, the random-

ness complexity increases by log q. It is precisely this cost that we cannot afford, and hence we work

with robust-soundness in the rest of the thesis.

Proof: For Part 1, note that any non-Boolean PCP with query complexity q and soundness error s

has robust-soundness error s for any robustness parameter ρ < 1/q. Thus, the claim follows from

Lemma 2.4.5.

41

Turning to Part 2, let V be a robust PCP verifier for L with the stated parameters. We use the

usual query-reduction technique for PCPs [FRS94], and observe that when applied to a robust PCP,

the detection probability (i.e., one minus the soundness error) does not deteriorate by a factor of

q as usual. Instead, the detection probability of the resulting 2-query (non-Boolean) PCP equals

the expected robustness of V .3 Specifically, the 2-query non-Boolean PCP verifier V ′ is defined as

follows:

• V ′ expects two oracles, one Boolean oracle π corresponding to the oracle for V , and a second

oracle τ with answer length q, indexed by random strings of V .

• On input x, the verifier V ′ selects a random string R for V and j
R← [q], and computes (I,D) =

V (x;R), where I = (i1, . . . , iq). It sets I ′ = (R, ij) (which means that the queries for the

values τR and πij
) and D′(a, b) = [(D(a) = 1) ∧ (aj = b)]; that is, it accepts if and only if

[D(τR) = 1] ∧ [(τR)j = πij
].

It can be verified that the probability that V ′ rejects a false assertion is precisely the expected ro-

bustness of V . In particular, suppose that V ′(x) accepts the oracle pair (π, τ) with probability p. We

may assume, without loss of generality, that D(τR) = 1 for any R, where (·, D) = V (x;R). Then, it

follows that the expected (relative) distance of π|I from τR, where (I,D) = V (x;R) for a random

R, equals 1 − p (because 1 − p = PrR,j [(τR)j 6= πij
], which in turn equals ER[∆(τR, π|I)]). This

means that on the average, π is (1− p)-close to assignments that satisfy the corresponding decision

circuits. Thus, if x 6∈ L then 1− p > ρ, and p < 1− ρ follows.

2.4.4 Robustness vs. proximity

Finally, for PCPPs, we prove that the robustness parameter is upper-bounded by the proximity

parameter.

Proposition 2.4.7 (robustness vs. proximity) Suppose a pair-language L has a PCPP with proximity

parameter δ and expected robustness ρ. Suppose further that there exists (x, y) ∈ L such that |x| = n and

|y| = m, such that if we let z ∈ {0, 1}m be a random string at relative Hamming distance δ′ , δ′(x) from

y, we have

Pr
z

[z is δ-far to L(x)] ≥ γ , γ(x).

3It may be more instructive (alas more cumbersome) to discuss what is happening in terms of ordinary robustness.

Suppose that V has robust-soundness error s = 1 − d with respect to robustness ρ. The standard analysis ignores the

robustness and asserts that the 2-query (non-Boolean) PCP has soundness error s′ = 1 − d′, where d′ = d/q. This crude

analysis implicitly assumes the trivial bound (i.e., 1/q) of the robustness parameter. A more refined analysis takes advantage

of the actual bound of the robustness parameter, and asserts that the 2-query (non-Boolean) PCP has soundness error s′ =

1 − ρ · d.

42

Then

ρ ≤ δ′/γ.

In particular, if L = CKTVAL, then ρ ≤ δ +O(1/n).

Proof: The proof is similar to that of Proposition 2.4.1. By completeness, there exists an oracle π

such that the PCPP verifier V (x) accepts oracle y ◦ π with probability 1. If we run V (x) with oracle

z ◦ π instead, then bits read by V have expected distance at most δ′ from being accepted, where the

expectation is over the choices of z (even when fixing the coins of V).

On the other hand, z is δ-far from L(x) with probability at least γ, and for any such fixed z

the bits read by V from z ◦ π should have expected distance greater than ρ from being accepted

(over the coin tosses of V). Thus, the expected distance of z ◦ π from being accepted is greater than

γ · ρ, where here the expectation is over the choice of z and the coin tosses of V . We conclude that

δ′ > γ · ρ, as desired.

Recall that in the proof of Proposition 2.4.1, we have demonstrated the existence of a pair (C,w)

such that any string z at distance δ′ = δ + O(1/n) from w it holds that w is δ-far from satisfying C.

Setting γ = 1, the second part follows.

43

44

CHAPTER 3

Composition of Robust PCPs of

Proximity

In this chapter, we show how PCPs (more specifically, robust PCPs of proximity) can be composed

with each other to obtain PCPs with improved query complexity. The proof composition paradigm

to reduce query complexity of PCPs was discovered by Arora and Safra [AS98]. However, proof

composition in all earlier constructions of PCPs (since [AS98]) was very involved and depended

on the actual semantics of the PCPs being composed (see Section 3.1.1 for more details). Our key

observation is that composition works very smoothly when we compose an outer “robust PCP”

with an inner “PCP of proximity”.

Our method is related to the method discovered independently by Dinur and Reingold [DR04].

(There are significant differences between the two methods; as explained in Section 3.4, where we

also discuss the relation to Szegedy’s work [Sze99].)

3.1 Why composition?

Why do we need composition? To answer this question, let us recall our original goal - we want to

construct nearly-linear sized PCPs which are checkable with a constant number of queries. How-

ever, we do not know how to directly construct PCPs of even polynomial size which are check-

able with a constant number of queries1. What we instead know to construct are polynomial sized

1The PCPs of [ALM+98] are polynomial sized and checkable withO(1) queries, however they are constructed via proof-

composition.

45

PCPs which are checkable with a poly-logarithmic number of queries (For instance, the holographic

proofs of [BFLS91] yield such PCPs). Arora and Safra discovered that these PCPs can be “magically

composed” with themselves to yield PCPs also of polynomial size but significantly less query com-

plexity - poly log logn instead of poly logn.

In the following section, we discuss the main idea behind this “magic composition”. We then

describe some of the difficulties encountered in earlier uses of proof-composition. We finally show

how our composition theorem removes these difficulties and that composition is simpler if we work

with robust PCPs of proximity instead of standard PCPs. We also explain how this variant of PCPs

– robust PCP of proximity and the composition theorem is essential for our construction of short

PCPs.

3.1.1 Proof Composition in earlier PCP constructions

Let us start with the polynomial sized PCPs of [BFLS91] which are checkable with a constant num-

ber of queries. This PCP works as follows: To verify the truth of an assertion verifiable in time n, the

PCP verifier tosses O(log n) random coins, probes a polynomial sized PCP in poly logn bit locations

and accepts the proof (i.e., the PCP) based on a boolean verdict that depends on the poly logn bit

locations (and of course, the assertion and the random coins tossed by the verifier). The main prob-

lem with this verifier is that it reads too many bits of the proof (poly logn) to check if this boolean

verdict is satisfied or not. Is it possible to do this by reading fewer bits? On the face of it, this seems

impossible since the boolean verdict depends on all the poly logn bits. However, this is similar to

what a PCP verifier does: a PCP verifier checks the correctnes of a proof without reading all the

bits of the proof. So we could potentially use another PCP verifier to check if the boolean verdict is

satisfied by the poly logn bits without actually reading all the poly log n bits. This is the main idea

of proof composition as introduced by Arora and Safra [AS98].

In other words, instead of the outer verifier (which we shall call Vout for convenience) checking

if the boolean verdict is satisfied by the poly logn bits, it transfers control to an inner PCP verifier Vin

which supposedly performs this check with the help of an additional proof (another PCP). How-

ever, if this inner verifier Vin were a standard PCP verifier, then it would at the very least have to

read its entire assertion (which are the poly logn bits in this case) to check if it satisfies the boolean

verdict. Hence, this does not reduce the query complexity of the composed verifier. For this pur-

pose, the composition of [AS98] required an inner verifier Vin which “barely read” the assertion

whose truth it was checking. This notion of a verifer that barely reads its assertion was formalised

using the holographic proof verifiers of Babai et al. [BFLS91], where the assertion was presented

in a specific encoded format. This solved the problem of having to deal with verifiers that “barely

read” the assertion, but added the following issue instead. The new inner holographic proof veri-

fier Vin could verify the assertion only if it is presented in a specified encoded format, however the

46

assertion which it needs to verify (i.e., the poly logn bits) is not written according to this encoding.

For this purpose, one needs to verify that the assertion presented in the encoded format is indeed

the encoding of the assertion in the unencoded format. The semantics of arranging this is complex.

In earlier compositions, this was earlier performed by a step called “parallelization”. Paralleliza-

tion involved aggregating the queries of the outer verifier Vout, converting the boolean outer PCP

verifier (with super-constant query complexity) into a non-Boolean outer PCP verifier (with con-

stant query complexity) and checking if the encoding is correct. This step involved a moderate cost

in randomness complexity (and hence in the proof size) of the resultant PCP verifier, however this

cost is too expensive for the parameters we seek. To get around this issue, we instead use PCPs

of proximity for our inner verifier Vin. Recall that PCPs of proximity do not expect their explicit

input (i.e., the assertion) to be in any specific encoding, i.e., PCPs of proximity are similar to the

holographic proof verifiers of [BFLS91] but for the fact that they do not expect their input to be

encoded. As a result of this, the entire issue of checking the consistency of encoding does not arise

in this case. This saves the randomness that is required to perform the parallelization step, thus

helping us build shorter PCPs.

As seen from the above discussion, PCP verifiers compose with a PCP verifier of proximity

syntactically. However, this does not give any meaningful object for the following reason: The

soundness of the outer PCP verifier Vout guarantees that if the assertion is true, then the poly logn

bits satisfy the boolean verdict and if the assertion is false then the poly logn bits violate the boolean

verdict with high probability. Thus, the inner verifier Vin needs to distinguish between the two cases

where (a) the poly logn bits satisfy the boolean verdict and (b) the poly logn bits violate the boolean

verdict. However, as the inner verifier Vin is a PCP verifer of proximity, it can only distinguish

between inputs that satisfy the boolean verdict and those that are far from satisfying the input.

Hence, though the composition of Vout and Vin can be performed syntactically, the semantics of the

two verifiers do not match. For this purpose, we strengthen the soundness of the outer verifier Vout

and use a robust PCP verifier instead of a standard PCP verifier for the outer verifier Vout. It can

now be easily verified that the two verifiers – the outer robust PCP verifier and inner PCP verifier

of proximity compose both syntactically and semantically. The exact details of this composition are

given in Section 3.2.

The key observation is that “proof composition” works very smoothly when we compose an

outer “robust PCP” with an inner “PCP of proximity”. We need neither worry about how many

queries the outer “robust PCP” makes nor care about what coding the inner “PCP of proximity”

uses in its proof oracle (much less apply the same encoding to the outer answers). All that we

should make sure is that the lengths of the objects match and that the distance parameter in the

robustness condition (of the outer verifier) is at least as big as the distance parameter in the prox-

imity condition (of the inner verifier). We note that all earlier uses of the composition theorem (as

47

indicated above) worked with “parallelized” outer PCP verifiers (i.e., non-Boolean PCP verifiers

with constant query complexity). However, as observed in Proposition 2.4.6, parallelized PCPs are

essentially equivalent to robust PCPs if we ignore a extra log q term in the randommness complex-

ity of parallelized PCPs. This is the same improvement in the randomness complexity due to the

new composition (robust PCPs with PCPs of proximity) mentioned in end of the earlier paragraph

.

3.2 Composition Theorem

As promised, a robust “outer” PCP composes very easily with an “inner” PCPPs. Loosely speak-

ing, we can compose such schemes provided that the decision complexity of the outer verifier

matches the input length of the inner verifier, and soundness holds provided that the robustness

parameter of the outer verifier upper-bounds the proximity parameter of the inner verifier. Note

that composition does not refer to the query complexity of the outer verifier, which is always upper-

bounded by its decision complexity.

Theorem 3.2.1 (Composition Theorem) Suppose that for functions rout, rin, dout, din, qin : N→N, and

εout, εin, ρout, δin : N→ [0, 1], the following hold:

• Language L has a robust PCP verifier Vout with randomness complexity rout, decision complexity

dout, robust-soundness error 1− εout, and robustness parameter ρout.

• CIRCUIT VALUE has a PCPP verifier Vin with randomness complexity rin, query complexity qin,

decision complexity din, proximity parameter δin, and soundness error 1− εin.

• δin(dout(n)) ≤ ρout(n), for every n.

Then, L has a (standard) PCP, denoted Vcomp, with

• randomness complexity rout(n) + rin(dout(n)),

• query complexity qin(dout(n)),

• decision complexity din(dout(n)), and

• soundness error 1− εout(n) · εin(dout(n)).

Furthermore, the computation of Vcomp (i.e. evaluating (I,D) ← Vcomp(x;R)) can be performed by some

universal algorithm with black-box access to Vout and Vin. On inputs of length n, this algorithm runs in

time nc for some universal constant c, with one call to Vout on an input of length n and one call to Vin on an

input of length dout(n). In addition:

48

• If (instead of being a PCP) the verifier Vout is a PCPP with proximity parameter δout(n) then Vcomp

is a PCPP with proximity parameter δout(n).

• If Vin has robust-soundness with robustness parameter ρin(n), then Vcomp has robust-soundness with

robustness parameter ρin(dout(n)).

Proof: We will use the inner PCPP to verify that the oracle positions selected by the (robust) outer-

verifier are close to being accepted by the outer-verifier’s decision circuit. Thus, the new proof will

consist of a proof for the outer verifier as well as proofs for the inner verifier, where each of the

latter corresponds to a possible setting of the outer verifier’s coin tosses (and is intended to prove

that the bits that should have been read by the outer-verifier satisfy its decision circuit). We will

index the positions of the new (combined) oracle by pairs such that (out, i) denotes the i’th position

in the part of the oracle that represents the outer-verifier’s proof oracle, and (R, j) denotes the j’th

position in the R’th auxiliary block (which represents the R-th possible proof oracle (for the inner

verifier’s), which in turn is associated with the outer-verifier’s coins R ∈ {0, 1}rout). For notational

convenience, we drop the input length n from the notation below; all parameters of Vout are with

respect to length n and all parameters of Vin with respect to length dout(n). With these conventions,

here is the description of the composed verifier, Vcomp(x):

1. Choose R
R← {0, 1}rout .

2. Run Vout(x;R) to obtain Iout = (i1, . . . , iqout) and Dout.

3. Run Vin(Dout) (on random coin tosses) to obtain Iin = ((b1, j1), . . . , (bqin , jqin)) and Din.

(Recall that Vin, as a PCPP verifier, expects two oracles, an input oracle and a proof oracle,

and thus makes queries of the form (b, j), where b ∈ {0, 1} indicates which oracle it wishes to

query.)

4. For each ℓ = 1, . . . , qin, determine the queries of the composed verifier:

(a) If bℓ = 0, set kℓ = (out, ijℓ
); that is, Vin’s queries to its input oracle are directed to the

corresponding locations in Vout’s proof oracle. Recall that the j-th bit in Vin’s input oracle

is the j-th bit in the input toDout, which in turn is the ij-th bit in the proof oracle of Vout.

(b) If bℓ = 1, set kℓ = (R, jℓ); that is, Vin’s queries to itsR’th possible proof oracle are directed

to the corresponding locations in the auxiliary proof. Recall that the j-th bit in the proof

oracle that Vin is using to verify the claim referring to the outer-verifier coins R is the

j-th bit in the R-th block of the auxiliary proof.

5. Output Icomp = (k1, . . . , kqin) and Din.

49

The claims about Vcomp’s randomness, query, decision, and computational complexities can be

verified by inspection. Thus we proceed to check completeness and soundness.

Suppose that x ∈ L. Then, by completeness of the outer verifier, there exists a proof πout making

Vout accept with probability 1. In other words, for every R ∈ {0, 1}rout , if we set (Iout, Dout) =

Vout(x;R), we have Dout(πout|Iout) = 1. By completeness of the inner verifier, there exists a proof

πR such that Vin(Dout) accepts the oracle πout|Iout ◦πR with probability 1. If we set π(t, ·) = πt(·) for

all t ∈ {out} ∪ {0, 1}rout , then Vcomp accepts π with probability 1.

Suppose that x /∈ L, and let π be any oracle. Define oracles πt(·) = π(t, ·). By the robust-

soundness (of Vout), with probability greater than εout over the choices of R ∈ {0, 1}rout , if we set

(Iout, Dout) = Vout(x;R), then πout|Iout is ρout-far from satisfying Dout. Fixing such an R, by the

PCPP-soundness of Vin (and δin ≤ ρout), it holds that Vin(Dout) rejects the oracle πout|Iout ◦ πR (or,

actually, any proof oracle augmenting the input oracle πout|Iout) with probability greater than εin.

Therefore, Vcomp(x) rejects oracle π with probability at least εout · εin.

The additional items follow by similar arguments. If Vout is a PCPP verifier, then the input is

of the form (x, y), where y is given via oracle access. In this case, throughout the proof above we

should replace references to the oracle πout with the oracle y ◦ πout, and for soundness we should

consider the case that y is δout-far from L(x). If Vin has robust-soundness, then at the end of the

soundness analysis, we note that not only is πout|Iout ◦ πR rejected with probability greater than εin

but rather it is ρin-far from being accepted by Vin (and hence also by Vcomp).

Ideas similar to some of ours are implicit in Szegedy [Sze99]. In particular, notions of robustness

and proximity are implicit in [Sze99], where a robust PCP of proximity is composed with itself in a

way that is similar to our composition theorem. We mention that Szegedy does not seek to obtain

PCPs with improved parameters, but rather to suggest a framework for deriving nicer proofs of

existing results such as Polishchuk and Spielman [PS94].

3.3 Building block for composition

Equipped with the new composition theorem, we now need to construct a randomness-efficient

robust PCP of proximity, which will serve as our basic building element, which we then compose

with itself to obtain our short PCPs. We precisely do this in Chapters 4–9.

As mentioned in the introduction, the composition theorem can serve as a substitute for the

original Composition Theorem in the derivation of the original PCP Theorem [ALM+98]2. Thus,

all the technical work in Part II is not forced by the new notion of robust PCPPs, but rather is aimed

at constructing ones which have nearly linear length.

2We do exactly this in Chapter 5, where we prove the PCP Theorem

50

The initial PCP. Our new proof of Theorem 1.3.1 modifies the constructions of Polishchuk and

Spielman [PS94] and Harsha and Sudan [HS00]. The latter construction was already improved

in [GS02, BSVW03] to reduce the length of PCPs to n · 2Õ(
√

log n). Our results go further by re-

examining the “low-degree test” (query-efficient tests that verify if a given function is close to

being a low-degree polynomial) and observing that the small-bias sample sets of [BSVW03] give

an even more significant savings on the randomness complexity of low-degree tests than noticed

in their work.

For starters, PCP constructions tend to use many (i.e., a super-constant number of) functions

and need to test if each is a low-degree polynomial. In prior results, this was performed efficiently

by combining the many different functions on, say m variables, into a single new one on m + 1

variables, where the extra variable provides an index into the many different old functions. Testing

if the new function is of low-degree, implicitly tests all the old functions. Such tricks, which involve

introducing a few extra variables, turn out to be too expensive in our context. Furthermore, for

similar reasons, we can not use other “parallelization” techniques [FRS94, LS91, ALM+98, GS00,

Raz98], which were instrumental to the proof composition technique of [AS98]. Going back to

the PCP derived in Theorem 1.3.1, we adapt it for our new composition method by introducing a

“bundling” technique that offers a randomness efficient alternative to parallelization.

Indeed, Theorems 1.3.2 and 1.3.3 are proved by first extending Theorem 1.3.1 to provide a ro-

bust PCP of proximity of similar complexities, and then applying the new “proof composition”

method. We stress that our contribution is in providing a proof of Theorem 1.3.1 that lends itself

to a modification that satisfies the robustness property, and in establishing the latter property. In

particular, the aforementioned “bundling” is applied in order to establish the robustness property.

Some care is also due when deriving Theorem 1.3.2 using a non-constant number of “proof com-

positions”. In particular, Theorem 1.3.2 (resp., Theorem 1.3.3) is derived in a way that guarantees

that the query complexity is linear rather than exponential in the number of “proof compositions”,

where the latter is o(log logn) (resp., 1/ε).

We stress that the flexibility in composing robust PCPs of proximity plays an important role in

our ability to derive quantitatively stronger results regarding PCPs. We believe that robust PCPs of

proximity may play a similar role in other quantitative studies of PCPs. We note that the standard

PCP Theorem of [AS98, ALM+98] can be easily derived using a much weaker and simpler variant

of our basic robust PCP of proximity, and the said construction seems easier than the basic PCPs

used in the proof composition of [AS98, ALM+98].

51

3.4 Relation to Assignment Testers of Dinur and Reingold

As stated earlier, our “proof composition” method is related to the method discovered indepen-

dently by Dinur and Reingold [DR04]. The use a variant of PCPs called assignment testers which

are identical to PCPs of proximity. Both methods use the same notion of PCPs of proximity, but

while our method refers to the new notion of robustness (i.e., to the robustness of the outer verifier)

the method of Dinur and Reingold refers to the number of (non-Boolean) queries (made by the

outer verifier). Indeed, the method of Dinur and Reingold uses a (new) parallelization procedure

(which reduces the number of queries by a constant factor), whereas we avoid parallelization al-

together (but rather use a related “bundling” of queries into a non-constant number of “bundles”

such that robustness is satisfied at the bundle-level). The main part of the bundling technique takes

place at the level of analysis, without modifying the proof system at all. Specifically, we show that

the answers read by the verifier can be partitioned into a non-constant number of (a-priori fixed)

“bundles” so that on any no instance, with high probability a constant fraction of the bundles read

should be modified to make the verifier accept. We stress that the fact that certain sets of queries

(namely those in each bundle) are always made together is a feature that our particular proof sys-

tem happens to have (or rather it was somewhat massaged to have). Once “robust soundness” is

established at the “bundle level,” we may just modify the proof system so that the bundles become

queries and the answers are placed in (any) good error-correcting format, which implies robustness

at the bit level. We stress that we cannot afford the cost of any known parallelization procedure,

because at the very least these procedures increase the length of the proof by a factor related to the

answer length, which is far too large in the context of Theorem 1.3.1 (which in turn serves as the

starting point for all the other results in this work). We comment that the parallelization procedure

of [DR04] is combinatorial (albeit inapplicable in our context), whereas our “bundling” relies on

the algebraic structure of our proof system.

Relation to Szegedy’s work [Sze99]. Some of the ideas presented in the current work are implicit

in Szegedy’s work [Sze99]. In particular, notions of robustness and proximity are implicit in [Sze99],

in which a robust PCP of proximity (attributed to [PS94]) is composed with itself in a way that is

similar to our composition theorem. We note that Szegedy does not seek to obtain PCPs with im-

proved parameters, but rather to suggest a framework for deriving nicer proofs of existing results

such as [PS94]. Actually, he focuses on proving the main result of [PS94] (i.e., a PCP of nearly linear

length and constant number of queries) using as building block a robust PCP of proximity that has

length Õ(n) and makes Õ(
√
n) queries (plus the constant-query PCP of [ALM+98]).

We note that the aforementioned robust PCP of proximity is not presented in [Sze99], but is

rather attributed to [PS94]. Indeed, observe that Theorem 1.3.1 above (due to [PS94]) achieves Õ(n)

length and Õ(
√
n) queries when the parameter m = 2. Thus, Szegedy’s assertion is that this PCP

52

can be strengthened to be a robust PCP of proximity, similarly to our main construct (specifically,

Theorem 6.1.1, specialized to m = 2). However, our main construct achieves stronger parameters

than those claimed in [Sze99], especially with respect to robust soundness. Indeed, the parameters

claimed in [Sze99] only allow for the robust PCP of proximity to be composed with itself a constant

number of times. In the language of Section 2, the soundness and robustness parameters obtained

in [Sze99] are unspecified functions of the proximity parameter. In retrospect, it seems that the ideas

of [PS94] may lead to a robust PCP of proximity with robustness that is at best linearly related

to the proximity parameter; this would make the query complexity increase exponentially with

the number of compositions (as discussed in Section 10.2.2). As mentioned above, a significant

amount of our effort is aimed at ensuring that our robust PCP of proximity has sufficiently strong

parameters to be composed a nonconstant number of times and moreoever to ensure that the query

complexity grows only linearly rather than exponentially with the number of compositions. (See

Section 10.2.2 for further explanation.)

53

54

CHAPTER 4

A constant-query, exponential-sized

PCP of proximity

In this chapter, we construct a constant query PCP of proximity of exponential size (i.e., it uses

polynomial amount of randomness) based on the Hadamard code. This PCP verifier will serve as

the innermost verifier in all our uses of the Composition Theorem to finally reduce the query com-

plexity to a constant. Since we use this PCP of proximity only in the innermost level of composition,

we do not bother to construct a robust PCPP. However, its robustness is at least the reciprocal of its

query complexity, which is a constant since this verifier is a constant-query PCPP.

4.1 Constant query PCP of proximity

For constructing such a verifier, we note that the Hadamard-code-based inner verifer from Arora

et al. [ALM+98] can be converted in to a PCP of proximity. The inner verifier of [ALM+98] accesses

O(1) input oracles, where the ith oracle is supposed to provide the Hadamard encoding of some

string wi, and verifies that their concatenation satisfies some given circuit C.

Here we simplify this verifier to work with a single string w and the verifier accesses a single

input oracle that represents this string itself (not some encoding of it), and verifies that w is close to

an assignment acceptable by the circuit C given as explicit input.

Theorem 4.1.1 There exists a constant δ0 > 0 such that there exists a PCP of proximity for CIRCUIT

VALUE (for circuits of size n) with randomness complexityO(n2), query complexityO(1), perfect complete-

ness, soundness error 1− δ, and proximity parameter 5δ for any δ ≤ δ0. That is, inputs that are δ-far from

55

satisfying the circuit are rejected with probability at least min(δ, δ0)/5.

Notice that we do not claim robustness of this PCP of proximity. This is because we don’t intend to

use this verifier (or any verifier derived from it) as the outer verifier during composition. However,

this verifier is robust (in a trivial sense). Indeed, any PCP of proximity with O(1) query complexity

is trivially ρ-robust for some constant ρ > 0 (since the relative distance between two query patterns

is lower-bounded by the inverse of number of bits queried).

Proof: Let V denote the claimed verifier. We first list the oracles used by V , then we describe the

tests that V performs, and finally we will verify that V ’s complexities are as claimed and analyze

its performance (most notably its soundness and proximity).

Oracles. Let C be a circuit with n gates on m input bits. The verifier accesses an input oracle

W : [m] → {0, 1} (representing a string w ∈ {0, 1}m), and a proof oracle Π = (A,B), with A :

{0, 1}n → {0, 1} and B : {0, 1}n×n → {0, 1}.

To motivate the verifier’s tests, we describe what is expected from the oracles in the “complete-

ness” case, i.e., when C(w) = 1. The input oracle, by definition, gives the string w, i.e., W [i] = wi.

Now let z ∈ {0, 1}n be the string of values of all the gates of the circuit C (including the input, the

internal gates, and the output gate(s)). W.l.o.g., assume z = w ◦ y, where y represents the values as-

sumed for internal gates. The oracleA is expected to give the values of all linear functions at z (over

GF(2)); and the oracleB is supposed to give the value of all quadratic functions at z. More precisely

A = A[x]x∈{0,1}n is expected to be A[x] =
∑n

i=1 xizi = xT z (where x and z are being thought of as

column vectors). Similarly, B = B[M]M∈{0,1}n×n is expected to be B[M] =
∑

i,j Mijzizj = zTMz

(whereM is an n×nmatrix). In order to verify that w satisfies C, the verifier will verify that A and

B have indeed been constructed according to some string z as above, that z represents an accepting

computation of the circuit, and finally that A is the encoding of some string w′ ◦ y where w′ is close

to the string w given by the input oracle W .

Tests. Given the circuit C, the verifier first constructs polynomials P1(z), . . . , Pn(z) as follows.

Viewing the variables {zi} as representing the values at the individual gates of the circuit C (with

z1, . . . , zm being the input gates), the polynomial Pi(z) is the quadratic polynomial (over GF(2))

expressing the constraint imposed by the i’th gate of the circuit on an accepting computation. For

56

example:

Pi(z) =





zi − zjzk if the ith gate is an AND gate with inputs from gates j and k.

zi − zj − zk + zjzk if the ith gate is an OR gate with inputs from gates j and k.

zi − (1 − zj) if the ith gate is a NOT gate with input from gate j.

zi − (zj + zk) if the ith gate is a PARITY gate with inputs from gates j and k.

1− zj if the ith gate is an output gate with input from gate j.

0 if the ith gate is an input gate (i.e. i ≤ m).

Note that z = w ◦ y reflects the computation of C on an acceptable input w iff Pi(z) = 0 for every

i ∈ [n]. The verifier conducts the following tests:

Codeword tests: These tests refer to (A,B) being a valid encoding of some string z ∈ {0, 1}n. That

is, these tests check that both A and B are linear functions, and that B is consistent with A. In

the latter check, the verifier employs a self-correction procedure (cf. [BLR93]) to the oracle B.

(There is no need to employ self-correction to A, because it is queried at random locations.)

Linearity of A: Pick x1, x2 uniformly at random from {0, 1}n and verify that A[x1 + x2] =

A[x1] +A[x2].

Linearity of B: Pick M1, M2 uniformly at random from {0, 1}n×n and verify that B[M1 +

M2] = B[M1] +B[M2].

Consistency of A and B: Pick x1, x2 uniformly at random from {0, 1}n and M uniformly

from {0, 1}n×n and verify that B[M + x1x
T
2]−B[M] = A[x1]A[x2].

Circuit test: This test checks that the string z encoded in (A,B) represents an accepting compu-

tation of C; that is, that Pi(z) = 0 for every i ∈ [n]. The test checks that a random linear

combination of the Pi’s evaluates to 0, while employing self-correction to A and B.

Pick α1, . . . , αn ∈ {0, 1} uniformly and independently and let
∑n

k=1 αkPk(z) = c0 +
∑

i ℓizi +
∑

i,j Qi,jzizj . Pick x ∈ {0, 1}n and M ∈ {0, 1}n×n uniformly at random. Verify that c0 +

(A[x+ ℓ]−A[x]) + (B[M +Q]−B[M]) = 0.

Proximity test: This test checks that the m-bit long prefix of the string z, encoded in A, matches (or

is close to) the input oracle W , while employing self-correction to A.

Pick j ∈ [m] and x ∈ {0, 1}n uniformly. Let ej ∈ {0, 1}n denote the vector that is 1 in the jth

coordinate and 0 everywhere else. Verify that W [j] = A[x+ ej]−A[x].

The verifier accepts if all the tests above accept, else it rejects.

Resources. The verifier uses O(n2) random bits and makes O(1) binary queries.

57

Completeness. It is straightforward to see that if w, the string given by W satisfies C, then letting

z be the set of values of the gates of C and letting A[x] = xT z and B[M] = zTMz will satisfy all

tests above. Thus the verifier has perfect completeness.

Soundness (with proximity). It follows directly from the analysis of [ALM+98] that there exists

a δ0 > 0 such that for every δ ≤ δ0, if the Codeword tests and the Circuit test above accept with

probability at least 1 − δ then the oracle A is 2δ-close to the Hadamard encoding of some string

z = w′ ◦ y such that C(w′) accepts. Now we augment this soundness with a proximity condition.

Suppose the verifier also accepts the Proximity test with probability at least 1−δ. Then we have that

wj 6= A[x+ej]−A[x] with probability at most δ. Furthermore the eventsA[x+ej] 6= (x+ej)
T z, and

A[x] 6= xT z happen with probability at most 2δ each. Thus, with probability at least 1 − 5δ (over

the possible choices of j and x), both wj = A[x+ ej]−A[x] and A[x+ ej]−A[x] = (x+ ej)
T z− xT z

hold. Since (x+ ej)
T z − xT z = eT

j z = zj = w′j , it follows that, with probability at least 1− 5δ (over

the choices of j), wj = w′j . In other words, the string w represented by the oracle W is at distance

at most 5δ away from some string w′ that is accepted by the circuit C.

58

Part I

Proof of the PCP Theorem

59

CHAPTER 5

Proof of the PCP Theorem

5.1 Introduction

In this chapter, we give a proof of the PCP Theorem using the composition theorem from Chap-

ter 3. This construction seems easier than the original proof of the PCP Theorem [AS98, ALM+98].

This chapter along with the earlier four chapters gives a self-contained proof of the PCP Theorem

(modulo the proof of the low-degree test analysis in Appendix A, which we cite from [ALM+98]).

Hopefully, this presentation will make the proof of the PCP Theorem accessible to a wider audience.

The main theorem proved in this chapter is as follows:

Theorem 5.1.1 (PCP Theorem [AS98, ALM+98]) Satisfiability of circuits of size n can be probabilisti-

cally verified by probing a PCP of length poly(n) in O(1) bit locations and tossing at most O(log n) random

coins.

Since CIRCUIT SATISFIABILITY is a complete language for NP, this implies that any NP proof

verifiable in time n can be encoded by a PCP of length poly(n) that is probabilistically verifiable by

probing at most O(1) bit locations.

The new composition theorem plays a key role in the simplification of the proof. We note that

Dinur and Reingold [DR04] also obtain an alternate proof of the PCP Theorem using a similar com-

position theorem (see Section 3.4 for similarities and differences between our and their approaches).

Both our work and theirs (especially) arose from a study of the proof of the PCP Theorem. Their

chief motivation was to “combinatorialize” the proof of the PCP Theorem while ours was to con-

struct shorter PCPs. In this chapter, neither do we attempt to give a “purely combinatorial” proof

of the PCP Theorem nor do we construct very short PCPs. Instead the main purpose of this chapter

61

is to demonstrate that a simpler (though yet algebraic) proof of the PCP Theorem can be obtained

via the new composition theorem. In fact, our construction both in this chapter and later ones relies

heavily on algebra, in contrast to the constructions of Dinur and Reingold – polynomials play a

vital role in all our constructions.

5.1.1 Overview of Proof

The main construct in this chapter is the following robust PCP of proximity, which is constructed

in Section 5.4.

Theorem 5.1.2 (ALMSS-type Robust PCP of proximity) For all n ∈ Z
+ and δ ∈ (0, 1), CIRCUIT

VALUE has a robust PCP of proximity (for circuits of size n) with the following parameters

• randomness O(log n),

• decision complexity poly(logn), which also upper-bounds the query complexity.

• perfect completeness, and

• for proximity parameter δ, the verifier has robust-soundness error 1−Ω(δ) with robustness parameter

Ω(1).

The above construct and the constant-query, exponential-sized PCPP described in Section 4

form the two building blocks for our composition. Note that the robust PCPP described in Theo-

rem 5.1.2 has query complexity poly logn. We further reduce the query complexity to poly log logn

by composing this robust PCPP with itself. This verifier is then composed with the Hadamard-

based constant-query, exponential-sized PCPP for CKTVAL to obtain a constant-query, polynomial-

sized PCPP for CKTVAL. This immediately yields a PCP for CIRCUIT SATISFIABILITY with similar

parameters. The details of these compositions is given in Section 5.2, completing the proof of the

PCP Theorem (Theorem 5.1.1).

Our main construct can be obtained by modifying the (pre-composition) PCP verifiers of [ALM+98]

to both have robust soundness and test proximity. For the sake of completeness, we present the

complete construction of these robust PCPPs. Robust soundness can be obtained automatically

from the “parallelized PCPs” of [ALM+98] (see Proposition 2.4.6). However, in our construction,

we obtain robust soundness by “bundling” the queries of the PCP verifier together. These robust

PCPs are then converted into robust PCPs of proximity by augmenting them with appropriate

“proximity tests”.

For starters, we first construct robust PCPPs for two specific problems related to polynomials in

Section 5.3 and then describe how a robust PCPP for CIRCUIT VALUE can be constructed using the

robust PCPPs for these two problems in Section 5.4, thus proving Theorem 5.1.2.

62

5.2 Composing the Main Construct

The PCP Theorem (Theorem 5.1.1) is proved by constructing a constant query, polynomial-sized

PCP for CIRCUIT SATISFIABILITY. Recall from Proposition 2.2.2, that it suffices to construct a PCP

of proximity for CIRCUIT VALUE with similar parameters. This PCP of proximity is in turn con-

structed by composing the robust PCP of proximity described in Theorem 5.1.2 with itself. Note

that a single application of the robust PCP of proximity of Theorem 5.1.2 reduces the query com-

plexity from n to poly logn. Thus, two applications of this robust PCPP reduce the query com-

plexity to poly log logn. We then finally compose with the Hadamard code based constant query,

exponential-sized PCPP constructed in Chapter 4 to obtain a constant query, polynomial-sized

PCPP for CIRCUIT VALUE. The Hadamard-based verifier uses super-logarithmic amount of ran-

domness (in fact, quadratic), however we can afford to use this verifier as we use it only in the

innermost level of composition. Each of these composition is performed by invoking the Compo-

sition Theorem 3.2.1.

Proof (of Theorem 5.1.1): Let V0 be the verifier obtained from Theorem 5.1.2. We compose V0 with

itself to obtain the verifier V1. While doing so, we use the largest possible proximity parameter

for the inner verifier (V0): that is, we set the proximity parameter of the inner verifier to equal the

robustness of the outer verifier. Note that the inner verifier works on circuits of size poly logn and

proximity parameter Ω(1) since the decision complexity and the robustness of the outer verifier are

poly logn and Ω(1) respectively. For circuits of size n and proximity parameter δ, the parameters of

the composed verifier V1 is as follows:

• randomness: r1(n) = O(log n) +O (log(poly logn)) = O (logn).

• decision complexity: d1(n) = poly log(poly logn) = poly log logn.

• robustness: ρ1 = Ω(1).

• soundness error: s1 = 1− Ω(δ) ·Ω(1) = 1− Ω(δ).

We then compose V1 with the Hadamard-based inner verifier Vh of Theorem 4.1.1 to obtain our

final verifier V . The query complexity of Vh and hence that of V is constant. The randomness

complexity of V is r(n) , r1(n) + rh(d1(n)) = r1(n) + (poly log logn)2, because rh(ℓ) = O(ℓ2).

Thus, r(n) = O(log n). On proximity parameter δh, the soundness error of Vh is sh = 1 − Ω(δh).

Setting δh = ρ1 = Ω(1), we conclude that the soundness error of V on proximity parameter δ is

1− Ω(δ) · Ω(1) = 1− Ω(δ).

A soundness error of 1/2 can be obtained by performing a constant number of repetitions of

V . This increases the randomness and query complexity of the final verifier by at most a constant

factor of O(1/δ). This yields a constant-query, O(log n) randomness PCPP verifier for CIRCUIT

63

VALUE with proximity parameter δ and soundness error 1/2 for any constant δ ∈ (0, 1). By Propo-

sition 2.2.2, we have a PCP verifier for CIRCUIT SATISFIABILITY with similar parameters. This

completes the proof of Theorem 5.1.1, modulo the construction of the robust PCPP described in

Theorem 5.1.2.

5.3 Robust PCPPs for Two Problems

In this section, we construct robust PCPs of proximity for two problems related to polynomials –

“low-degree testing” and “zero-on-subcube” problems. These constructions will serve as a prelim-

inary step in our construction of a robust PCPP for CIRCUIT VALUE in Section 5.4. The low-degree

testing problem is the problem of testing if a given function is close to some low-degree polynomial

while the zero-on-subcube is a related testing problem of deciding whether a given function is close

to a low-degree polynomial that vanishes on some subcube. Both these problems play a key role in

almost all constructions of PCPs (including ours).

Talking about polynomials, the following lemma will come very useful.

Lemma 5.3.1 (Schwartz-Zippel Lemma [Sch80, Zip79]) Suppose p : Fm → F is a non-zero m-variate

polynomial of total degree at most d over the finite field F . Then

Pr
x∈F m

[
p(x) = 0

]
≤ d

|F |

In other words, for a sufficiently large field, a non-zero polynomial cannot be zero at too many

places.

Proof: We prove this by induction on the number of variables. The base case is easy: a non-zero

univariate polynomial of degree d can have at most d zeros. Now, assume that we have proved

the lemma for all (m − 1) variate polynomials. Suppose p is a non-zero m-variate polynomial in

the variables x1, . . . , xm. We can write p as a polynomial in the variable xm (with (m − 1)-variate

polynomials as coefficients) as follows:

p(x1, . . . , xn) =
k∑

i=0

pi(x1, . . . , xm−1) · xi
m

for some k ≤ d and (m − 1)-variate polynomials pi, i = 1, . . . , k in the variables x1, . . . , xm−1.

Furthermore, wlog, we can assume that the polynomial pk is a non-zero polynomial in the (m− 1)

variables x1, . . . , xm−1. Clearly, the degree of pk is at most d− k. By induction, for a random choice

of (x1, . . . , xm−1), the polynomial pk is zero with probability at most deg(pk)/|F | ≤ (d− k)/|F |. For

the values (x1, . . . , xm−1) such that pk is non-zero, for a random choice of the remaining variable

64

xm, p can be zero with probability at most k/|F |. Hence, p is zero with probability at most ((d −
k) + k)/|F | = d/|F |. Thus proved.

5.3.1 Low Degree Testing

Our first problem related to polynomials is the classical problem of low-degree testing. Let F be a

finite field and m, d be positive integers. Given a function f : Fm → F as a table of evaluations (for

each point in the space Fm), the problem of low-degree testing is the problem of testing whether the

function f is close to some polynomial p : Fm → F of total degree at most d. Here, distance (and

hence closeness) between two functions h1, h2 : Fm → F is measured as the fractional number of

points on which the functions disagree (i.e., the fractional Hamming distance between h1 and h2).

Clearly, if the verifier is allowed to read the value of f at all points in the space Fm, then a simple

interpolation solves this problem. The interesting case arises when the verifier is constrained to

read only a few entries (say, at most a sub-linear fraction) of the entire table of values.

The low-degree testing problem is a well-studied problem. It was introduced by Rubinfeld and

Sudan [RS96] and is an essential ingredient in almost all PCP constructions (with the significant

exception of [DR04]). A number of different PCPPs with increasingly better parameters have been

proposed for this problem (Line-Point Test [RS96, AS98, ALM+98, AS97, BSVW03], Plane-Point

Test [RS97]). Though the notion of PCPP is formally defined in this thesis ([BGH+04a, BGH+04b]),

PCPPs are implicit in most low-degree testing. In fact, one of the earliest (implicit) uses of PCPP

were for low-degree testing.

Almost all known PCPPs for this problem use the following basic property of polynomials (or

some variant of it): The restriction of a multi-variate polynomial f : Fm → F of total degree at

most d to any line in the space Fm is a univariate polynomial of degree at most d. Furthermore, if

the size of the field F is sufficiently large compared to the degree d, then the converse also holds.

That is, if the restriction of a function f : Fm → F to all lines in Fm is a univariate polynomial

of degree at most d, then the function f is a multi-variate polynomial of total degree at most d.

Arora et al. [ALM+98] further strengthen this converse to obtain the following: if the restriction of

a function f : Fm → F is a univariate polynomial of degree at most d for “most” lines in Fm, then

the function f is “close” to a multi-variate polynomial of total degree at most d.

This suggests the following natural PCP of proximity for this problem, also called the LINE–

POINT–TEST. The LINE–POINT–TEST works as follows: Besides the input oracle f , the LINE–

POINT–TEST has oracle access to an auxiliary oracle fL, which we will call the “lines-oracle”. For

every line L in Fm, the lines-oracle fL returns a univariate polynomial of degree at most d. This

univariate polynomial is supposedly the restriction of the function f to the line L. The LINE–

POINT–TEST chooses a random line L, queries the lines-oracle fL on the line L and the input oracle

f on a random point x on L. It accepts iff the polynomial fL(L) agrees with f at the point x.

65

The LINE–POINT–TEST is a PCPP verifier: the verifier has oracle access to the input f : Fm → F

and the auxiliary lines oracle functions as the proof oracle to the verifier. Clearly, the LINE–POINT–

TEST has perfect completeness. The soundness of this test is given by the following theorem due to

Arora et al. [ALM+98].

Theorem 5.3.2 ([ALM+98], Theorem 65) There exists universal constants 0 < δ0 < 1 and α > 0 such

that the following holds. For all integers m, d > 0, δ < δ0 and fields F of size at least αd3, if f : Fm → F

and fL : L→ Pd are two functions such that f is at least 2δ-far from any m-variate polynomial of degree at

most d, then we have the following:

Pr[LINE–POINT–TEST
f ; fL = reject] > δ.

However, we will not employ this verifier for the low-degree testing problem. We will instead

use a variant of this verifier, which we will call the PCPP–LDT verifier. Unlike the LINE–POINT–

TEST, the PCPP–LDT will not have any auxiliary oracle. The only oracle it accesses is the input

oracle f : Fm → F . In this sense, the PCPP–LDT verifier is, in fact, a property tester for the

low-degree testing problem. The formal details of the PCPP–LDT verifier are as follows:

PCPP–LDTf
m,d (i.e., with oracle access to the input function f : Fm → F)

1. Choose a random line L in Fm (by choosing two random points in Fm) and query the

oracle f on all points on the line L.

2. Verify if the restriction of f to the line L is a univariate polynomial of degree at most d.

If so, accept else reject.

Complexity of Verifier PCPP–LDT: The PCPP verifier makes |F | queries each of which expects

as an answer an element of the field F (i.e., a string of length log |F |). Hence, the total (bit) query

complexity is |F | log |F |. The verifier chooses two random points in Fm. Hence, the randomness

complexity is at most 2m log |F |. Clearly, this verifier accepts all polynomials p of total degree at

most d (i.e., it has perfect completeness). Also, note that this PCPP verifier does not require a proof

oracle at all, it only queries the input oracle f .

We now estimate the expected robustness of the PCPP–LDT verifier as follows: Suppose the

field F is of size at least αd3 and δ < δ0 where α and δ0 are the universal constants specified in

Theorem 5.3.2. For each line L in Fm, define flines(L) to be the degree d univariate polynomial

having maximum agreement with f on L, breaking ties arbitrarily. For any line L, the PCPP–LDT

verifier accepts f |L if this restriction exactly matches with the polynomial flines(L). Suppose, f |L
does not exactly agree with the polynomial flines(L). We then observe that the number of points on

the line Lwhere the value of f needs to be changed in order to make the verifier accept is exactly the

66

number of points on which the two functions f |L and flines(L) differ. In other words, the distance

of f |L to satisfying PCPP–LDT is precisely ∆(f |L, flines(L)).

By inspection, the probability that LINE–POINT–TESTf ; flines rejects the points-oracle f and lines-

oracle flines as defined above equals EL[∆(f |L, flines(L))]. By Theorem 5.3.2, if f is 2δ-far from every

total degree d polynomial, then LINE–POINT–TESTf,flines rejects with probability at least δ. Thus,

the expected number of points on the random line L where the value of f needs to be changed

in order to make the verifier accept is at least δ. This completes the robustness analysis of the

PCPP–LDT verifier. Summarizing, we have the following lemma.

Lemma 5.3.3 Let α and δ0 be the universal constants that appear in Theorem 5.3.2. For all integers m, d >

0, δ < δ0 and fields F of size at least αd3, the PCPP–LDT verifier has randomness complexity 2m log |F |,
query complexity |F | log |F | and perfect completeness. Furthermore, if the input oracle f is 2δ-far from any

polynomial of total degree d, then the expected number of points on the random line L where the value of f

needs to be changed in order to make the PCPP–LDT verifier accept is at least δ.

5.3.2 Zero on Subcube

Our next problem related to polynomials is the “zero on subcube” problem. LetF be a finite field,H

a subset of F and m, d be positive integers. Given a function f : Fm → F as a table of evaluations,

the “zero on subcube” problem is the problem of testing whether f is close to some polynomial

p : Fm → F of total degree at most d, that vanishes on the entire subcube Hm (in other words,

p|Hm ≡ 0). As in the case of the low-degree testing problem, if the verifier is allowed to read the

value of f at all points in the space Fm, then a simple interpolation solves this problem. Hence,

the interesting case arises when the verifier is constrained to read only a few entries (say, at most a

sub-linear fraction) of the entire table of values.

We now describe a PCPP verifier to solve the “zero on subcube” problem. As a first step, we

run the PCPP–LDT verifier on the function f to check if f is close to some low-degree polynomial.

Thus, if f is far from any low-degree polynomial, then this initial step rejects. We are now left with

handling those functions f that are close to some low-degree polynomials.

First for some notation. For any subset S ⊆ F , let gS : F → F be the univariate polynomial

of degree |S| that vanishes exactly on the points of S. In other words, gS(x) =
∏

s∈S(x − s). For

notational convenience, we will some times refer to the polynomial p as p0. Consider the following

sequence of divisions, for i = 1, . . . ,m.

pi−1(x1, . . . , xm) ≡ gH(xi) · qi(x1, . . . , xm) + pi(x1, . . . , xm) (5.1)

where in the ith step the polynomial pi−1 (p = p0 in the first step) is divided by the univariate

polynomial gH(xi) of degree |H | to obtain quotient qi and remainder pi. Hence, each of the quotient

67

polynomials qi is of total degree at most d − |H | and the remainder polynomials pi are of total

degree at most d. Furthermore, since at the ith stage we are dividing by a univariate polynomial in

the variable xi of degree |H | , it can be inductively shown that the degree of the polynomial pi in

each of the first i variables x1, . . . , xi is less than |H |. Hence, pm is a polynomial of degree less than

|H | in each of its variables. Adding all the identities in Equation (5.1) for i = 1, . . . ,m, we have the

following identity:

p(x1, . . . , xm) ≡
m∑

i=1

gH(xi) · qi(x1, . . . , xm) + pm(x1, . . . , xm)

Since gH(h) = 0 for all h ∈ H , we have that p(x) = pm(x) for all x ∈ Hm. Hence, the polynomial

p vanishes on Hm iff the polynomial pm vanishes on Hm. But, pm is polynomial of degree less

than |H | in each of its variables. Hence, pm vanishes on Hm if and only if it is the zero-polynomial.

Summarizing these observations, we have the following proposition.

Proposition 5.3.4 ([BS04]) 1 Suppose F is a field, H a subset of F and m, d be positive integers. A poly-

nomial p0 : Fm → F of total degree at most d is zero on the entire subcube Hm iff there exists polynomials

q1, . . . , qm : Fm → F of total degree at most d− |H | each and another sequence of polynomials p1, . . . , pm

of total degree at most d such that

pi−1(x1, . . . , xm) ≡ gH(xi) · qi(x1, . . . , xm) + pi(x1, . . . , xm), i = 1, . . . ,m (5.2)

pm(x1, . . . , xm) ≡ 0 (5.3)

This proposition suggests the following natural PCP of proximity for the “zero on subcube”

problem: To check if f is close to some polynomial p : Fm → F of total degree at most d that van-

ishes on the subcube Hm, the verifier expects as proof, the set of functions P1, . . . , Pm, Q1, . . . , Qm :

Fm → F (each as a table of values), which are supposedly the polynomials p1, . . . , pm, q1, . . . , qm

indicated above. The verifier runs the PCPP–LDT verifier on each of the functions f, P1, . . . , Pm,

Q1, . . . , Qm to verify that they are close to low-degree polynomials. The verifier then chooses a

random point x = (x1, . . . , xm) ∈ Fm and queries each of the functions f, P1, . . . , Pm, Q1, . . . , Qm

at the point x. It then checks if the following equations are satisfied at the point x. As before, for

1Another related (and simpler) characterization of a polynomial that vanishes on the subcube Hm follows from the

above discussion.

Proposition 5.3.5 ([BS04]) Suppose F is a field, H a subset of F and m, d be positive integers. A polynomial p : Fm → F of total

degree at most d is zero on the entire subcube Hm iff there exists polynomials q1, . . . , qm : Fm → F of total degree at most d − |H|
each such that

p(x1, . . . , xm) ≡
mX

i=1

gH(xi) · qi(x1, . . . , xm).

However, we will not use this characterization. Ben-Sasson and Sudan [BS04] use this simpler characterization in their

construction of even shorter PCPs

68

notational convenience, we will sometimes refer to the function f as P0.

DivisionCheck : Pi−1(x1, . . . , xm) = gH(xi) ·Qi(x1, . . . , xm) + Pi(x1, . . . , xm), i = 1, . . . ,m

(5.4)

IdentityCheck : Pm(x1, . . . , xm) = 0 (5.5)

If all the above checks pass, the verifier accepts else it rejects.

Clearly, if f is a polynomial of total degree at most d that vanishes on the subcubeHm, then there

exist functions P1, . . . , Pm, Q1, . . . , Qm (by Proposition 5.3.4) such that the above verifier accepts

with probability 1. Now, for the soundness, suppose f is far from any polynomial of total degree at

most d that vanishes on Hm. If any of the functions f, P1, . . . , Pm, Q1, . . . , Qm is 2δ-far from being

a low-degree polynomial, then the corresponding PCPP–LDT test recognizes the error. So we can

assume that each of the functions are 2δ-close to being low-degree. Let p0, p1, . . . , pm, q1, . . . , qm

be the low-degree polynomials that are 2δ-close to the functions f, P1, . . . , Pm, Q1, . . . , Qm respec-

tively. Now these polynomials must not satisfy either the identity (5.2) for some i = 1, . . . ,m or the

identity (5.3) since otherwise f would be close to a low-degree polynomial that vanishes on Hm.

Suppose the polynomials pi−1, pi and qi do not satisfy the identity (5.2). Then by the Schwartz-

Zippel Lemma (Lemma 5.3.1), for most points (in fact for at least 1 − d
|F | fraction of the points) in

Fm, the identity must be violated. Since, the functions Pi−1, Pi andQi are 2δ-close to the polynomi-

als pi−1, pi and qi, the functions Pi−1, Pi andQi must violate Equation (5.4) for at least 1− d
|F |−3 ·2δ

fraction of the points. Thus, the verifier detects the error with probability at least 1− d
|F | − 6δ. The

case when pm 6≡ 0 is similar.

The above discussion shows that this verifier is a PCPP verifier for the “zero-on-subcube” prob-

lem. However, recall that we had intended to construct a robust PCPP for this problem. A robust

verifier on a NO instance not only has to reject with high probability but also has to reject “strongly”

with high probability, i.e., with high probability, the bits read by the robust verifier must be far from

satisfying the tests of the verifier. Unfortunately, this verifier is not robust for the following reason:

Suppose the input function f : Fm → F is 2δ-far from any polynomial of total degree that van-

ishes on Hm. We then know that one of the several tests performed by the verifier detects this fact

with non-negligible probability. However, this test is only one of the O(m) tests performed by the

verifier (the verifier performs (2m + 1) runs of the PCPP–LDT, m Division Checks and 1 Identity

Check). Hence, the bits read by this test comprise a small fraction of the total query complexity of

the verifier. For instance, the number of bits read by a single PCPP–LDT is about 1/m times the

query complexity. This causes the robustness of the verifier to drop by a factor of at least m. Hence,

the above described verifier is not robust.

To “robustify” the verifier, we “bundle” the various functions in the proof oracle so that the

inputs required for the several test instances can be read together. This helps us construct a robust

69

PCPP verifier, albeit over a larger alphabet. Instead of 2m different functions {Pi}, {Qi} in the

proof oracle, we have one oracle Π which bundles together the data of all these functions. The

oracle Π : Fm → F 2m is supposed to satisfy Π(x) = (P1(x), . . . , Pm(x), Q1(x) . . . , Qm(x)) for all

x ∈ Fm. The new verifier now chooses a random line L in Fm, queries the input oracle f and Π

for all points along the line L. It then unbundles Π(L) to obtain the value of each of the functions

{Pi} and {Qi} on the line L. It can now perform the low-degree test for each of the functions

{f, P1, . . . , Pm, Q1, . . . , Qm} and also the division check and identity check for each point along the

line L. The formal description of this verifier is as follows:

ROBUST-PCPP–ZERO-ON-SUBCUBE
f ; Π
m,H,d

(i.e., with oracle access to the input function f : Fm → F and proof oracle Π : Fm → F 2m

where H is a subset of the field F)

1. Choose a random line L in Fm and query the oracles f and Π on all points on the line L.

2. Unbundle Π(L) to obtain the value of the functions Pi, Qi, i = 1 . . . ,m on all points on

the line L.

3. Reject if the restriction of any of the functions f, P1, . . . , Pm to the line L is not a univari-

ate polynomial of degree at most d or if the restriction of any of the functions Q1, . . . , Qm

to the line L is not a univariate polynomial of degree at most d− |H |.

4. For each point x on the line L,

(a) For each i = 1, . . . ,m, verify that the Division Check (Equation (5.4)) is satisfied for

this value of i.

(b) Verify that the Identity Check (Equation (5.5)) is satisfied.

5. Accept if none of the above tests fail, else reject.

Remark 5.3.6 The input oracle f returns elements of F while the proof oracle Π returns elements of F 2m.

We will however assume that both the oracles f and Π return elements of F 2m. This can be implemented

as follows: On input x, the oracle f returns the element (f(x), 0, 0, . . . , 0) ∈ F × 02m−1 ⊆ F 2m. This

assumption will simplify the soundness analysis of the verifier.

Complexity of Verifier ROBUST-PCPP–ZERO-ON-SUBCUBE: The PCPP verifier makes |F | queries

each to the input oracle f and the proof oracle Π. By Remark 5.3.6, both the input oracle f and the

proof oracle Π return elements of F 2m. Hence, the total (bit) query complexity is 4m|F | log |F |. The

randomness complexity is at most 2m log |F |. Also, if the input function f is indeed a polynomial

of total degree at most d that vanishes on the subcube Hm, then by Proposition 5.3.4, there exists a

proof oracle Π that causes the verifier to accept with probability 1 (i.e., it has perfect completeness).

The robust-soundness of the verifier is given by the following claim.

70

Lemma 5.3.7 Let α and δ0 be the universal constants that appear in Theorem 5.3.2. For all integers m, d >

0, δ < δ0 and fields F of size at least max{αd3, d/(1 − 7δ)}, if f is 2δ-far from any polynomial of total

degree d that vanishes on the subcube Hm, then for any proof oracle Π : Fm → F 2m, for a random line L
the expected distance of (f |L,Π|L) from satisfying the ROBUST-PCPP–ZERO-ON-SUBCUBE verifier is at

least δ/2.

Proof: Suppose f is 2δ-far from any polynomial of total degree d that vanishes on the subcubeHm.

Consider the behavior of the verifier on this input function f and any proof oracle Π : Fm → F 2m.

Unbundle the proof oracle Π : Fm → F 2m to obtain the individual functions Pi : Fm → F,Qi :

Fm → F, i = 1, . . . ,m. Let p0, p1, . . . , pm be the closest polynomials of total degree at most d to the

functions f, P1, . . . , Pm respectively and q1, . . . , qm the closest polynomials of total degree at most

d − |H | to the functions Q1, . . . , Qm respectively (if there is more than one polynomial, break ties

arbitrarily). Recall that the verifier makes three different types of tests – the low-degree test (in

Step. 3) and the division check (in Step. 4(a)) and the identity check (in Step. 4(b)). The input for

all these tests is the same, namely (f |L,Π|L). The verifier could detect an inconsistency in any of

these tests. Corresponding to these three tests, we have the following three cases. For notational

convenience, we will sometimes refer to the function f as P0.

Case I: Either f is 2δ-far from the polynomial p0 or one of the functions Qi is 2δ-far from the

corresponding polynomial qi or one of the functions Pi is 2δ-far from the corresponding poly-

nomial pi. Wlog, assume that P1 is 2δ-far from the polynomial p1. In this case, the analysis

of the PCPP–LDT verifier shows that the expected distance of P1|L from being a degree d

polynomial is at least δ. Translating this to the bundled alphabet, we have that the expected

distance of Π|L from satisfying the low-degree test is at least δ. However, Π|L is only half the

input read by the verifier. Hence, the expected distance of the total input read by the verifier,

which is (f |L,Π|L), from satisfying the low-degree test is at least δ/2.

Case II: Suppose for some i each of the functions Pi−1, Pi and Qi are close to the corresponding

polynomials pi−1, pi and qi, but the Polynomial Identity (5.2) does not hold for this value of

i. Then by the Schwartz-Zippel Lemma 5.3.1, for at least 1 − d
|F | fraction of the points in Fm,

the polynomials pi−1, pi and qi violate Equation (5.2) for this i. Let B be the set of points

in Fm where the polynomials pi−1, pi and qi violate (5.2) and where each of the functions

Pi−1, Pi and Qi agrees with its corresponding closest polynomial. The fractional size of B is

at least 1 − d
|F | − 6δ since each of the functions is at least 2δ-close to its corresponding to its

corresponding polynomial. For the verifier to accept in Step. 4(a) for this value of i, either f |L
or Π|L must be changed for each of the points in the set B ∩ L. Since L is a random line, the

expected size of B ∩L is at least 1− d
|F | − 6δ. Hence, the expected distance of (f |L,Π|L) from

satisfying the Division Check in Step. 4(a) for this value of i is at least 1
2 ·
(
1− d

|F | − 6δ
)

.

71

Case III: Suppose the function Pm is 2δ-close to the polynomial pm but the polynomial pm is not

identically zero. Then, by an analysis similar to that in Case II, it can be shown that the

expected distance of (f |L,Π|L) from satisfying the Identity Check in Step. 4(b) is at least 1
2 ·(

1− d
|F | − 2δ

)
.

If none of the above occur, it must be the case that f is 2δ-close to the polynomial p of total degree

at most d which vanishes on Hm, contradicting the hypothesis. Hence, one of the three cases must

occur.

Since the input read is the same for all these cases, the expected robustness is at least

min

{
δ

2
,

1

2

(
1− d

|F | − 6δ

)
,

1

2

(
1− d

|F | − 2δ

)}

which is δ/2 since 7δ + d
|F | ≤ 1.

5.4 A robust PCPP for CIRCUIT VALUE

In this section, we construct the robust PCPs of proximity for CIRCUIT VALUE described in Theo-

rem 5.1.2. This construction proceeds in two steps. In the first step, we construct (in Section 5.4.1) a

robust PCP for CKTSAT using the robust PCPs for the two problems described in Section 5.3. In the

second step, we convert this robust PCP into a robust PCP of proximity for CKTVAL by augmenting

with an appropriate proximity test (in Section 5.4.2).

5.4.1 A robust PCP for CIRCUIT SATISFIABILITY

In this section, we present a preliminary version of Theorem 5.1.2, without the proximity properties.

More specifically, we construct a robust PCP for CKTSAT. The construction of the robust-PCP

proceeds in two steps. First, we give an algebraic description of the input circuit C. We then show

how this algebraic description can be reduced to the ‘zero on subcube” problem. We now use the

robust PCP for the “zero on subcube” to construct a robust PCP for CKTSAT.

Algebraic description of circuit

Recall that our circuits have fan-in 2 and fan-out 2. Furthermore, we will assume that there are only

three types of gates – binary OR-gate, unary NOT-gate and the unary OUTPUT-gate. Any circuit

with arbitrary unary and binary Boolean gates can be transformed into one of the above form.

Let C be the input circuit of size n on k input variables. Let us index the input Boolean variables

of the circuit as w1, . . . , wk and the remaining gates of the circuit as wk+1, . . . , wn with wn being the

index of the output variable. Usually an assignment refers to a mapping from the input variables

to Boolean values, but we will refer to an “extended” assignment which is a mapping from the

72

set of all variables (input and gate) to Boolean values. Thus, an assignment to C is described by

a map A : [n] → {0, 1}. Note that an “extended” assignment contains within it the assignment to

the input variables. For any gate (OR, NOT or OUTPUT), we refer to any assignment to the input

and output variables of the gate that violates the functionality of the gate as an invalid configuration

for that gate. For instance, an assignment that maps both the input variables of a OR-gate to 1 and

the output variable to 0 is an invalid configuration for that OR-gate. Similarly, an assignment that

maps the output variable to 0 is an invalid configuration for the OUTPUT-gate (since the output

always needs to be 1 for a satisfying assignment). In this terminology, a satisfying assignment does

not lead to an invalid configuration for any gate and conversely, only a satisfying assignment has

this property.

To obtain a algebraic description of the circuit C, choose a field F and any set H ⊆ F such that

{0, 1} ⊆ H (2) and |Hm| = n. We will identify the set of elements [n] = {1, . . . , n}with the set Hm.

We this identification, we can view the assignment A as a mapping A : Hm → {0, 1} ⊆ H ⊆ F .

Any assignment S : Hm → H can be interpolated to obtain a polynomial Ŝ : Fm → F of degree

at most |H | in each variable (and hence a total degree of at most d = m|H |) such that Ŝ|Hm = S (i.e.,

the restriction of Ŝ to Hm coincides with the function S). Conversely, any polynomial Ŝ : Fm → F

can be interpreted as an assignment from Hm to F by considering the function restricted to the

subcube Hm.

Thus, corresponding to every assignment A : [n] → {0, 1}we have an interpolated polynomial

Â : Fm → F of degree at most |H | in each variable. Furthermore, any function R : Fm → F can be

interpreted as a Boolean assignment by assigning 0 to “false”, 1 to “true” and all other field values

to “I don’t know”.

Based on the circuit C, we present a polynomial transformation rule that converts the assign-

ment polynomial Â : Fm → F to another polynomial p(bA) : F 3m+3 → F on a slightly larger domain

F 3m+3 such that p(bA)|H3m+3 ≡ 0 iff Â is a satisfying assignment (i.e, the polynomial p(bA) vanishes

on the subcube H3m+3 if and only if Â encodes a satisfying assignment). For the transformation

rule, we first encode the circuit C as function C′ : [n]3 ×H3 → {0, 1}. The function C′ is defined as

follows:

C′(i1, i2, i3, b1, b2, b3) =





1 The elements b1, b2, b3 are in the set {0, 1} and there exists a gate

whose input variables and output variables are in the set

{wi1 , wi2 , wi3} and (wi1 = b1) ∧ (wi2 = b2) ∧ (wi3 = b3) is an

invalid configuration for this gate.

0 otherwise

(5.6)

For instance, if there exists an OR-gate in the circuit C with input variables w2 and w7 and whose

2We don’t need to use {0, 1}; any embedding of {true, false} will do.

73

output variable is w11, then C′(2, 7, 11, 0, 0, 1) = 1 since w2 = 1, w7 = 1 and w11 = 0 is an in-

valid configuration for this OR-gate. Similarly, if w21 is the index of the output variable, then

C′(21, 21, 5, 1, 1, 0) = 1 since w21 = 0 is an invalid configuration for OUTPUT-gate (the output

must be 1 for a satisfying assignment).

Recalling that Hm ≈ [n], we can view the function C′ as a mapping C′ : H3m+3 → {0, 1} ⊆ F .

We then construct a polynomial Ĉ : F 3m+3 → F in 3m + 3 variables of degree at most H in each

variable (and hence a total degree of at most (3m+ 3)|H |) such that Ĉ|H3m+3 ≡ C′. The polynomial

transformation rule mapping the polynomial q : Fm → F to p(q) : F 3m+3 → F is as follows:

p(q)(x1, . . . , x3m+3) = Ĉ(x1, . . . , x3m+3) ·
(
q(x1, . . . , xm)− x3m+1

)

·
(
q(xm+1, . . . , x2m)− x3m+2

)
·
(
q(x2m+1, . . . , x3m)− x3m+3

) (5.7)

When the polynomial q is the assignment polynomial Â : Fm → F corresponding to the assignment

A : [n] → {0, 1} and the input (x1, . . . , x3m+3) to the polynomial p(bA) is in the set H3m+3 (i.e.,

(x1, . . . , x3m+3) = (i1, i2, i3, b1, b2, b3) for some i1, i2, i3 ∈ Hm and b1, b2, b3 ∈ H), we have

p(bA)(i1, i2, i3, b1, b2, b3) = Ĉ(i1, i2, i3, b1, b2, b3)
(
A(i1)− b1

)(
A(i2)− b2

)(
A(i3)− b3

)
(5.8)

For any (i1, i2, i3, b1, b2, b3) ∈ H3m+3, the above quantity is non-zero exactly when {b1, b2, b3} ⊆
{0, 1} and there exists a gate whose input and output variables are in the set {wi1 , wi2 , wi3} and if

the assignment A allows the invalid configuration (wi1 = b1) ∧ (wi2 = b2) ∧ (wi3 = b3). Hence,

p(bA)|H3m+3 ≡ 0 if and only if the the assignment polynomial Â encodes a satisfying assignment A.

This holds even when the assignment represented by Â has some variables set to “I don’t know”.

Note that if q is a polynomial of total degree at most d = m|H |, then the polynomial transforma-

tion rule maps it to a polynomial p(q) : F 3m+3 → F of total degree at most d′ = (6m+ 3)|H | (since

Ĉ is polynomial of total degree at most (3m+ 3)|H |).
Summarizing the above discussion, we have the following proposition:

Proposition 5.4.1 There exists a polynomial reductionR which maps every circuit C of size n, a finite field

F and parameter m ≤ logn/ log logn to a polynomial transformation rule
(
{q : Fm → F} −→ {p(q) :

F 3m+3 → F
)

given by Equation (5.7) where H a subset of F satisfying {0, 1} ⊆ H ⊆ F and |H | = n1/m.

The polynomial transformation rule satisfies the following properties:

• if C is satisfiable, then there exists a polynomial Â : Fm → F of total degree m|H | such that

p(bA)|H3m+3 ≡ 0.

• if C is not satisfiable, then for all functions q : Fm → F , the restriction p(q)|H3m+3 is not identically

zero.

Furthermore, the mapping
(
q −→ p(q)

)
maps polynomials q of total degree d = m|H | to polynomials p(q) of

total degree at most d′ = (6m+ 3)|H |.

74

Remark 5.4.2 We observe that if C is a satisfiable circuit, then any polynomial Â : Fm → F that satisfies

p(bA)|H3m+3 ≡ 0 contains within it a satisfying assignment to the circuit C. Specifically, let I be the subset of

H that corresponds to the input variables. Then the restriction of the function Â to the set I , Â|I : [k] → F

is a satisfying assignment to the circuit C. Conversely, every satisfying assignment A : [k] → {0, 1} to

C can be extended to a polynomial Â : Fm → F of total degree m|H | such that p(bA)|H3m+3 ≡ 0 and Â|I
contains the satisfying assignment.

Robust PCP for CKTSAT

Given Proposition 5.4.1 and a robust-PCPP for the “zero-on-subcube” problem, it is easy to con-

struct a robust-PCP for CKTSAT. The verifier expects as proof the table of values Ã : Fm → F

and P : F 3m+3 → F which are supposedly the evaluations of the polynomials Â : Fm → F and

p(bA) : F 3m+3 → F . The verifier then checks that Ã and P are low-degree polynomials. It then

checks that the function P is the function obtained by the polynomial transformation rule from

the function Ã (i.e., it checks if Equation (5.7) is satisfied at a few random points). It then uses an

additional proof oracle Π : F 3m+3 → F 6m+6 (as in the “zero-on-subcube” problem) to check that

the function P vanishes on the subcube H3m+3. The formal details of the robust PCP-Verifier are

as follows:

ROBUST-PCP–CIRCUIT-SATÃ,P,Π
m (C,F)

(i.e., with oracle access to the proof oracles Ã : Fm → F, P : F 3m+3 → F and Π : F 3m+3 →
F 6m+6 where F is a finite field.)

1. Choose a subset H of the field F of size |H | = n1/m. Set d = m · n1/m and d′ = (6m +

3)n1/m.

2. Run PCPP–LDTÃ
m,d (to check that Ã is close to a polynomial of total degree at most d).

3. Run ROBUST-PCPP–ZERO-ON-SUBCUBE
P ; Π
3m+3,H,d′ (to check if P is close to a polynomial

of total degree at most d′ that vanishes on the subcube H3m+3).

4. Choose a random line L in F 3m+3.

5. For every point x = (z1, z2, z3, y1, y2, y3) on the lineLwhere z1, z2, z3 ∈ Fm and y1, y2, y3 ∈
F ,

– Query the oracle P on point x and the oracle Ã on the points z1, z2, z3 and reject if

the following relation is violated.

P (x) = Ĉ(x)
(
Ã(z1)− y1

)
(Ã(z2)− y2

)
(Ã(z3)− y3

)
(5.9)

6. Accept if none of the above tests reject.

75

Remark 5.4.3 1. For the present, we provide both the input circuit C and the field F as explicit inputs

to the verifier. However, later (specifically, in the proof of Theorem 5.1.2 in Section 5.4.3), we will show

how to construct a suitable sized field F using the size of the circuit and thus remove the field F from

the list of inputs to the verifier.

2. As in the case of the ROBUST-PCPP–ZERO-ON-SUBCUBE verifier, we will assume that all the oracles

Ã, P,Π return elements of F (6m+6). This will simplify the soundness analysis of the verifier.

Complexity of the ROBUST-PCP–CIRCUIT-SAT Verifier: The PCP verifier makes O(|F |) queries

to each of the proof oracles Ã, P and Π. By Remark 5.4.3(2), all the oracles return elements from

F 6m+6. Hence, the total (bit) query complexity is O(m|F | log |F |). The randomness complexity is

at most O(m log |F |). Also, if the circuit C is satisfiable, then there exists proof oracles Ã, P and Π

which cause the verifier to accept with probability 1 (i.e., it has perfect completeness).

The robust-soundness of the verifier is given by the following lemma. We will prove a stronger

statement than required. Given a function Ã : Fm → F , let Â : Fm → F be the polynomial of

total degree d = m|H | that is closest to this function. Recall from Remark 5.4.2 that the polynomial

Â : Fm → F supposedly has the satisfying assignment embedded within it. Let I ⊂ Fm be the set

of locations in Fm that contains the assignment (i.e., Â|I is supposedly the satisfying assignment).

Lemma 5.4.4 Let α, δ0 be the universal constants that appear in Theorem 5.3.2. For any integer m, d > 0,

δ < δ0, fieldsF , subsetH ⊆ F such that d′ = (6m+3)|H | and |F | ≥ max{αd′3, d′/(1−9δ)}, the following

holds. Suppose Ã is not 2δ-close to any polynomial Â of total degree d = m|H | such that C(Â|I) = 1. Then

for any pair of proof oracles P : F 3m+3 → F and Π : F 3m+3 → F 6m+6, with probability at least Ω(δ),

at least Ω(δ) fraction of the input read by the ROBUST-PCP–CIRCUIT-SAT verifier needs to be modified in

order to make the verifier accept.

Proof: Let Â : Fm → F and p : Fm → F be the polynomial of degree d = m|H | and d′ =

(6m+ 3)|H | that are closest to the functions Ã : Fm → F and P : F 3m+3 → F respectively.

To analyze the expected robustness of the ROBUST-PCP–CIRCUIT-SAT verifier, we will analyze

the expected robustness of each of the individual steps of the verifier. Since each of the individual

steps reads only a fraction of the total input read by the verifier, we first calculate the fraction of the

total input read by each of the individual steps. The total input read by the verifier comprises of

the following: (a) Evaluation of Ã along a random line by PCPP–LDT in Step. 2, (b) Evaluation of

P and Π along a random line by ROBUST-PCPP–ZERO-ON-SUBCUBE in Step. 3. and (c) Evaluation

of P along a random line L and evaluation of Ã along 3 lines in Step. 5. Hence, the total input read

by the verifier comprises of evaluations of several functions over seven lines. Thus, the fraction of

the input read by each of the individual steps is as follows: (a) PCPP–LDT – 1
7

th
of total input in

76

Step. 2, (b) ROBUST-PCPP–ZERO-ON-SUBCUBE – 2
7

th
of the total input in Step. 3.and (c) 4

7

th
of the

total input in Step. 5.

By hypothesis, we have that Â|I is not a satisfying assignment for the circuit C. Then one of the

following three cases must hold.

Case I: Â is at least 2δ-far from Ã.

In this case by the soundness analysis of PCPP–LDT (Lemma 5.3.3), we have that on expec-

tation at least δ fraction of the input read by Step. 2 must be changed in order to make this

step accept. However, the fraction of input read by Step. 2 comprises only 1
7

th
of the total

input read by the verifier. Hence, on expectation at least δ/7 fraction of the total input read

by the verifier needs to be modified in order to make the verifier accept.

Case II: Either P is at least 2δ-far from p or p does not vanish on H3m+3.

We have two further sub-cases corresponding to these two possibilities. (a) P is 2δ-far from

p. (b) P is 2δ-close to p however p|H3m+3 6≡ 0. In the latter sub-case, p must be the only

polynomial that is 2δ-close to P since the distance between any two distinct polynomials of

total degree d′ is at least 1 − d′

|F | and we have 1 − d′

|F | ≥ 4δ. In either sub-case, we have that

P is at least 2δ-far from any polynomial that vanishes on H3m+3. The soundness analysis

of ROBUST-PCPP–ZERO-ON-SUBCUBE (Lemma 5.3.7) then comes into play. We have that on

average at least δ/2 fraction of the input read by Step. 3 needs to be modified in order to make

this step accept. The fraction of input read by this step is 2
7

th
that of the total input read by the

verifier. Hence, on average at least δ/7 fraction of the total input read by the verifier needs to

be modified in order to make this step accept.

Case III: Both Ã is 2δ-close to Â and P is 2δ-close to p and furthermore p|H3m+3 ≡ 0.

Then, it must be the case that the polynomial p is not the polynomial p(bA) obtained by the

polynomial transformation rule (5.7). Since, otherwise by Proposition 5.4.1 and Remark 5.4.2,

Â|I would be a satisfying assignment for C which contradicts the hypothesis. Hence, the

polynomials p and Â violate Equation (5.7). By the Schwartz-Zippel Lemma 5.3.1, they should

violate it this identity in at least 1 − d′

|F | fraction of the points in F 3m+3. Let B be the set of

points in x = (z1, z2, z3, y1, y2, y3) ∈ F 3m × F 3 = F 3m+3 where the Identity (5.7) is violated

and where the following equalities hold: P (x) = p(x), Ã(z1) = Â(z1), Ã(z2) = Â(z2), and

Ã(z3) = Â(z3). The fractional size of B is at least 1− d′

|F | − 8δ since each of the functions P, Ã

is 2δ-close to the corresponding polynomials p and Â. For the verifier to accept in Step. 4,

either P |L or Ã|L must be changed for each of the points in the set B ∩L. Since L is a random

line, the expected size of B ∩ L is at least 1 − d′

|F | − 8δ ≥ δ. Recall that the fraction of input

read by this step is 4
7

th
that of the total input read by the verifier. Hence, on average at least

4δ/7 ≥ δ/7 fraction of the total input read by the verifier needs to be modified in order to

77

make the verifier accept.

Combining the three cases we have that on average at least δ/7 fraction of the total input read by

the ROBUST-PCP–CIRCUIT-SAT verifier needs to be modified in order to make the verifier accept.

By an averaging argument, it follows that with probability δ/14, at least δ/14 fraction of the input

read by the ROBUST-PCP–CIRCUIT-SAT verifier needs to be modified in order to make the verifier

accept. This concludes the proof of the lemma.

5.4.2 Augmenting with the proximity test

In this section, we modify the PCP for CIRCUIT SATISFIABILITY and construct a PCP of proxim-

ity for CIRCUIT VALUE while maintaining all the complexities. (Recall that the latter is stronger

than the former, via Proposition 2.2.2.) We do so by adding a proximity test to the PCP–VERIFIER

defined in Section 5.4.1. This new proximity test, as the name suggests, checks the closeness of

the input to the satisfying assignment that is supposed to be encoded in the proof oracle (see

Remark 5.4.2). This check is done by locally decoding a bit of the input from its encoding and

comparing it with the actual input oracle.

Recall that a PCPP verifier is supposed to work as follows: The verifier is given explicit access to

a circuitC with n gates on k input bits and oracle access to the input w in the form of an input oracle

W : [k] → {0, 1}. The verifier should accept W with probability 1 if it is a satisfying assignment

and reject it with high probability if it is δ-far from any satisfying assignment.

Recall that the function Ã : Fm → F is supposed to contain within it an assignment (See

Remarks 5.4.2). Let I ⊆ Hm ⊂ Fm be the set of locations in Fm that contain the assignment. The

ROBUST-PCPP–CIRCUIT-VAL in addition to the tests of the ROBUST-PCP–CIRCUIT-SAT performs

the ROBUST PROXIMITY TEST to check if the assignment given by Ã|I matches with the input oracle

W . Specifically,

ROBUST-PCPP–CIRCUIT-VALW ; Ã,P,Π
m (C,F).

1. Run ROBUST-PCP–CIRCUIT-SATÃ,P,Π
m (C,F) and reject if it rejects.

2. ROBUST PROXIMITY TEST

Choose a random position i
R← {1, . . . , k} in the input. Let x ∈ I be the point corre-

sponding to i in Hm. Choose a random line L through x. Query oracle Ã on all

points along the line L and reject if the restriction Ã to L is not a polynomial of

degree at most d = m · |H |. Query the input oracle W at location i and reject if

W [i] 6= Ã(x).

Remark 5.4.5 As in the case of the ROBUST-PCP–CIRCUIT-SAT verifier, we provide both the circuit C

and the field F as input to the ROBUST-PCPP–CIRCUIT-VAL verifier. Later (in Sec 5.4.3), we will show

78

how to construct a suitable sized field F from the size of the circuit and thus remove the field F from the list

of inputs to the verifier.

Complexity of Verifier ROBUST-PCPP–CIRCUIT-VAL: In addition to the randomness required

by the ROBUST-PCP–CIRCUIT-SAT verifier, this verifier requires randomness to choose a random

point in the input and a random line in Fm. Thus, the total randomness is at most O(m log |F | +
logn). The verifier makes the following additional queries: 1 query to the input oracle W , which

returns a bit and |F | queries to the oracle Ã which returns elements from F 6m+6 (see Remark 5.4.3).

Hence, the net query complexity is upper bounded by O(m|F | log |F |). It easily follows from Re-

mark 5.4.2 that this verifier has perfect completeness.

Lemma 5.4.6 Let α, δ0 be the universal constants that appear in Theorem 5.3.2. For any integer m, d′ >

0, proximity parameter δ ∈ (0, 1), fields F , subset H ⊆ F such that d′ = (6m + 3)|H | and |F | ≥
max{αd′3, d′/(1− 7δ0/2)}, the following holds. Suppose W is δ-far from satisfying the circuit C. Then for

any proof oracle Γ = (Ã : Fm → F, P : F 3m+3 → F,Π : F 3m+3 → F 6m+6), with probability at least

Ω(δ), either a constant (i.e., Ω(1)) fraction of the entire input read in the proof oracle Γ or the entire input

in the input oracle W (i.e, W [i]) needs to be changed in order to make the either ROBUST-PCPP–CIRCUIT-

VAL verifier accept.

Proof: If the input oracle W is δ-far from satisfying the circuit C, one of the following must hap-

pen.

Case I: Ã is not δ0-close to any polynomial Â of degree d = m|H | such that C(Â|I) = 1.

Then by Lemma 5.4.4, we conclude that with probability at least Ω(δ0) (= constant), at least

Ω(δ0) (= constant) fraction of the input read by ROBUST-PCP–CIRCUIT-SAT needs to be mod-

ified in order to make the verifier accept. Observe ROBUST-PCP–CIRCUIT-SAT verifier reads

at least a constant fraction of the entire input read by the ROBUST-PCPP–CIRCUIT-VAL veri-

fier. Hence, with constant probability, at least a constant fraction of the entire input read in the

proof oracle Γ by the ROBUST-PCPP–CIRCUIT-VAL needs to be modified in order to make

the verifier accept.

Case II: Ã is δ0-close to some polynomial Â of degree d = m|H | such that C(Â|I) = 1.

Since W is δ-far from any satisfying assignment, the assignment given by Â|I must be δ-far

from W . With probability greater than δ over the choice of i ∈ {1, . . . , k} (and the corre-

sponding point x ∈ I in Hm), we have W [i] 6= Â(x). If this occurs, the only way to make the

ROBUST PROXIMITY TEST accept is to either change W [i] or change Ã|L to a degree d polyno-

mial other than Â|L. Since L is a random line through x, every point on L other than x is a a

uniformly random point in Fm. Recall that Ã and Â are δ0-close. By a Markov argument it

79

follows that for every fixed value of x and a random line L through x, with probability at least

1 − 4δ0, Ã|L\{x} and Â|L\{x} are at least 1/4-close. This implies that Ã|L cannot be a polyno-

mial of degree d other than Â|L (since two distinct polynomials agree in at most d points, and

(d−1)/|F | < 1/4). Thus, with probability at least δ over the choice of i, we have W [i] 6= Â(x),

and even after we fix such an i, we have with probability at least 1 − 4δ0 that Ã|L\{x} and

Â|call\{x} have distance at at most 1/4. Hence, with probability at least δ(1 − 4δ0) = Ω(δ),

either all of W [i] or at least a constant fraction of the portion of the proof oracle read by the

verifier needs to be modified in order to make the verifier accept.

Since we do not know which of the two cases occur, we can only guarantee the weaker of the two

claims. Thus, with probability at least Ω(δ), either a constant (i.e., Ω(1)) fraction of the entire input

read in the proof oracle Γ or the entire input in the input oracle W (i.e, W [i]) needs to be changed

in order to make the either ROBUST-PCPP–CIRCUIT-VAL verifier accept. This concludes the proof

of the lemma.

5.4.3 Converting to Binary Alphabet

The soundness guarantee of the ROBUST-PCPP–CIRCUIT-VAL verifier (Lemma 5.4.6) showed that

with constant probability, at least a constant fraction of the symbols read in the proof oracle or the

entire portion of the input oracle read needs to be modified in order to make the verifier accept.

Recall that the symbols in the proof oracle read by the verifier are from the alphabet F 6m+6. Hence,

we have so far only proved robustness of the verifier over the large alphabet F 6m+6. However,

we need to prove robustness over the binary alphabet. In other words, we need to show that if the

symbols read by the verifier are bits (and not elements of some large alphabet like F 6m+6) even then

the verifier has good robustness. We thus have the task of transforming the robust PCPP verifier

over the alphabet Σ = F 6m+6 to one over the binary alphabet. This task is analogous to converting

non-Boolean error correcting codes to Boolean ones via “code catenation”. This transformation

is exactly the same transformation as the one in the proof of Lemma 2.4.5. However, we cannot

directly use Lemma 2.4.5 as we may apply the “code concatenation” process only to the proof

oracle Γ and not to the input oracle W . However, this is not a problem, because the input oracle is

already binary and has good robustness.

Let ECC : {0, 1}log |Σ| → {0, 1}b for b = O(log |Σ|) be a binary error-correcting code of constant

relative minimum distance, which can be computed by an explicit circuit of size O(log |Σ|)[Spi96].

We augment the original proof oracle Γ, viewed now as having log |Σ|-bit long entries (i.e., ele-

ments of Σ) with an additional oracle Υ having b-bit long entries, where Υ(x) is supposed to be

ECC(Γ(x)).

Our new verifier V , on oracle access to the input W and proof Γ ◦Υ, will simulate the ROBUST-

80

PCPP–CIRCUIT-VAL. The queries to the input oracle are performed just as before however, for

each query x ∈ Fm in the proof oracle Γ made by ROBUST-PCPP–CIRCUIT-VAL, V will query the

corresponding log |Σ| bits in Γ(x) and the b bits in Υ(x). Thus, the query complexity of V is at most

log |Σ|+ b times the number of queries issued by the earlier verifier. Since b = O(log |Σ|), the query

complexity of the new verifier V is a constant times that of the previous one. The randomness is

exactly the same. The action of the new verifier V is as follows: Suppose ROBUST-PCPP–CIRCUIT-

VAL issues queries x1, . . . , xq1 to the proof oracle Γ, and queries i1, . . . , iq2 to the input oracle, then

V issues queries x1, . . . , xq1 to the proof oracle Γ, a similar set of queries x1, . . . , xq1 to the proof or-

acle Υ and i1, . . . , iq2 to the input oracle. V accepts (Γ(x1), . . . ,Γ(xq1),Υ(x1), . . . ,Υ(xq1),W (i1), . . .

dots,W (iq2)) iff the ROBUST-PCPP–CIRCUIT-VAL accepts (Γ(x1), . . . ,Γ(xq1),W (i1), . . . ,W (iq2)) and

Υ(xi) = ECC(Γ(xi)) for all i = 1, . . . , q1. It is straightforward to check that V has perfect com-

pleteness if ROBUST-PCPP–CIRCUIT-VAL has perfect completeness. The robust soundness of the

verifier is given by the following lemma.

Lemma 5.4.7 Let α, δ0 be the universal constants that appear in Theorem 5.3.2. For any integer m, d′ >

0, proximity parameter δ ∈ (0, 1), fields F , subset H ⊆ F such that d′ = (6m + 3)|H | and |F | ≥
max{αd′3, d′/(1 − 7δ0/2)}, the following holds. Suppose W is δ-far from satisfying the circuit C. Then

for any proof oracle Γ ◦ Υ, with probability at least Ω(δ), either a constant (i.e., Ω(1)) fraction of the entire

input read in the proof oracle Γ ◦Υ or the entire input in the input oracle W (i.e, W [i]) needs to be changed

in order to make the either verifier V accept.

It is to be noted that the robustness of the proof oracle is not the same as similar parameters in

Lemmas 5.4.7, but weaker by a constant factor as suggested in Lemma 2.4.5.

Finally, we conclude by proving Theorem 5.1.2.

Proof (of Theorem 5.1.2): Theorem 5.1.2 is proved using the verifier V described in the earlier

paragraph. Recall that V is the verifier obtained by transforming the ROBUST-PCPP–CIRCUIT-

VAL verifier to a binary alphabet. We setm = log n/ log logn and choose F to be a field of size αd′3.

For sufficiently large n, this setting of parameters satisfies all the requirements of Lemma 5.4.7.

Also for this value of m, we have that n1/m = logn. Recall that |H | = n1/m, d = m|H | and

d′ = (6m+ 3)|H |. Hence, d = mn1/m = O(log2 n), d′ = O(mn1/m) = O(log2 n) and |F | = poly logn.

The randomness complexity of the ROBUST-PCPP–CIRCUIT-VAL verifier (i.e., before the trans-

formation to the binary alphabet) is then O(m log |F |) = O(log n) while the query complexity is

O(m|F | log |F |) = poly logn. The decision complexity of this verifier is also poly logn. As men-

tioned in the earlier paragraph, the transformation from the alphabet Σ to the binary alphabet

maintains the randomness complexity while the query (and decision) complexity increase by at

most a constant factor. Hence, the randomness, query and decision complexities of the verifier are

as before but with weaker constants.

81

We now have to prove the soundness guarantee of this verifier. So far, we have considered the

proof and input oracle separately. Hence the robustness in Lemma 5.4.7 were expressed separately

for the proof and input oracles. We can consider them together by giving equal weights to the two

oracle portions in the decision circuits. This weighting may increase the query (and decision) com-

plexity increase by at most a factor of 2, and has no affect on any other parameter. This weighting

results in the following soundness guarantee. If W is δ-far from any satisfying assignment, then

with probability at least Ω(δ), at least a constant fraction of the entire input read by the verifier

needs to be modified in order to make the verifier accept.

We have thus obtained a robust PCPP verifier for CKTVAL for all proximity parameters δ ∈
(0, 1) with randomness complexity O(log n), query (and decision complexity) poly logn and robust

soundness error 1−Ω(δ) with Ω(1) (i.e., constant) robustness parameter. This proves Theorem 5.1.2.

82

Part II

Short PCPs

83

CHAPTER 6

Introduction

6.1 Introduction - Main Construct

In this part, we prove our main construct, which is the technical meat of this thesis. This construct

forms the basic building block for our composition. The main theorems of this thesis (Theorem 1.3.2

and 1.3.3) are proved by composing the main construct with itself several times.

Throughout this part, n denotes the length of the explicit input given to the PCPP verifier, which

in case of CIRCUIT VALUE is defined as the size of the circuit (given as explicit input). As stated

before, our main results rely on the following highly efficient robust PCP of proximity.

Theorem 6.1.1 (Main Construct) There exists a universal constant c such for all n,m ∈ Z
+, 0 < δ, γ <

1/2 satisfying n1/m ≥ mcm/(γδ)3 and δ ≤ γ/c, CIRCUIT VALUE has a robust PCP of proximity (for

circuits of size n) with the following parameters

• randomness
(
1− 1

m

)
logn+O(m logm) +O(log logn) +O(log(1/δ)),

• decision complexity n1/m · poly(logn, 1/δ), which also upper-bounds the query complexity.1

• perfect completeness, and

• for proximity parameter δ, the verifier has robust-soundness error γ with robustness parameter (1 −
γ)δ.

1In fact, we will upper-bound the query complexity by q = n1/m · poly(log n, 1/δ) and show that the verifier’s decision

can be implemented by a circuit of size eO(q), which can also be bounded by n1/m · poly(log n, 1/δ) with a slightly larger

unspecified polynomial.

85

We comment that the condition δ < γ/cmerely means that we present robust PCPs of proximity

only for the more difficult cases (when δ is small).

The main point to be noted is that the above construct is extremely efficient in randomness.

For instance, suppose we set m = 2 and δ, γ suitably to satisfy the hypothesis of the theorem.

Then, Theorem 6.1.1 states that CKTVAL has a robust PCPP with randomness complexity log n/2+

O(log logn) and query complexity
√
n·poly logn. The amount of randomness (≈ logn/2) is less than

the number of bits required to even index an element in the proof (≈ log n)! The query complexity

is not constant, in fact it is approximately
√
n. However, we can use composition to reduce the

query complexity.

6.1.1 Outline of this Part

This part is devoted to proving Theorem 6.1.1 and showing how this implies the main theorems

of the thesis (Theorem 1.3.1, 1.3.2 and 1.3.3). We begin this part by explaining some of the salient

points in our construction which helps us save on randomness (Section 6.2). The construction is

very technical, so we provide an overview of the construction in Section 6.3. The actual construc-

tion itself is presented in Chapters 7–9. We start by presenting a (highly efficient) ordinary PCP

(establishing Theorem 1.3.1), which lends itself to the subsequent modifications. In Chapter 8, we

augment this PCP with a test of proximity, deriving an analogous PCP of proximity. In Chapter 9

we present a robust version of the PCP of proximity derived in the previous sections. In Chapter 10,

we show how to derive Theorems 1.3.2 and 1.3.3, by composing this Robust PCP of proximity with

itself multiple times.

6.2 Saving on Randomness

In this section, we highlight the salient points in the construction of our basic building block (proof

of Theorem 6.1.1) which helps us save on randomness. For this purpose, we mention some of the

intermediate steps in our construction, explain how earlier PCP constructions handled these steps

and how our construction improves on the amount of randomness being used in these steps. The

main steps where we save on randomness can be broadly classified into the following five items.

1. Reduction to Algebraic Problem

2. Randomness for composition

3. Bundling without adding a variable

4. Derandomized Low-Degree Test

5. Overcoming the 2
√

log n barrier via PCPs of Proximity

86

It is to be noted that some of these improvements (not all) were present in earlier constructions of

short PCPs.

Before looking at each of these items, it is useful to have a bird’s eyeview of a typical alge-

braic construction of a PCP. Most algebraic constructions of PCPs (which includes all constructions

with the exception of that of Dinur and Reingold) proceed along the following lines: In the first

step, CIRCUIT SATISFIABILITY is reduced to some algebraic problem (for instance, Polynomial Con-

straint Satisfaction), which is easily amenable to PCP constructions. In this algebraic problem, the

satisfying assignment A which is the standard NP-proof for CKTSAT is encoded by a low-degree

polynomial Â. Instead of the NP-proof A, the prover provides as proof the table of evaluations of

this polynomial Â. To verify that the low-degree polynomial Â is in fact an encoding of a satisfying

assignment, the prover provides another low-degree polynomial P (also as a table of evaluations)

which can be computed using some local computation rules given the polynomial Â. The poly-

nomial P satisfies the property that it is zero on some sub-cube if and only if it is obtained from

a polynomial Â that encodes a satisfying assignment. Thus, the PCP verifier needs to make the

following checks:

1. check that the functions Â and P (both functions provided to it as tables of evaluations) are

close to low-degree polynomials,

2. check that the polynomial P is obtained consistently from Â (i.e., P is in fact the polynomial

that is obtained from Â by applying the above mentioned local computation rules),

3. and finally, check that P is zero on the required sub-cube.

We can now describe the steps which save on randomness.

Reduction to Algebraic Problem: The first blow-up in the proof size is due to the reduction from

CIRCUIT SATISFIABILITY to the algebraic problem. For instance, the reduction described in the

proof of the PCP Theorem (Section 5.4.1 of Chapter 5) incurs a n6 blowup in the proof size. We

cannot afford such an expensive reduction. To obtain nearly linear-sized PCPs, we require reduc-

tions that blow up the instance size by a constant factor or at most a polylogarithmic factor. For

this purpose, all constructions of short PCPs, beginning with the work of Polishchuk and Spiel-

man [PS94], reduce CKTSAT to a coloring problem on de-Bruijn graph, which has a short-sized

algebraic description. We also adopt this approach, with slight modifications to satisfy our require-

ments (Sections 7.2 and 7.3).

Randomness for composition: Another step where randomness was incurred in earlier PCP con-

structions is in the composition of the main construct with itself. As explained in Section 3.1.1,

composition was performed earlier by “parallelizing” the outer PCP verifier. We cannot afford the

87

cost of any known parallelization procedure because at the very least these procedures increase the

length of the proof by a factor related to the answer size of the outer PCP verifier. Our composition

completely avoids this parallelization procedure (see Section 3.2). Composition of robust PCPPs is

not only simpler than earlier compositions but also helps in saving randomness during the compo-

sition step. In fact, no extra randomness is required for the new composition. The randomness of

the composed verifier is precisely the sum of the randomness of the outer and inner verifiers.

Bundling without adding a variable: The bird’s eyeview description given earlier is an over-

simplification of most PCP constructions. The proof typically involves the evaluations of several

low-degree polynomials, not just the two polynomials Â and P mentioned. In fact, most proofs con-

tain a super-constant number of such low-degree polynomials. Suppose there are k such functions

p1, . . . , pk. Step. 1 of the verifier checks that each of these functions is close to being low-degree.

However, we cannot perform these low-degree checks for each of the functions individually since

this would result in a drop in the robustness by a factor of k. For this purpose, we bundle the

several functions p1, . . . , pk together. Most earlier PCP constructions performed this bundling by

introducing a new variable as follows: Let p1, . . . , pk : Fm → F be the k functions on m variables.

A new function q : Fm+1 → F on m + 1 variables is then defined which bundles together all the

k functions as follows: For i = 1, . . . , k, f(x1, . . . , xm, i) = pi(x1, . . . , xm). Thus, checking if the

functions p1, . . . , pk are low-degree is equivalent to checking if q is low-degree. The new variable y

behaves as index to the functions p1, . . . , pk. Note, we are only interested in the values of q when y

is in the set {1, . . . , k}. However, introducing the new variable y defines the function q for all val-

ues of y in the field F . Thus, this bundling procedure increases the proof-size by a factor of |F |/k.

This blowup is too expensive for the parameters we seek. So we instead perform a “combinatorial

bundling” instead of the standard algebraic bundling indicated above (by adding a variable). Our

combinatorial bundling does not increase the proof-size at all (See Sections 5.4.1 and 9.3 for actual

details of the combinatorial bundling procedure).

To understand how randomness is saved in the next two steps, we will focus on the first of

the three checks performed by the verifier – the task of low-degree testing. For this purpose, we

will go into the details of this test. The task of low-degree testing is typically performed by what

is popularly called the LINE–POINT–TEST test. The LINE–POINT–TEST test works as follows (for

more details, see Appendix A): The LINE–POINT–TEST checks if a given function f : Fm → F

is close to some polynomial of degree at most d with the help of another oracle h. The oracle h

returns for each line in Fm a univariate polynomial of degree d. For line L, the polynomial h(L) is

supposedly the restriction of the function f to the line L.

88

LINE–POINT–TEST

Input: A function f : Fm → F and lines-oracle h : {lines in Fm} → {univariate degree d polynomials}
where F is a finite field.

Test: Choose a random line L in Fm and a random point x on the line L. Query the function

f at the point x and the lines-oracle for the line L. Accept if the polynomial h(L) agrees

with f(x).

There are other variations of the LINE–POINT–TEST, e.g., using planes instead of lines (plane-point

test of Raz and Safra [RS96]), random axis-parallel lines instead of random lines (low-degree tests

of [BFLS91, AS98, PS94])

Derandomized Low-Degree Tests: The LINE–POINT–TEST in its above form is expensive in ran-

domness for the following reason: Choosing a random line in Fm requires choosing two random

points in Fm and this costs 2m log |F | bits of randomness. On the other hand, the size of the in-

put function f is only Fm. Hence, the LINE–POINT–TEST results in a quadratic blowup in the

proof-size. In fact, the PCPs of Harsha and Sudan [HS00] were of nearly cubic size since they em-

ployed the plane-point test. However, luckily for us, there have been several improvements in the

LINE–POINT–TEST. Ben-Sasson et al. [BSVW03] following the work of Goldreich and Sudan [GS02]

observed that it is sufficient if the lines are chosen from a derandomized set of size approximately

Fm(1+o(1) (For further details, see Appendix A). This derandomized low-degree tests uses only

m(1 + o(1)) log |F | bits of randomness compared to the 2m log |F | bits needed earlier. This incurs

only a nearly linear blowup in the proof-size. Both our PCPs and the short PCPs of [BSVW03] are

constructed using these derandomized low-degree tests.

Overcoming the 2
√

log n barrier via PCPs of Proximity: This step is our main improvement over

all earlier constructions of short PCPs. We show below that all PCP constructions (including that

of [BSVW03]) which use the above-mentined LINE–POINT–TEST (either in its original form or in

its derandomized form) incur a blowup factor of at least 2
√

log n in the proof-size. We then explain

how this barrier of 2
√

log n can be overcome if we use PCPs of proximity instead of PCPs.

We first note that even before the LINE–POINT–TEST can be applied, we need to encode the

input into a polynomial of the form f : Fm → F using a Reed-Muller encoding. A Reed-Muller

encoding involves a blow-up factor of at least mm in the size of the proof. Thus, if the original

input is of size n, then the size of the new encoding (which is of size |F |m, since it is a table of

evaluations) is at least mm · n (i.e., |F |m ≥ mm · n). Now consider the LINE–POINT–TEST. It first

chooses a random line and then a random point on the line. Thus, the total randomness required

for LINE–POINT–TEST is at least R = log(Number of random lines in Fm) + log |F |. The number

89

of random lines in Fm (even for the derandomized LINE–POINT–TEST) is at least |F |m. Hence,

the total randomness required by the LINE–POINT–TEST is at least R = (m + 1) log |F |. Hence,

the blowup in the proof size incurred by the LINE–POINT–TEST is at least 2R/|F |m since the old-

proof size is |F |m and the new proof is at least 2R. Observe that 2R/|F |m = |F | which is at least

m·n1/m (since |F |m ≈ mm ·n). Hence, the overall blowup in proof-size incurred by the Reed-Muller

encoding followed by the LINE–POINT–TEST is at least mm × m · n1/m ≥ mm · n1/m. However,

mm · n1/m ≥ 2O(
√

log n) for all values of m (mm · n1/m is minimized when m ≈ √logn in which case

mm · n1/m ≈ 2O(
√

log n)). Hence, any use of the LINE–POINT–TEST (derandomized or otherwise)

incurs a blowup of at least 2
√

log n in the proof-size. It is to be noted that the PCPs of [BSVW03]

exactly match this lower-bound.

We now demonstrate how we can overcome this barrier of 2
√

log n using PCPs of proximity

instead of PCPs. Recall that PCPs of proximity are designed to check that a given string satisfies a

property by merely probing the string and an additional proof at a very few locations. The main

purpose of the LINE–POINT–TEST is to check that the restriction of the function f : Fm → F

to most random lines is a univariate polynomial of degree at most d. We can now do this check

directly using PCPs of proximity without the help of any additional lines oracle as follows:

LINE–POINT–TEST--VIA-PCPPS

Input: A function f : Fm → F where F is a finite field.

Test: Choose a random line L in Fm. Query the function f at each point x on the line L and

check that the restriction of f to the line L is a univariate polynomial of degree d.

It is not immediate where PCPPs play a role in the above test. In fact, PCPPs do not occur in

the description of the LINE–POINT–TEST--VIA-PCPPS at all. They are used when composing the

above verifier as follows: If the LINE–POINT–TEST--VIA-PCPPS is used as an outer verifier, then

one can compose it with a inner PCPP verifier that checks if the string f |L is close to a univariate

polynomial of degree d. Note this cannot be performed if we are composing using PCPs instead of

PCPs of proximity.

Let us now analyse the blowup in proof-size. As before, the Reed-Muller enoding involves a

blowup factor of at leastmm. For the LINE–POINT–TEST--VIA-PCPPS the only randomness used is

to choose a random line, which if we are using the derandomized lines of [BSVW03], is at mostR′ =

m(1+ o(1)) log |F |. Thus, we do not incur an extra log |F | term in the randomness as before. Hence,

the blowup due to the LINE–POINT–TEST--VIA-PCPPS is at most 2R′

/|F |m = |F |o(m). Hence, the

overall blowup in proof-size is mm× |F |o(m) ≈ mm ·no(1) ≈ mm. Unlike in the earlier case, there is

no inherent lower bound (mm can be as small as possible as opposed to mm · n1/m which is lower

bounded by 2
√

log n). In fact, we do construct PCPs with blowup factors of at most 2(log n)ε

(for

constant query complexity) and 2o(log log n)2 (for o(log logn) query complexity) both of which are

90

significantly smaller than 2
√

log n. Though there is no inherent lower-bound on the proof-size as in

the earlier case, we are not able to construct PCPs with blowup less than 2(log n)ε

(for constant query

complexity) and 2o(log log n)2 (for o(log logn) query complexity) due to certain technical limitations

of our construction.

6.3 Overview of Main Construct

Following is an overview of the proof of Theorem 6.1.1; the actual proof of this theorem is given in

the subsequent three chapters.

Theorem 6.1.1 is proved by modifying a construction that establishes Theorem 1.3.1. We follow

[HS00] and modify their construction. (An alternative approach would be to start from [PS94],

but that construction does not seem amenable to achieving robust soundness.) The construction

of [HS00] may be abstracted as follows: To verify the satisfiability of a circuit of size n, a verifier

expects oracles Fi : Fm → F , i ∈ {1. . . . , t = poly logn}, where F is a field and m is a parameter

such that Fm ≈ mm ·n. The verifier then needs to test that (1) each of the Fi’s is close to a m-variate

polynomial of low degree and (2) the polynomials satisfy some consistency properties which verify

that Fi is locally consistent with Fi−1.2 (These consistency checks include tests which depend on

the input circuit and verify that Fi’s actually encode a satisfying assignment to the circuit.)

We work within this framework — namely our verifier will also try to access oracles for Fi’s and

test low-degreeness and consistency. Our key modification to this construction is a randomness-

reduction in the low-degree test obtained by using the small collection of (small-biased) lines

of [BSVW03], while using only the “canonical” representations of these lines (and avoiding any

complication that was introduced towards “proof composition”). In particular, unlike in [HS00,

GS02, BSVW03], we cannot afford to pack the polynomials F1, . . . ,Ft into a single polynomial (by

using an auxiliary variable that blows-up the proof length by a factor of the size of the field in use).

Instead, we just maintain all these t polynomials separately and test them separately to obtain The-

orem 1.3.1. (In the traditional framework of parallelized PCPs, this would give an unaffordable

increase in the number of (non-Boolean) queries. However, we will later ameliorate this loss by a

“bundling technique” that will yield robust-soundness.)

The resulting PCP is converted into a PCP of proximity by comparing the input-oracle (i.e.

supposed satisfying assignment to the circuit) to the proof-oracle (which is supposed to include

an encoding of the said assignment). That is, we read a random location of the input and the

corresponding location of the proof oracle, and test for equality. Actually, these locations of the

proof-oracle must be accessed via a self-correction mechanism (rather than merely probing at the

2Strictly speaking, the consistency checks are a little more complicated, with the functions really being indexed by two

subscripts and consistency tests being between Fi,j and Fi,j−1, as well as between Fi,0 and Fi+1,0. However, these

differences don’t alter our task significantly — we ignore them in this section to simplify our notation.

91

desired points of comparison), since they constitute only a small part of the proof oracle (and thus

corruptions there may not be detected). (This technique was already suggested in [BFLS91].)

The most complex and subtle part of the proof of Theorem 6.1.1 is establishing the robust-

soundness property. We sketch how we do this below, first dealing with the low-degree test and

the consistency tests separately, and then showing how to reconcile the two “different” fixes.

Low-degree tests of F1, . . . ,Ft: Selecting a random line ℓ : F → Fm (from the aforementioned

sample space), we can check that (for each i) the restriction of Fi to the line ℓ (i.e., the function

fi(j) , Fi(ℓ(j))) is a low-degree (univariate) polynomial. Each of these tests is individually robust;

that is, if Fi is far from being a low-degree polynomial then with high probability the restriction of

Fi to a random line ℓ (in the sample space) is far from being a low-degree polynomial. The problem

is that the conjunction of the t tests is not sufficiently robust; that is, if one of the Fi’s is δ-far from

being a low-degree polynomial then it is only guaranteed that the sequence of t restrictions (i.e., the

sequence of the fi’s) is (δ/t)-far from being a sequence of t low-degree (univariate) polynomials.

Thus robustness decreases by a factor of t, which we cannot afford for non constant t.h

Our solution is to observe that we can “bundle” the t functions together into a function F :

Fm → F t such that if one of the Fi’s is far from being a low-degree polynomial then the restriction

of F to a random line will be far from being a bundling of t low-degree univariate polynomials.

Specifically, for every x ∈ Fm, define F(x) , (F1(x), ...,Ft(x)). To test that F is a bundling of low-

degree polynomials, select a random line ℓ (as above), and check that f ℓ(j) = F(ℓ(j)) is a bundling

of low-degree univariate polynomials. Thus, we establish robustness at the bundle level; that is, if

one of the Fi’s is far from being low degree then, with high probability, one must modify f ℓ on a

constant fraction of values in order to make the test accept. The point is that this robustness refers

to Hamming distance over the alphabet F t, rather than alphabet F as before. We can afford this

increase in alphabet size, as we later encode the values of F using an error-correcting code in order

to derive robustness at the bit level.

We wish to highlight a key point that makes the above approach work: when we look at the

values of F restricted to a random line, we get the values of the individual Fi’s restricted to some

random line, which is exactly what a low-degree test of each Fi needs. This fact is not very surpris-

ing, given that we are subjecting all Fi’s to the same test. But what happens when we need to make two

different types of tests? This question is not academic and does come up in the consistency tests.

Consistency tests: To bundle the t consistency tests between Fi and Fi+1 we need to look into

the structure of these tests. We note that for every i, a random test essentially refers to the val-

ues of Fi and Fi+1 on (random) i-th axis-parallel lines. That is, for every i, and a random x′ =

(x1, ..., xi−1) ∈ F i−1 and x′′ = (xi+1, ..., xm) ∈ Fm−i, we need to check some relation between

92

Fi(x
′, ·, x′′) and Fi+1(x

′, ·, x′′).3 Clearly, querying F as above on the ith axis-parallel line, we can

obtain the relevant values from F(x′, ·, x′′), but this works only for one specific value of i, and other

values of i will require us to make other queries. The end result would be that we’ll gain nothing

from the bundling (i.e., from F) over using the individual Fi’s, which yields a factor of t loss in the

robustness.4 Fortunately, a different bundling works in this case.

Consider F
′

such that F
′
(x) , (F1(x),F(2)(S(x)), ...,Ft(S

t−1(x))), for every x ∈ Fm, where S

denotes a (right) cyclic-shift (i.e., S(x1, ..., xm) = (xm, x1 . . . , xm−1) and Si(x1, ..., xm) =

(xm−(i−1), . . . , xm, x1, x2, . . . , xm−i)). Now, if we ask for the value of F
′

on the first and last axis-

parallel lines (i.e., on (·, x2, ..., xm) and (x2, ..., xm, ·) = S−1(·, x2, ..., xm)), then we get all we need

for all them tests. Specifically, for every i, the i-th component in the bundled function F
′
(·, x2, ..., xm)

is Fi(S
i−1(·, x2, ..., xm)) = Fi(xm−i+2, ..., xm, ·, x2, ..., xm−i+1), whereas the (i+ 1)-st component in

F
′
(S−1(·, x2, ..., xm)) is Fi+1(S

i(S−1(·, x2 . . . , xm))) = Fi+1(xm−i+2, ..., xm, ·, x2, ..., xm−i+1). Thus,

we need only to query two bundles (rather than t), and robustness only drops by a constant factor.

Reconciling the two bundlings: But what happens with the low-degree tests that we need to do

(which were “served” nicely by the original bundling F)? Note that we cannot use both F and F
′
,

because this will requires testing consistency between them, which will introduce new problems

as well as a cost in randomness that we cannot afford. Fortunately, the new bundling (i.e., F
′
),

designed to serve the axis-parallel line comparisons, can also serve the low-degree tests. Indeed,

the various Fi’s will not be inspected on the same lines, but this does not matter, because the

property of being a low-degree polynomial is preserved when “shifted” (under S).

Tightening the gap between robustness and proximity: The above description suffices for deriving

a weaker version of Theorem 6.1.1 in which the robustness is only (say) δ/3 rather than (1 − γ)δ
for a parameter γ that may be set as low as 1/poly(log n). Such a weaker result yields a weaker

version of Theorem 10.2.1 in which the query complexity is exponentially larger (e.g., for proof-

length exp(o(log logn)2) ·n, we would have obtained query complexity exp(o(log logn)) = logo(1) n

rather than o(log logn)); see comment at the end of Section 10. To obtain the stronger bound on

the robustness parameter, we take a closer look at the conjunction of the standard PCP test and

the proximity test. The PCP test can be shown to have constant robustness c > 0, whereas the

proximity test can be shown to have robustness δ′ , (1 − γ))δ. When combining the two tests, we

obtain robustness equal to min(αc, (1 − α)δ′), where α is the relative length of queries used in the

PCP test (as a fraction of the total number of queries). A natural choice, which yields the weaker

3Again, this is an oversimplification, but suffices to convey the main idea of our solution.
4It turns out that for constant m (e.g., m = 2) this does not pose a problem. However, a constant m would suffice only

for proving a slightly weaker version of Theorem 1.3.2 (where o(log logn) is replaced by log logn). but not for proving

Theorem 1.3.3, which requires setting m = logε n, for constant ε > 0.

93

result, is to weight the queries (or replicate the smaller part) so that α = 1/2. (This yields robustness

of approximately min(c, δ′)/2.) In order to obtain the stronger bound, we assign weights such that

α = γ, and obtain robustness min(γc, (1−γ)δ′) > min(Ω(γ), (1−2γ)δ), which simplifies to (1−2γ)δ

for δ < γ/O(1). (The above description avoids the fact that the PCP test has constant soundness

error, but the soundness error can be decreased to γ by using sequential repetitions while paying

a minor cost in randomness and while approximately preserving the robustness. We comment that the

proximity test, as is, has soundness error γ.)

94

CHAPTER 7

A randomness-efficient PCP

7.1 Introduction

In this chapter, we present a vanilla version (Theorem 7.1.1) of Theorem 6.1.1. More specifically, we

construct a regular PCP for CIRCUIT SATISFIABILITY (i.e., a robust PCP of proximity without either

the robustness or proximity properties). This construction favors over earlier PCP constructions in

the fact that it is very efficient in randomness. As mentioned earlier, this theorem suffices to prove

Theorem 1.3.1.

Theorem 7.1.1 There exists a universal constant 0 < ε < 1 such that the following holds. Supposem ∈ Z
+

satisfies m ≤ logn/loglogn Then there exists a PCP for CIRCUIT SATISFIABILITY (for circuits of size n)

with the following parameters

• randomness
(
1− 1

m

)
logn+O(m logm) +O(log logn),

• query complexity q = O(m2n1/m log2 n) and decision complexity Õ(q),

• perfect completeness,

• and soundness error 1− ε.

The construction of the PCP for CIRCUIT SATISFIABILITY proceeds in three steps. First, we

transform the input circuit ϕ to a well-structured circuit ϕ′ along the lines of Polishchuk and Spiel-

man [PS94, Spi95] (Section 7.2). ϕ′ is only slightly larger than ϕ, but has an algebraic structure

that will be crucial to our verification process. Any legal assignment to the gates of ϕ (i.e. one

that preserves the functionality of the gates of ϕ) can be transformed to a legal assignment to ϕ′.

95

The important property of ϕ′ is the following: If we encode an assignment to the gates of ϕ′ using

a specific sequence of Reed-Muller codewords (i.e. low degree polynomials), then the legality of

the assignment can be locally verified (by reading a small random portion of the encoding). The

encoding via low degree polynomials (and resulting local tests) is as in Harsha and Sudan [HS00]

and is described in Section 7.3. Thus, our PCP verifier will essentially test (i) that the encoding of

the purported satisfying assignment to ϕ′ is formed of low degree polynomials, (this part will be

done using the randomness-efficient low degree test of Ben Sasson et al. [BSVW03]); and (ii) that the

assignment is legal. Section 7.4 describes the construction of the PCP verifier and Section 7.5 ana-

lyzes its properties. Most of the above results are implicit in the literature, but carefully abstracting

the results and putting them together helps us in significantly reducing the randomness of the PCP

verifier.

7.2 Well-structured Boolean circuits

The main problem with designing a randomness-efficient PCP verifier directly for CIRCUIT SAT-

ISFIABILITY is that we need to encode the assignment to all gates of the input circuit using cer-

tain Reed-Muller based codes, in such a way that will allow us to locally verify the legality of

all gates of the circuit, using only the encoded assignment. In order to do this, we require the

circuit to have a well-behaved structure (amenable to our specific encoding and verification de-

mands). Of course, an arbitrary circuit does not necessarily have this structure, but luckily we

have the technology to overcome this. More to the point, we can restructure any circuit into a

well-behaved circuit that will suit our needs. The natural encoding (used e.g. in the Hadamard

based PCP, Section 4) incurs a quadratic blowup in size. To get over this problem, Polishchuk and

Spielman [PS94, Spi95] introduced a different, more efficient restructuring process that embeds the

input circuit into well-structured graphs known as de Bruijn graphs. Indeed, the blowup in cir-

cuit size using these circuits is merely by a logarithmic multiplicative factor, and their usefulness

for the local verification of legal assignments will become evident later (in Section 7.3). As in Pol-

ishchuk and Spielman [PS94, Spi95], we embed the input circuit into wrapped de Bruijn graphs

(see Definition 7.2.1). We use a slightly different definition of de Bruijn graphs, more convenient

for our purposes, than that used in [PS94, Spi95]. However it can easily be checked that these two

definitions yield isomorphic graphs. The main advantage with the de Bruijn graphs is that the

neighborhood relations can be expressed very easily using simple bit-operations like cyclic-shifts

and bit-flips. In [PS94, Spi95] the vertex set of these graphs is identified with a vector space. We

instead work with a strict embedding of these graphs in a vector space where the vertices are a

strict subset of the vector space. The benefit of both approaches is that the neighborhood functions

can be expressed as affine functions (see Section 7.3 for more details). The reason for our approach

96

will be explained at the end of Section 7.3.

Definition 7.2.1 The wrapped de Bruijn graph GN,l is a directed graph with l layers each with 2N nodes

which are represented byN -bit strings. The layers are numbered 0, 1, . . . , l−1. The node represented by v =

(b0, . . . , bi∗ , . . . , bN−1) in layer i has edges pointing to the nodes represented by Γi,0(v) = (b0, . . . , bi∗ , . . . , bN−1)

and Γi,1(v) = (b0, . . . , bi∗⊕1, . . . , bN−1) in layer (i+1) modulo l, where i∗ is imoduloN and a⊕b denotes

the sum of a and b modulo 2.

See Figure 7-1 for an example.

Figure 7-1: The wrapped de Bruijn graph G3,3

Notice the first and last layer are the same.

We now describe how to embed a circuit into a wrapped de Bruijn graph (see Figure 7-2 for

a simple example). Given a circuit C with n gates (including both input and output gates), we

associate with it a wrapped de Bruijn graph GN,l where N = log n and l = 5N = 5 logn. We then

associate the nodes in layer 0 with the gates of the circuit. Now, we wish to map each wire in

the circuit to a path in GN,l between the corresponding nodes of layer 0. Standard packet-routing

techniques (see [Lei92]) can be used to show that if the number of layers l is at least 5N then such a

routing can be done with edge-disjoint paths. (Recall that we work with circuits whose fan-in and

fan-out are 2.)

97

Thus, we can find “switches” for each of the nodes in layers 1, . . . , l − 1 of the graph such that

the output of each gate (i.e., node in layer 0) is routed to the input of the gates that require it. Each

node has two inputs and two outputs, and thus there is a constant number of switches routing

incoming edges to outgoing ones (See Figure 7-3). For nodes in layer 0, instead of specifying a

Figure 7-2: Embedding of a circuit into G3,3

In this example all paths between nodes at 0 layer are vertex disjoint. For general circuits we merely

need edge disjoint paths.

switch, we specify the functionality of the Boolean gate associated to that node in the circuit (e.g.

AND, OR, PARITY, NOT, INPUT, OUTPUT). Actually unary gates (such as NOT and OUTPUT)

have two forms (NOT, NOT’, OUTPUT, OUTPUT’) in order to specify which of the two incoming

edges in the de Bruijn graph to use.

This specifies the embedding of the input circuit into a well-structured circuit (based on a de

Bruijn graph). More precisely, let C = {Type of switching actions}∪ {Type of Boolean gates} be the

set of allowable gates of the well-structured circuit (See Figure 7-3) . Given a circuit on n gates,

we can construct, in polynomial time, a wrapped de Bruijn graph GN,l (where N = logn and

l = 5 logN) and l functions T0, T1, . . . , Tl−1 : {0, 1}N → C where each function Ti is a specification

of the gates of layer i (i.e. a specification of the switching action or Boolean functionality).

We now demonstrate how to translate a proof that a circuit is satisfiable into an assignment

that satisfies the embedded circuit. A proof that a circuit is satisfiable consists of an assignment

of 0’s and 1’s to the inputs and the gates of the circuit such that each gate’s output is consistent

with its inputs and the output gate evaluates to 1. The corresponding assignment to the embedded

circuit consists of an assignment of 0’s and 1’s to the edges entering and leaving the nodes of the

wrapped de Bruijn graph that is consistent with the functionality of the gates (in layer 0) and the

98

Figure 7-3: Some gates of a well-structured circuit

Gates 1–2 are switching gates, and gate 3 sits in layer 0 and computes the parity (xor) function.

switching actions of the nodes (in the other layers). Since we are assigning values to nodes of the

embedded graph (and not their edges), the assignment actually associates a 4-tuple of 0’s and 1’s to

each of the nodes in the graph indicating the value carried by the four edges incident at that node

(two incoming and two outgoing). More formally, the embedded assignment is given by a set of l

functions A0, A1, . . . , Al−1 where each function Ai : {0, 1}N → {0, 1}4 specifies the values carried

by the 4 edges incident at that vertex.

We now list the constraints on the embedded circuit that assure us that the only legal assign-

ments are ones that correspond to legal satisfying assignments of the original circuit, i.e. assign-

ments that correctly propagate along the edges of the circuit, correctly compute the value of every

gate and produce a 1 at the output gate.

Definition 7.2.2 The assignment constraints for each node of the well-structured circuit require:

• the two outgoing values at the node are propagated correctly to the incoming values of its neighbors at

the next level,

• for nodes at layers 6= 0, the two outgoing values have the unique values dictated by the incoming

values and the switching action,

• for non-OUTPUT nodes in layer 0, both outgoing values equal the unique value dictated by the gate

functionality and the incoming values (the INPUT functionality merely requires that the two outgoing

values are equal to each other)

• for nodes in layer 0 with an OUTPUT functionality, the appropriate incoming value equals 1

Let ψ : C × ({0, 1}4)3 → {0, 1} be the boolean function such that ψ(t, a, a0, a1) = 0 iff a node whose T -gate

is t, A-assignment is a, and whose neighbors in the next layer have A-assignments a0 and a1 respectively,

satisfies the aforementioned assignment constraints.

99

Figure 7-4: Example of legal and illegal assignments

The two vertices on the left are the inputs (at layer i−1) to a gate at layer i. Recall that assignments

evaluate each incoming and outgoing edge of a gate.

Observe that the definition of ψ is independent of N , the assignments Ai and gates Ti. By defi-

nition, the assignment A = (A0, . . . , Al−1) is legal for an embedded circuit defined by T0, . . . , Tl−1

if and only if for every layer i and every node v in layer i,

ψ

(
T (v), A(v), A

(
Γi,0(v)

)
, A
(
Γi,1(v)

))
= 0.

We are now ready to formally define the well-structured circuit satisfiability problem.

Definition 7.2.3 The problem STRUCTURED-CKTSAT has as its instances 〈GN,l, {T0, T1, . . . , Tl−1}〉where

GN,l is a wrapped de Bruijn graph with l layers and Ti : {0, 1}N → C is a specification of the node types of

layer i of the graph (Ti’s are specified by a table of values).

〈GN,l, {T0, . . . , Tl−1}〉 ∈ STRUCTURED-CKTSAT if there exists a set of assignments A0, A1, . . . , Al−1

where Ai : {0, 1}N → {0, 1}4 is an assignment to the nodes of layer i of GN such that for all layers i and all

nodes v in layer i,

ψ

(
T (v), A(v), A

(
Γi,0(v)

)
, A
(
Γi,1(v)

))
= 0.

The above discussion also demonstrates the existence of a reduction from CKTSAT to STRUCTURED-

CKTSAT which does not blow up the length of the target instance by more than a logarithmic

multiplicative factor.

Proposition 7.2.4 There exists a polynomial time reductionR from CKTSAT to STRUCTURED-CKTSAT

such that for any circuit C, it holds that C ∈ CKTSAT if and only if R(C) ∈ STRUCTURED-CKTSAT.

Moreover, if C is a circuit of size n, thenR(C) = 〈GN,l, {T0, . . . , Tl−1}〉 where N = ⌈logn⌉ and l = 5N .

Remark 7.2.5 The above reduction though known to take polynomial time (via routing techniques) is not

known to be of almost linear time.

100

Remark 7.2.6 We observe that if C is a satisfiable circuit, then any set of assignments A0, . . . , Al prov-

ing that the reduced instanceR(C) = 〈GN,l, {T0, . . . , Tl−1}〉 is a YES instance of STRUCTURED-CKTSAT

contains within it a satisfying assignment to the circuit C. Specifically, let I be the set of nodes in layer 0 that

have gate functionality INPUT associated with them. Then the assignment A0 restricted to the set of nodes

I (i.e.,A0|I) contains a satisfying assignment. More precisely, the satisfying assignment is obtained by con-

catenating the third bit (i.e., first outgoing bit) of A0|i ∈ {0, 1}4 for all i ∈ I . Conversely, every satisfying

assignment w to C can be extended to A0, . . . , Al−1 such that A0|I contains w. This is done by computing

the values of all gates in the computation of C(w), setting the outgoing bits of A0 according to these val-

ues, and routing them throughout GN,l according to the switching actions to obtain A1, . . . , Al−1 and the

incoming bits of A0. This observation will be vital while constructing PCPs of proximity(see Section 8).

Remark 7.2.7 Suppose the input circuit C is a linear circuit, in the sense that all gates are INPUT, OUT-

PUT, or PARITY gates, and the OUTPUT gates test for 0 rather 1 (See Definition 9.5.1). Then it can be

verified that the transformation mapping satisfying assignments w of C to legal assignments A0, . . . , Al−1

ofR(C) is GF(2)-linear. The reason is that each gate in the computation of C(w) is a GF(2)-linear function

of w. These remarks will be used in the coding applications, to obtain linear codes (see Section 9.5 for more

information).

7.3 Arithmetization

In this section, we construct an algebraic version of STRUCTURED-CKTSAT by arithmetizing it

along the lines of Harsha and Sudan [HS00]. The broad overview of the arithmetization is as fol-

lows: We embed the nodes in each layer of the wrapped de Bruijn graph GN,l in a vector space and

extend the gate specifications and assignments to low-degree polynomials over this space. Finally,

we express the assignment constraints (Definition 7.2.2) as a pair of polynomial identities satisfied

by these polynomials.

First for some notation. Let m be a parameter. Set h such that h = N/m where 2N is the

number of nodes in each layer of the de Bruijn graph. Choose a finite extension field F of GF(2)

of size roughly cFm
22h = cFm

22N/m where cF is a suitably large constant to be specified later.

Specifically, take F = GF(2)f for f = h + 2 logm + log cF . Let {e0, e1, . . . , ef−1} be a basis of F

over GF(2). Set H to be a subspace of GF(2)f (and hence a subset of F) spanned by {e0, . . . , eh−1}.
Note that Hm is a subset of the space Fm. Furthermore, |Hm| = 2N . Hence, we can embed each

layer of the graph GN,l in Fm by identifying the node v = (b0, . . . , bN−1) ∈ {0, 1}N with the element

(b0e0 + · · ·+ bh−1eh−1, bhe0 + · · ·+ b2h−1eh−1, . . . , b(m−1)he0 + · · ·+ bmh−1eh−1) of Hm. Henceforth,

we use both representations (N -bit string and element of Hm) interchangeably. The representation

will be clear from the context.

Any assignment S : Hm → F can be interpolated to obtain a polynomial S̃ : Fm → F of degree

101

at most |H | in each variable (and hence a total degree of at most m|H |) such that S̃|Hm = S (i.e.,

the restriction of S̃ to Hm coincides with the function S). Conversely, any polynomial S̃ : Fm → F

can be interpreted as an assignment from Hm to F by considering the function restricted to the

sub-domain Hm.

Recall that C and {0, 1}4 are the set of allowable gates and assignments given by the gate func-

tions Ti and assignments Ai in the STRUCTURED-CKTSAT problem. We identify C with some fixed

subset of F and we identify {0, 1}4 with the set of elements spanned by {e0, e1, e2, e3} over GF(2).

With this identification, we can view the assignments Ai and gates Ti as functions Ai : Hm → F

and Ti : Hm → F respectively. Furthermore, we can interpolate these functions, as mentioned

above, to obtain polynomials Ãi : Fm → F and T̃i : Fm → F of degree at most m|H | over F .

We now express the neighborhood functions of the graph in terms of affine functions over Fm.

This is where the nice structure of the wrapped de Bruijn graph will be useful. For any positive

integer i, define affine transformations Γ̃i,0, Γ̃i,1 : Fm → Fm as follows: Γ̃i,0 is the identity function.

For Γ̃i,1, first let t = ⌊i/h⌋ mod m and u = i mod h. Then Γ̃i,1(z0, . . . , zm−1) = (z0, . . . , zt−1, zt +

eu, zt+1, . . . , zm−1).1 It can checked from the above definition that for any layer i and node x in

layer i (which we view as a point in Hm), we have Γ̃i,j(x) = Γi,j(x) for j = 0, 1. In other words, Γ̃

is an extension of the neighborhood relations of the graph GN,l over Fm.

Finally, we now express the assignment constraints (Definition 7.2.2) as polynomial identities.

The first of these identities checks that the assignments given by the assignment polynomial Ãi are

actually elements of {0, 1}4 for points in Hm. For this purpose, let ψ0 : F → F be the univariate

polynomial of degree 24 given by

ψ0(z) =
∏

α∈{0,1}4
(z − α) (7.1)

This polynomial satisfies ψ0(z) = 0 iff z ∈ {0, 1}4 (recall we identified {0, 1}4 with a subset of F

spanned by e0, . . . , e3). We check that ψ0(Ãi(x)) = 0 for all x ∈ Hm and all layers i. We then arith-

metize the rule ψ (from Definition 7.2.2) to obtain a polynomial ψ1 : F 4 → F . In other words, ψ1 :

F 4 → F is a polynomial such that ψ1(t, a, a0, a1) = ψ(t, a, a0, a1) for all (t, a, a0, a1) ∈ C × ({0, 1}4)3.

The degree of ψ1 can be made constant, because |C| and |{0, 1}4| are constant.2 The two polynomial

identities we would like to check areψ0(Ãi(x)) = 0 and ψ1(T̃i(x), Ãi(x), Ãi+1(Γ̃i,0(x)), Ãi+1(Γ̃i,1(x))) =

0 for all x ∈ Hm. For notational convenience, we express these two conditions together as a pair

1An alternate description of Γ̃i,1 is as follows: Since F = GF(2)f , we can view Fm as mf -dimensional space over

GF(2). Hence, any vector (z0, . . . , zm−1) can be written as (b0,0, . . . , b0,f−1, b1,0, . . . , b1,f−1, . . . , bm−1,0, . . . , bm−1,f−1).

Furthermore, we note that for any vector (z0, . . . , zm−1) in Hm, br,s = 0 for all s ≥ h and all r. It can now be checked that

Γ̃i,1 is the affine transformation that flips the bit bt,u where t = ⌊i/h⌋ mod m and u = i mod h..
2Notice that we do not specify ψ1 uniquely at this stage. Any choice of a constant-degree polynomial will work in this

section, but to enforce linearity, we will use a somewhat non-standard choice in Section 9.5. Specifically, we argue that if

C is a linear circuit, then ψ1 can be picked to be GF(2)-linear transformations over GF (2), and we point out that ψ0 is a

GF (2)-linear transformation. For more details see Section 9.5.

102

of polynomials ψ′ = (ψ0, ψ1) : F 4 → F 2 such that ψ′(x1, x2, x2, x4) = (ψ0(x2), ψ1(x1, x2, x3, x4)).

Let κ be the maximum of the degree of these two polynomials. In order to make these polynomial

identities sufficiently redundant,, we set cF to be a sufficiently large constant (say 100) such that

κm22h/|F | is low.

We have thus reduced STRUCTURED-CKTSAT to an algebraic consistency problem, which we

shall call the AS-CKTSAT problem (short for ALGEBRAIC-STRUCTURED-CKTSAT)3.

Definition 7.3.1 The promise problem AS-CKTSAT = (AS-CKTSATYES, AS-CKTSATNO) has as its

instances 〈1n, 1m, F,H, {T̃0, . . . , T̃l−1}〉 where F is an finite extension field of GF(2) (i.e., F = GF(2)f for

some f), H a GF(2)-linear subspace of F and T̃i : Fm → F , for i = 0, . . . , l− 1, a sequence of polynomials

of degree d, where |H | = n1/m, d = m · |H |, and F = cF ·md. The field F is specified by an irreducible

polynomial p(x) of degree f over GF(2), H is taken to be spanned by the first h = log |H | canonical basis

elements, and each of the polynomials T̃i is specified by a list of coefficients.

• 〈1n, 1m, F,H, {T̃0, . . . , T̃l−1}〉 ∈ AS-CKTSATYES if there exist a sequence of degree d polynomials

Ãi : Fm → F, i = 0, . . . , l − 1 such that for all i = 0, . . . , l − 1 and all x ∈ Hm,

ψ′
(
T̃i(x), Ãi(x), Ãi+1

(
Γ̃i,0(x)

)
, Ãi+1

(
Γ̃i,1(x)

))
= (0, 0)

• 〈1n, 1m, F,H, {T̃0, . . . , T̃l−1}〉 ∈ AS-CKTSATNO if for all functions Ãi : Fm → F, i = 0, . . . , l− 1

there exists an i = 0, . . . , l − 1 and x ∈ Hm such that,

ψ′
(
T̃i(x), Ãi(x), Ãi+1

(
Γ̃i,0(x)

)
, Ãi+1

(
Γ̃i,1(x)

))
6= (0, 0)

where Γ̃i,j ’s and ψ′ are as defined earlier. (Recall that the Γ̃’s are linear function while ψ′ represents a pair of

polynomials of degree at most κ.)

From the above discussion we have the following reduction from STRUCTURED-CKTSAT to

AS-CKTSAT.

Proposition 7.3.2 There exists a polynomial-time computable functionRmapping any instance I = 〈GN,l, {T0, T1, . . . , Tl−1}〉
of STRUCTURED-CKTSAT and parameter m ≤ logn/loglogn (where n = |I|) to an instance R(I, 1m) of

AS-CKTSAT such that

I ∈ STRUCTURED-CKTSAT =⇒ R(I, 1m) ∈ AS-CKTSATYES

I /∈ STRUCTURED-CKTSAT =⇒ R(I, 1m) ∈ AS-CKTSATNO

Moreover, ifR(I, 1m) = 〈1n′

, 1m′

, F,H, {T̃0, . . . , T̃l′−1}〉, then n′ = 2N (the number of nodes in each layer

of the de Bruijn graph GN,l), m
′ = m, and l′ = l (the number of layers in the de Bruijn graph).

3AS-CKTSAT is actually a promise problem.

103

Combining Propositions 7.2.4 and 7.3.2, we have the following.

Proposition 7.3.3 There exists a polynomial-time computable function R mapping any circuit C and pa-

rameter m ≤ logn/loglogn (where n = |C|) to an instance R(C, 1m) of AS-CKTSAT such that C ∈
CKTSAT ⇐⇒ R(C, 1m) ∈ AS-CKTSAT.

Moreover, if C is a circuit of size n then R(C, 1m) = 〈1n′

, 1m′

, F,H, {T̃0, . . . , T̃l′−1}〉, where n′ =

Θ(n), m′ = m, and l′ ≤ 5 logn′. Thus, |R(C, 1m)| = O((cFm
2)m logn) · |C|.

Remark 7.3.4 Following Remark 7.2.6, ifC is a satisfiable circuit, then any set of polynomials Ã0, . . . , Ãl−1

proving that the reduced instanceR(C, 1m) = 〈1n, 1m, F,H, {T̃0, . . . , T̃l−1}〉 is a YES instance of AS-CKTSAT

contain within it a satisfying assignment to the circuit C. Specifically, the set I (of layer-0 nodes with IN-

PUT functionality in GN,l) from Remark 7.2.6 can now be viewed as a subset I ⊆ Hm. Then the polynomial

Ã0 : Fm → F restricted to the set I (i.e.,Ã0|I) contains a satisfying assignment (again as a concatena-

tion of third-bits). Conversely, every satisfying assignment w to C can be extended to a set of polynomials

Ã0, . . . , Ãl−1 such that Ã0|I contains w. This is done by taking low-degree extensions of the functions

A0, . . . , Al−1 from Remark 7.2.6.

Remark 7.3.5 Following Remark 7.2.7, if C is a linear circuit, then the mapping of satisfying assignments

w of C to polynomials Ã0, . . . , Ãl−1 satisfying R(C) is GF(2)-linear. This is due to Remark 7.2.7, the

association of {0, 1}4 with the linear space spanned by {e0, e1, e2, e3} in F , and from the fact that the

interpolation from Ai to Ãi is F -linear and hence GF(2)-linear. For more information see Section 9.5.

Comment: Recall that the arithmetization was obtained by considering low-degree extensions

over Fm of functions fromHm toH . IfH were a subfield of the field F this step would have caused

a quadratic blow-up, and we avoid this problem by not insisting that H be a field. In [PS94, Spi95],

H is a field and F = H2 is an extension of it, but the PCP system refers only to a O(|H |)-sized

subset of F . We cannot take this approach because we will be using a total low-degree test, which

needs to refer to the entire vector space Fm. In contrast, in [PS94, Spi95] an individual low-degree

test is used, which can work with a subset of Fm.

7.4 The PCP verifier

We design a PCP verifier for CKTSAT via the reduction to AS-CKTSAT based on the randomness-

efficient low-degree tests of Ben-Sasson et al. [BSVW03]. Given a circuit C, the verifier reduces it

to an instance of the problem AS-CKTSAT (Proposition 7.3.3). The proof consists of a sequence of

oracles Ãi : Fm → F for i = 0, . . . , l − 1 and an auxiliary sequence of oracles Pi,j : Fm → F 2 for

i = 0, . . . , l − 1 and j = 0, . . . ,m. For each i and j, we view the auxiliary oracle Pi,j : Fm → F 2

as a pair of functions P
(0)
i,j : Fm → F and P

(1)
i,j : Fm → F (i.e., Pi,j(x) = (P

(0)
i,j (x), P

(1)
i,j (x))). This

104

auxiliary sequence of oracles helps the verifier to check that the functions Ãi satisfy condition ψ′

(see Definition 7.3.1).

The verifier expects the first subsequence of auxiliary oracles Pi,0(·) for i = 0, . . . , l−1, to satisfy

the following relation:

Pi,0(x) = ψ′
(
T̃i(x), Ãi(x), Ãi+1

(
Γ̃i,0(x)

)
, Ãi+1

(
Γ̃i,1(x)

))
∀x ∈ Fm (7.2)

Furthermore, it expects Pi,0(x) = 0 for every x ∈ Hm. Indeed, by Definition 7.3.1, we have:

Lemma 7.4.1 1. If 〈1n, 1m, F,H, {T̃0, . . . , T̃l−1}〉 is a YES instance of AS-CKTSAT, satisfied by poly-

nomials Ã0, . . . , Ãl−1, and P0,0, . . . , Pl−1,0 are defined according to Equation 7.2, then Pi,0(x) =

(0, 0) for all x ∈ Hm.

2. If 〈1n, 1m, F,H, {T̃0, . . . , T̃l−1}〉 is a NO instance of AS-CKTSAT, then for any sequences of func-

tions Ã0, . . . , Ãl−1, P0,0, . . . , Pl−1,0, either Equation 7.2 fails to hold for some i or Pi,0(x) 6= (0, 0)

for some i and some x ∈ Hm.

Recalling that the degree of the constraint ψ′ (see Definition 7.3.1) is at most κ and that the Ãi’s

are of degree at most d = m · |H |, we observe that the Pi,0’s can be taken to be of degree at most κd

in Part 1.

As mentioned above, the verifier now needs to check that the functions Pi,0 vanish on the

set Hm. For this we use a “zero-propagation test”, based on the sum-check protocol of Lund

et al. [LFKN92]4 . Specifically, the verifier expects the remaining set of auxiliary oracles Pi,j =

(P
(0)
i,j , P

(1)
i,j) (i = 0, . . . , l−1 and j = 1, . . . ,m) to satisfy the following relations: LetH = {h0, . . . , h|H|−1}

be some fixed enumeration of the elements in H . For all b ∈ {0, 1},

P
(b)
i,j

(
x1, . . . , xj−1︸ ︷︷ ︸, xj , xj+1, . . . , xm︸ ︷︷ ︸

)
=

|H|−1∑

k=0

P
(b)
i,j−1

(
x1, . . . , xj−1︸ ︷︷ ︸, hk, xj+1, . . . , xm︸ ︷︷ ︸

)
xk

j ,

∀(x1, . . . , xm) ∈ Fm

(7.3)

These relations ensure that for all i and j ≥ 1, Pi,j(·) vanishes on F j×Hm−j iff the function Pi,j−1(·)
vanishes on F j−1 ×Hm−j+1. In other words:

Lemma 7.4.2 P
(b)
i,j |F j×Hm−j ≡ 0 ⇐⇒ P

(b)
i,j−1|F j−1×Hm−j+1 ≡ 0.

Thus, for all i, Pi,m vanishes on the entire space Fm iff Pi,0 vanishes on Hm. Also, as P
(b)
i,0 has

degree at most κd in each variable, so does P
(b)
i,j for each i and j. Hence, the degree of P

(b)
i,j is at

most κd.

Thus, the verifier needs to make the following checks

4For checking that the functions Pi,0 vanish on the setHm, we could use the (simpler) “zero-on-subcube” test described

in Section 5.3.2, however the “zero-on-subcube” protocol was developed as a result of the latter work of Ben-Sasson and

Sudan [BS04]. So, for historical reasons, we retain the (slighly more complicated) zero-propogation test in this section.

105

• LOW-DEGREE TEST

For i = 0, . . . , l − 1 and j = 0, . . . ,m, the sequence of functions Ãi are polynomials of degree

at most d = m · |H | and the sequence of functions Pi,j are pairs of polynomials of degree at

most κd,

• EDGE-CONSISTENCY TEST

For i = 0, . . . , l − 1, the functions Pi,0 obey Equation (7.2),

• ZERO PROPAGATION TEST

For i = 0, . . . , l − 1 and j = 1, . . . ,m, the functions Pi,j satisfy Equation (7.3),

• IDENTITY TEST

For i = 0, . . . , l − 1, the functions Pi,m are identically zero on the entire domain Fm.

The Low-Degree test in most earlier construction of PCP verifiers is performed using the “line-

point” test. The “line-point” low degree test first chooses a random line, a random point on this

line and checks if the restriction of the function to the line (given by a univariate polynomial) agrees

with the value of the function at the point. A random line l is typically chosen by choosing two

random points x, y ∈ Fm and setting l = lx,y = {x + ty|t ∈ F}. However, this requires 2m log |F |
bits of randomness which is too expensive for our purposes. We save on randomness by using

the low-degree test of Ben-Sasson et al. [BSVW03] based on small-biased spaces (see Section A.2

for more details). The low-degree test of [BSVW03] uses pseudorandom lines instead of totally

random lines in the following sense: The pseudorandom line l = lx,y is chosen by choosing the first

point x at random from Fm, while the second point y is chosen from a λ-biased subset Sλ of Fm.

This needs only log |Sλ|+ log |F |m bits of randomness. We further save on randomness by the use

of canonical lines5. Consider any pseudorandom line l = lx,y where x ∈ Fm and y ∈ Sλ. We observe

that for every x′ ∈ l, we have lx′,y = lx,y. In other words, |F | different choices of random bits leads

to the same line lx,y. We prevent this redundancy by representing each line in a canonical manner.

A canonical line is chosen by first choosing a random point y from the λ-biased set Sλ. We view

this y as specifying the direction (i.e., slope) of the line. This direction partitions the space Fm into

|F |m−1 parallel lines (each with direction y). We enumerate these lines arbitrarily and select one of

them uniformly at random. Thus, choosing a random canonical line costs only log |Sλ|+log |F |m−1

bits of randomness. A further point to be noted is that we perform a “line” test instead of the

regular “line-point” test: The test queries the function for all points along the canonical line lx,y

and verifies that the restriction of the function to this line is a low-degree polynomial.

5It is to be noted that the canonical representation of lines has been used either implicitly or explicitly in the soundness

analysis of all earlier uses of the Low-Degree Test. However, this is the first time that the canonical representation is used to

save on the number of random bits.

106

Having performed the low-degree test (i.e., verified that the polynomials Ãi’s and Pi,j ’s are

close to low-degree polynomials), the verifier then performs each of the NODE-CONSISTENCY

TEST, ZERO PROPAGATION TEST, and IDENTITY TESTs by choosing a suitable small-sized sam-

ple in the entire space and checking if the corresponding condition is satisfied on that sample. For

the ZERO PROPAGATION TEST indeed the natural sample is an axis-parallel line. For the EDGE-

CONSISTENCY TEST and IDENTITY TEST, the sample we use is any set of |F | points selected from a

partition of Fm into |F |m−1 equal sets.

We are now ready to formally describe the PCP verifier for CKTSAT. We parameterize the

PCP verifier in terms of m, the number of dimensions in our intermediate problem AS-CKTSAT,

and λ, the parameter of the λ-biased sets of Fm required for the low-degree tests of Ben-Sasson

et al. [BSVW03]. We rely on the fact that λ-biased subsets of Fm of size at most poly(log |F |m, 1/λ)
can be constructed efficiently [NN90, AGHP92].

PCP–VERIFIER
Ãi,Pi,j ;i=0,...,l−1;j=0,...,m
m,λ (C).

1. Use Proposition 7.3.3 to reduce the instance C of CKTSAT, using parameter m, to an

instance 〈1n, 1m, F,H, {T̃0, . . . , T̃l−1}〉 of AS-CKTSAT, and set d = m · |H |.

Notation: We let Sλ ⊂ Fm be a λ-biased set of size at most
(

log |F |m
λ

)2

[AGHP92]. Let

Fm =
⊎|F |m−1

η=1 Uη and Fm =
⊎|F |m−1

η=1 Vη be two arbitrary partitions of the space Fm into

|F |-sized sets each.

2. Choose a random string R of length log(|Sλ| · |F |m−1). [Note: We reuseR in all tests, but

only the LOW-DEGREE TEST utilizes the full length of R.]

3. LOW-DEGREE TEST

Use random string R to determine a random canonical line L in Fm using the λ-biased

set Sλ.

For i = 0, . . . , l− 1,

Query oracle Ãi on all points along the line L and reject if the restriction Ãi to L is

not a (univariate) polynomial of degree at most d.

For i = 0, . . . , l− 1, j = 0, . . . ,m, and b ∈ {0, 1},

Query oracle P
(b)
i,j on all points along the line L and reject if the restriction of P

(b)
i,j to

L is not a (univariate) polynomial of degree at most κd.

4. EDGE-CONSISTENCY TEST

Use the random stringR to determine a random setUη of the partition Fm =
⊎|F |m−1

η=1 Uη.

For i = 0, . . . , l− 1,

For all x ∈ Uη, query Pi,0(x), Ãi(x), Ãi+1(Γ̃i,0(x)) and Ãi+1(Γ̃i,1(x)) and reject if

Equation (7.2) is not satisfied.

107

5. ZERO PROPAGATION TEST

For i = 0, . . . , l− 1, j = 1, . . . ,m, and b ∈ {0, 1},

Use random string R to determine a random jth axis-parallel line in Fm of the form

L = {(a1, . . . , aj−1, X, aj+1, . . . , am) : X ∈ F}. Query P
(b)
i,j−1 and P

(b)
i,j along all the

points in L. Reject if either the restriction of P
(b)
i,j−1 or P

(b)
i,j to L is not a univariate

polynomial of degree at most κd or if any of the points on the line L violate Equa-

tion (7.3).

6. IDENTITY TEST

Use the random stringR to determine a random set Vη of the partition Fm =
⊎|F |m−1

η=1 Vη .

For i = 0, . . . , l− 1,

For all x ∈ Vη , query Pi,m(x). Reject if any of these Pi,m(x) is not (0, 0).

Accept if none of the above tests reject.

Remark 7.4.3

1. The LOW-DEGREE TEST requires log(|Sλ| · |F |m−1) random bits to generate a canonical line in Fm

using the λ-biased set, while each of the other tests require at most log(|F |m−1) bits of randomness.

Hence, the string R suffices for each of the tests. For the settings of parameters we use, log(|Sλ| ·
|F |m−1) is typically significantly smaller than log(|F |m), which we would not be able to afford.

2. The EDGE-CONSISTENCY TEST and IDENTITY TEST in the “standard” sense are usually performed

by selecting a random point in the space Fm and checking whether the corresponding condition is

satisfied. However, we state these tests in a “non-standard” manner using partitions of the space Fm

into |F | sized tests so that these tests can easily be adapted when we construct the robust PCP verifier

(see Chapter 9). The non-standard tests are performed in the following manner: Choose a random set

in the partition and perform the standard test for each point in the set. At present, we can work with

any partition of Fm, however we will later need specific partitions to get “robustness”.

7.5 Analysis of the PCP verifier

We now analyze the PCP verifier above. The analysis below assumes that the parameters satisfy

m ≤ logn/loglogn and λ ≤ 1/c logn for a sufficiently large constant c. Theorem 7.1.1 can be de-

duced by setting λ = 1/c logn.

Complexity: The PCP VERIFIER makes O(lm|F |) = O(m3n1/m logn) queries each of which ex-

pects as an answer an element of F or F 2 (i.e., a string of length O(log |F |)). Hence, the total (bit)

query complexity is O(lm|F | log |F |) = O(lm ·cFm2n1/m log(cFm
2n1/m)). Recalling that l = 5 logn,

108

this quantity is at most O(m2n1/m log2 n) for m ≤ logn. For the decision complexity, we note that

the main computations required are (a) testing whether a function is a low-degree univariate poly-

nomial over F (for LOW-DEGREE TEST and ZERO PROPAGATION TEST), (b) evaluating ψ′ on |F |
quadruples of points (for EDGE-CONSISTENCY TEST), and (c) univariate polynomial interpolation

and evaluation (for testing (7.3) in ZERO PROPAGATION TEST). We now argue that each of these

can be done with a nearly linear (Õ(|F |)) number of operations over F , yielding a nearly linear

(Õ(q)) decision complexity overall. Each evaluation of ψ′ can be done with a constant number of

F -operations because ψ′ is of constant degree. Polynomial interpolation and evaluation can be

done with a nearly linear number of F -operations by [SS71, Sch77], and testing whether a function

is of low degree reduces to polynomial interpolation (interpolate to represent as a polynomial of

degree |F |− 1 and check that the high-degree coefficients are zero). Each F -operations can be done

with Õ(log |F |) bit-operations, using the polynomial multiplication algorithm of [SS71, Sch77] (over

GF(2)).

The number of random bits used by the verifier is exactly log(|Sλ| · |F |m−1). Let n′ = |F |m. Then

log(|Sλ|·|F |m−1) =
(
1− 1

m

)
logn′+log

(
poly

(
log n′

λ

))
=
(
1− 1

m

)
logn′+O(log logn′)+O

(
log
(

1
λ

))
.

Now, n′ = (cFm
2)mn. Hence, logn′ = logn+2m logm+O(m) and log logn′ = log log n+O(logm).

Thus, the total randomness is at most
(
1− 1

m

)
logn+O(m logm) +O(log logn) +O

(
log
(

1
λ

))
.

We summarize the above observations in the following proposition for future reference.

Proposition 7.5.1 The randomness, query and decision complexities of the PCP–VERIFIER are r =
(
1− 1

m

)
logn+O(m logm) +O(log logn) +O

(
log
(

1
λ

))
, q = O(m2n1/m log2 n) and d = Õ(q) respec-

tively.

Completeness: If C is satisfiable, then the reduction reduces it to an YES instance of AS-CKTSAT.

Then by definition there exist polynomials Ãi that satisfy constraint ψ′. Setting Pi,j according to

Equations (7.2) and (7.3), we notice that the verifier accepts with probability one.

Soundness: To prove the soundness, we need to prove that if C is not satisfiable then the verifier

accepts with probability bounded away from 1. We will prove a stronger statement. Recall from

Remark 7.3.4 that the function Ã0 : Fm → F supposedly has the satisfying assignment embedded

within it. Let I ⊂ Fm be the set of locations in Fm that contains the assignment (i.e., Ã0|I is

supposedly the assignment).

Lemma 7.5.2 There exists a constant c and a constant 0 < ε0 < 1 such that for all ε,m, λ satisfying ε ≤ ε0,

m ≤ logn/loglogn and λ ≤ 1/c logn, the following holds. Suppose the proof oracle Ã0 : Fm → F is 4ε-far

from any polynomial Â0 of degree md such that C(Â0|I) = 1, then the verifier accepts proof oracles {Ãi}
and {Pi,j} with probability at most 1− ε.

109

Proof: Let α be the universal constant from Theorem A.2.4. Set ε0 = min{α, 1
22}. Let d = m2h,

and choose cF to be a large enough constant such that κmd/|F | = κ/cF ≤ ε0. Suppose each of the

functions Ãi are 4ε-close to some polynomial of degreemd and each of the functions P
(b)
i,j is 4ε-close

to some polynomial of κmd. If this were not the case, then by Theorem A.2.4 the LOW-DEGREE TEST

accepts with probability at most 1 − ε for the polynomial that is 4ε-far. It can be verified that the

parameters satisfy the requirements of Theorem A.2.4, for sufficiently large choices of the constants

cF and c and sufficiently small ε.

For each i = 0, . . . , l−1, let Âi : Fm → F be the polynomial of degree at most md that is 4ε-close

to Ãi. Similarly, for each i = 0, . . . , l − 1, j = 0, . . . ,m and b ∈ {0, 1}, let P̂
(b)
i,j be the polynomial of

degree at most κmd that is 4ε-close to P
(b)
i,j . Such polynomials are uniquely defined since every two

polynomials of degree κmd disagree in at least a 1− κmd
|F | ≥ 1− ε0 > 8ε fraction of points. As in the

case of the Pi,j ’s, let P̂i,j : Fm → F 2 be the function given by P̂i,j(x) = (P̂
(0)
i,j (x), P̂

(1)
i,j (x)).

By hypothesis, Â0|I does not satisfy C. Then, by Lemmas 7.4.1 and 7.4.2, at least one of the

following must hold.

(a) There exists i = 0, . . . , l − 1 and b ∈ {0, 1} such that P̂
(b)
i,m 6≡ 0.

Then for this i, the IDENTITY TEST fails unless a random set Vη is chosen such that for all

x ∈ Vη , P
(b)
i,m(x) = 0. Hence, it must be the case that for all x ∈ Vη , either P

(b)
i,m(x) 6= P̂

(b)
i,m(x)

or P̂
(b)
i,m(x) = 0. Since the V ′ηs form a partition of Fm, the probability of this occurring is

upper-bounded by the probability that a random x ∈ Fm satisfies either P
(b)
i,m(x) 6= P̂

(b
i,m(x) or

P̂
(b)
i,m(x) = 0. This probability is at most 4ε+ κmd

|F | = 4ε+ κ
cF
≤ 5ε0, where we use the fact that

P̂
(b)
i,m is 4ε-close to P

(b)
i,m and that a nonzero polynomial of degree κmd vanishes on at most a

κmd/|F | fraction of points.

(b) There exists i = 0, . . . , l − 1 such that P̂i,0, Âi, and Âi+1 do not obey Equation (7.2).

In other words, P̂i,0(x) 6≡ ψ′((T̃i(x), Âi(x), Âi+1(Γ̃i,0(x)), Âi+1(Γ̃i,1(x))). Then for this i, the

EDGE-CONSISTENCY TEST fails unless a random partition Uη is chosen such that for all x ∈
Uη, Pi,0(x) = ψ′((T̃i(x), Ãi(x), Ãi+1(Γ̃i,0(x)), Ãi+1(Γ̃i,1(x))). Hence, it must be the case that

for every x ∈ Uη, that one of the following holds:

P
(0)
i,0 (x) 6= P̂

(0)
i,0 (x); P

(1)
i,0 (x) 6= P̂

(1)
i,0 (x); Ãi(x) 6= Âi(x); Ãi+1(Γ̃i,0(x)) 6= Âi+1(Γ̃i,0(x));

Ãi+1(Γ̃i,1(x)) 6= Âi+1(Γ̃i,1(x)); P̂i,0(x) = ψ′((T̃i(x), Âi(x), Âi+1(Γ̃i,0(x)), Âi+1(Γ̃i,1(x))).

The probability of this happening is at most the probability that a random x ∈ Fm satisfies

these conditions, which is at most 5 · 4ε+ κmd
|F | ≤ 21ε0.

(c) For some i = 0, . . . , l − 1, j = 1, . . . ,m, and b ∈ {0, 1}, P̂ (b)
i,j does not obey Equation (7.3).

In other words, P̂
(b)
i,j (. . . , xj , . . .) 6≡

∑|H|
k=1 P̂

(b)
i,j−1(. . . , hj , . . .)x

k
i . Then, for this i, j, the ZERO

PROPAGATION TEST rejects unless a random axis parallel line L is chosen such that both

110

P
(b)
i,j |L andP

(b)
i,j−1|L are polynomials of degree at most κd and for every x ∈ L, P

(b)
i,j (. . . , x, . . .) =

∑|H|−1
k=0 P

(b)
i,j−1(. . . , hk, . . .)x

k . Suppose we have that for all x ∈ L, P
(b)
i,j (x) = P̂

(b)
i,j (x) and

P
(b)
i,j−1(x) = P̂

(b)
i,j−1(x). Then, it must be the case that for all x ∈ L, P̂

(b)
i,j (. . . , x, . . .) =

∑|H|−1
k=0 P̂

(b)
i,j−1(. . . , hk, . . .)x

k . Since the axis-parallel lines cover Fm uniformly, the probabil-

ity of this occurring is at most the probability of a random x ∈ Fm satisfying this condition

which is at most κmd
cF
≤ ε. The probability that that both P

(b)
i,j |L and P

(b)
i,j−1|L are polynomials

of degree κd and either P
(b)
i,j |L 6= P̂

(b)
i,j |L or P

(b)
i,j−1|L 6= P

(b)
i,j−1|L is at 2 · 4ε/(1− ε0) ≤ 9ε0, since

P
(b)
i,j and P

(b)
i,j−1 are 4ε-close to P̂

(b)
i,j and P̂

(b)
i,j−1 respectively, and any two distinct polynomials

of degree κmd disagree on at least a 1− κmd/|F | ≥ 1− ε0 fraction of points.Hence, the ZERO

PROPAGATION TEST accepts with probability at most 10ε0.

We thus have that the verifier accepts with probability at most max {1− ε, 5ε0, 21ε0, 10ε0} =

1− ε.

Proof (of Theorem 7.1.1): Theorem 7.1.1 is proved using the PCP–VERIFIER defined in this sec-

tion setting λ = 1/c logn. Step 1 of the verifier reduces the instance C of CKTSAT to an instance

〈1n′

, 1m, F,H, {T̃0, . . . , T̃l−1}〉 of AS-CKTSAT. We have from Proposition 7.3.3 that n′ = Θ(n) and

l = O(log n) where n is the size of the input circuit C. Setting n = n′ in Proposition 7.5.1, we have

that the randomness, query and decision complexity of the verifier are as claimed in Theorem 7.1.1.

The soundness of the verifier follows from Lemma 7.5.2.

111

112

CHAPTER 8

A randomness-efficient PCP of

proximity

8.1 Introduction

In this chapter, we modify the PCP for CIRCUIT SATISFIABILITY (constructed in Chapter 7, Theo-

rem 7.1.1) and construct a PCP of proximity for CIRCUIT VALUE while maintaining all the com-

plexities. (Recall that the latter is stronger than the former, via Proposition 2.2.2.) We do so by

adding a proximity test to the PCP–VERIFIER defined in Section 7.4. This new proximity test, as

the name suggests, checks the closeness of the input to the satisfying assignment that is supposed

to be encoded in the proof oracle (see Remark 7.3.4). This check is done by locally decoding a bit

(or several bits) of the input from its encoding and comparing it with the actual input oracle.

Theorem 8.1.1 There exists universal constants c and 0 < ε < 1 such that the following holds for all

n,m ∈ Z
+ and 0 < δ < 1 such that m ≤ logn/loglogn and n1/m ≥ mcm/δ3. There exists a PCP of

proximity for CIRCUIT VALUE (for circuits of size n) with the following parameters

• randomness
(
1− 1

m

)
logn+O(m logm) +O(log logn) +O(log(1/δ)),

• query complexity q = O(m2n1/m log2 n) and decision complexity d = Õ(q),

• perfect completeness,

• the verifier has soundness error 1− ε for proximity parameter δ.

113

8.2 Proof of Theorem 8.1.1

Recall that the PCPP–VERIFIER is supposed to work as follows: The verifier is given explicit ac-

cess to a circuit C with n gates on k input bits and oracle access to the input w in the form of an

input oracle W : [k] → {0, 1}. The verifier should accept W with probability 1 if it is a satisfying

assignment and accept it with probability at most 1− ε if it is δ-far from any satisfying assignment.

For starters, we assume that k ≥ n/5. In other words, the size of the input w is linear in the

size of the circuit C. The reason we need this assumption is that we wish to verify the proximity

of w to a satisfying assignment, but our proofs encode the assignment to all n gates of the circuit,

thus it better be the case that w is a non-negligible fraction of the circuit. This assumption is not a

major restriction, because if this is not the case we work with the circuit C′ and input w′ which are

as follows: For t = ⌈n/k⌉, C′ is a circuit with n′ = n + 3tk gates on k′ = tk input bits such that

C′(w′) = 1 iff w′ = wt for some w such that C(w) = 1; that is, C′ checks if its input is t copies of

some satisfying assignment of C. (It can be verified that C′ can indeed be implemented on a circuit

of size n + 3tk over the full binary basis.) We choose t such that k′ ≥ n′/10. However, note that

the input oracle W cannot be altered. So the verifier emulates the input w′ using the original input

oracle W : [k] → {0, 1} in the straight-forward manner. Whenever it wants to read the i-th bit of

the w′, it queries the (((i− 1) mod k) + 1)-th bit of w.

Remark 8.2.1 The above transformation from (C,w) to (C′, w′) is a generic one that increases the length of

the input oracle compared to the proof oracle. The circuit C′ checks that w′ is a repetition codeword in order

to maintain the distance features of C; that is, if w is δ-far from the set of satisfying assignments of C then

w′ = wt is also δ-far from the satisfying assignments of C′.

As in the case of the PCP–VERIFIER described in Section 7.4, the PCPP–VERIFIER is constructed

by reducing the input circuit C, an instance of CKTSAT, using parameter m, to an instance

〈1n, 1m, F,H, {T̃0, . . . , T̃l−1}〉 of AS-CKTSAT. The proof oracle for the PCPP–VERIFIER is the same

as that of the PCP–VERIFIER (i.e., the proof oracle consists of a sequence of functions Ãi : Fm →
F, i = 0, . . . , l − 1 and Pi,j : Fm → F 2, i = 0, . . . , l− 1, j = 0, . . . ,m where l = 5 logn).

Recall that the function Ã0 : Fm → F is supposed to contain within it an assignment (See Re-

marks 7.2.6,7.3.4). Let I ⊆ Hm ⊂ Fm be the set of locations in Fm that contain the assignment. The

PCPP–VERIFIER in addition to the tests of the PCP–VERIFIER performs the following PROXIMITY

TEST to check if the assignment given by Ã0|I matches with the input oracle W . Specifically:

PCPP–VERIFIER
W ; Ãi,Pi,j ;i=0,...,l−1;j=0,...,m
m,λ,δ (C).

1. Run PCP–VERIFIER
W ; Ãi,Pi,j

m,λ (C) and reject if it rejects.

Let R be the random string generated during the execution of this step.

2. PROXIMITY TEST

114

Use random string R to determine a random canonical line L in Fm using the λ-biased

set Sλ. Query oracle Ã0 on all points along the line L and reject if the restriction Ã0

to L is not a polynomial of degree at most d = m · |H |. Query the input oracle W

on all locations corresponding to those in I ∩L and reject if W disagrees with Ã0 on

any of the locations in I ∩ L.

By inspection, the proximity test increases the query and decision complexity by (even less

than) a constant factor. For the randomness complexity, we note that the randomness is used only

to generate a random canonical line (as in the PCP verifier). So the randomness complexity is

log(|F |m−1 · |Sλ|) as before. However, in order to prove soundness, we will need to assume not

only that λ ≤ 1/c logn for some constant c (as before), but also that λ ≤ δ3/mcm.1 Thus, setting λ =

min{1/c logn, δ3/mcm}, the randomness complexity increases by at most O(m logm)+O(log(1/δ)),

as claimed in Theorem 8.1.1. Summarizing the above observations for future reference, we have the

following proposition.

Proposition 8.2.2 The randomness, query and decision complexities of the PCPP–VERIFIER are r =
(
1− 1

m

)
logn+O(m logm)+O(log logn)+O (log (1/δ)), q = O(m2n1/m log2 n) and d = Õ(q) respec-

tively.

It is straightforward to check perfect completeness of this verifier. To prove soundness, we

observe that if the input W is δ-far from satisfying the circuit, then one of the following must

happen: (1) the verifier detects an inconsistency in the proof oracle or (2) the input oracle does not

match with the encoding of the input in the proof oracle. In case of the former, we prove soundness

by invoking Lemma 7.5.2 while in the latter case, we prove soundess by analyzing the proximity

test. These ideas are explained in detail in the following lemma which proves the soundness of the

verifier.

Lemma 8.2.3 There exists a constant c and a constant ε > 0 such that for all m,λ, δ satisfying n ≥
8000|F |m−1/δ3, λ ≤ 1/c logn, and λ ≤ δ/mcm, the following holds. If the input w given by the input

oracle W : [k] → {0, 1} is δ-far from satisfying the circuit, then for any proof oracle the verifier rejects W

with probability at least ε.

Proof: Set ε to be the constant ε0 in Lemma 7.5.2.

Case (i): Ã0 is not 4ε-close to any polynomial Â0 of degree md such that C(Â0|I) = 1. Then by

Lemma 7.5.2, we conclude that the verifier rejects with probability at least ε.

1Actually, for the proximity test we only need λ ≤ δ/mcm , however to prove robustness of the proximity test (see

Section 9.2) we require λ ≤ δ3/mcm.

115

Case (ii): Ã0 is 4ε-close to some polynomial Â0 of degreemd such that C(Â0|I) = 1. Since w is δ-far

from any satisfying assignment, the assignment given by Â0|I must be at least δ-far from w.

Let B ⊂ Fm denote the set of locations in I where the assignment given by Â0 disagrees with

w (i.e., B = {x ∈ I|Â0(x) disagrees with w at x}). Hence, |B|/|I| ≥ δ. Since |I| = k ≥ n/5,

we have |B| ≥ δn/5. Consider the following 2 events.

[Event I]: Ã0|L is 5ε-far from Â0|L.

By the Sampling Lemma (Lemma A.2.3) with µ = 4ε and ζ = ε, this event occurs with

probability at most
(

1
|F | + λ

)
· 4ε

ε2 ≤ 1
4 since |F |, 1

λ ≥ 32/ε.

[Event II]: B ∩ L = ∅.
Again by the Sampling Lemma (Lemma A.2.3) with µ = ζ = |B|

|F m| , this event occurs with

probability at most
(

1
|F | + λ

)
· |F

m|
|B| =

(
1
|F | + λ

)
· 5|F m|

δn ≤ 1
4 , where the last inequality

follows because n ≥ 8000|F |m−1/δ3 ≥ 40|F |m−1/δ and λ ≤ δ/(40(cFm
2)m).

Suppose Event I does not occur. Then, if Â0|L 6= Ã0|L, the PROXIMITY TEST rejects since

then Ã0|L cannot be a polynomial of degree at most d as it is 5ε-close to the polynomial Â0

and hence cannot be closer to any other polynomial (as 5ε ≤ 1
2 (1 − d

|F |) = 1
2 (1 − 1

cF
). Now

if Â0|L = Ã0|L and Event II does not occur, then the PROXIMITY TEST detects a mismatch

between the input oracle W and Ã0|L. Hence, if both Event I and Event II do not occur, then

the test rejects. Thus, the probability of the test accepting in this case is at most the probability

of either Event I or Event II occurring which is at most 1/2.

Thus, the probability that the verifier accepts is at most max
{
1− ε, 1

2

}
= 1− ε. This completes the

proof of the lemma.

Proof (of Theorem 8.1.1): Theorem 8.1.1 is proved using the PCPP–VERIFIER defined in this sec-

tion setting λ = min{1/c logn, δ3/mcm}. The randomness and decision (query) complexity fol-

low from Proposition 8.2.2. The only fact to be verified is the soundness of the verifier. Suppose

n1/m ≥ mcm/δ3 for a suitably large constant c (i.e., as given in the hypothesis of Theorem 8.1.1).

Then, n1/m ≥ 8000(cFm
2)m−1/δ3 or equivalently n ≥ 8000|F |m−1/δ3). Hence, Lemma 8.2.3 ap-

plies and we have that the verifier has soundness error 1−ε for proximity parameter δ. This proves

Theorem 8.1.1.

116

CHAPTER 9

A randomness-efficient robust PCP of

proximity

9.1 Introduction

In this chapter, we modify the PCP of proximity for CIRCUIT VALUE constructed in Chapter 8 to

design a robust PCP of proximity, while essentially maintaining all complexities. Recall the defi-

nition of robustness: If the input oracle W is δ-far from a satisfying assignment, a “regular” PCPP

verifier for most choices of its random coins rejects the input; that is, it observes an inconsistency in

the input. A robust PCPP verifier, on the other hand, for most choices of its random coins not only

notices an inconsistency in the input but also observes that a considerable portion of the input read

by it has to be modified to remove this inconsistency.

Theorem 9.1.1 There exists a universal constant c such that the following holds for all n,m ∈ Z
+, δ, γ > 0

satisfying m ≤ logn/loglogn and n1/m ≥ mcm/δ3: There exists a robust PCP of proximity for CIRCUIT

VALUE (for circuits of size n) with the following parameters

• randomness
(
1− 1

m

)
logn+O(m logm) +O(log logn) +O(log(1/δ)),

• query complexity q = O((m2n1/m log2 n)/γ) and decision complexity d = Õ(q),

• perfect completeness, and

• for every δ′ > δ, the verifier has expected robustness

min{Ω(γ), (1− γ) · (δ′ − (δ/2))}

117

for proximity parameter δ′.

Note that the expected robustness can be very close to the proximity parameter δ′ (provided δ ≪
δ′ ≪ γ ≪ 1), Thus, this robust PCPP is suitable for a large number of proof composition operations.

In contrast, the robust PCPP described in Theorem 5.1.2 the robustness is always smaller than the

proximity by a constant factor. Indeed, this is how the two theorems 6.1.1 (which is obtained from

Theorem 9.1.1) and 5.1.2 are used in the proof of Theorem 10.2.1.

How Theorem 9.1.1 implies Theorem 6.1.1 Our main construct (i.e., Theorem 6.1.1) follows The-

orem 9.1.1 by using the error-reduction lemma (Lemma 2.4.4). Specifically, replacing δ by δ′γ and

using δ′ < γ/c, yields expected robustness of min{Ω(γ), (1 − γ) · (δ′ − δ′γ/2)}, which is lower-

bounded by ρ′ , (1 − γ)2 · δ′. Applying Lemma 2.4.4 with a slackness parameter of γ′ , γρ′ and

s = γ, yields robust-soundness error of γ with robustness parameter of ρ′ − γ′ = (1 − γ)3 · δ′ for

proximity parameter δ′. Using γ ≤ 1/2, note that the randomness increases by an additive term of

O(log(1/γ′)) +O(log(1/δ′)) = O(log(1/δ′)), and the decision complexity increases by a multiplica-

tive factor of 1/(γ · (γρ′)2) = poly(1/δ′). These modifications do not affect the general form of the

corresponding complexities claimed in Theorem 6.1.1, and the latter follows (when substituting δ′

for δ and γ by γ/3).

Overview of the proof of Theorem 9.1.1: We “robustify” our PCPP–VERIFIER in 3 steps. First we

observe that a single execution of the verifier actually involves several tests (in fact lm + 2l LOW-

DEGREE TESTs, l EDGE-CONSISTENCY TESTs, lm ZERO PROPAGATION TESTs, l IDENTITY TESTs

and a single PROXIMITY TEST). In the first step (Section 9.2), we observe that each of these tests

is robust individually. In the second step (Section 9.3), we perform a “bundling” of the queries so

that a certain set of queries can always be asked together. This bundling achieves robustness, albeit

over a much a larger alphabet. In the final step (Section 9.4), we use a good error-correcting code

to transform the “bundles” into regular bit-queries such that robustness over the binary alphabet

is achieved.

9.2 Robustness of individual tests

For each possible random string R, the PCPP–VERIFIER performs several tests. More precisely,

it performs l(m + 2) LOW-DEGREE TESTs, l EDGE-CONSISTENCY TESTs, lm ZERO PROPAGATION

TESTs, l IDENTITY TESTs and a single PROXIMITY TEST. In this section, we prove that each of these

test are robust individually. In other words, we show that when one of these tests fail, it fails in a

“robust” manner; that is, a considerable portion of the input read by the test has to be modified for

the test to pass.

118

First, some notation. We view functions g, g′ : Fm → F as strings of length |F |m over the

alphabet F , so their relative Hamming distance ∆(g, g′) is simply Prx[g(x) 6= g′(x)]. As before, let

I ⊆ Hm ⊂ Fm be the set of locations in Fm that contains the assignment.

Let 0 < ε < 1 be a small constant to be specified later. As before, for i = 0, . . . , l−1, j = 0, . . . ,m

and b ∈ {0, 1}, let Âi (resp., P̂
(b)
i,j) be the closest polynomials of degree md (resp., κmd) to Ãi and

Pi,j respectively. (If there is more than one polynomial, choose one arbitrarily.) The proof of the

soundness of the PCPP–VERIFIER (see Sections 7 and 8) was along the following lines: If the input

oracle W : [k] → {0, 1} is δ-far from satisfying the circuit, then one of the following must happen

(changing ε by a factor of 2).

1. There exists a i = 0, . . . , l− 1 such that Ãi is 8ε-far from every degreemd polynomial or there

exists a i = 0, . . . , l − 1, j = 0, . . . ,m and b ∈ {0, 1} such that P
(b)
i,j is 8ε-far from every degree

κmd polynomial. In this case, the LOW-DEGREE TEST detects the error with probability at

least 2ε.

2. There exists i = 0, . . . , l − 1 and b ∈ {0, 1}, such that ∆(P
(b)
i,m, P̂

(b)
i,m) ≤ 8ε and P̂i,m 6≡ 0. In this

case, the IDENTITY TEST detects the error with probability at least 1− 10ε.

3. There exists i = 0, . . . , l − 1, j = 1, . . . ,m and b ∈ {0, 1} such that ∆(Pi,j , P̂i,j) ≤ 8ε,

∆(Pi,j−1, P̂i,j−1) ≤ 8ε, and P̂i,j(. . . , xj , . . .) 6≡
∑|H|−1

k=0 P̂i,j−1(. . . , hk, . . .)x
k
j . In this case, the

ZERO PROPAGATION TEST detects the error with probability at least 1− 20ε.

4. There exists a i = 0, . . . , l− 1 such that ∆(P
(0)
i,0 , P̂

(0)
i,0) ≤ 8ε, ∆(P

(1)
i,0 , P̂

(1)
i,0) ≤ 8ε, ∆(Ãi, Âi) ≤ 8ε,

∆(Ãi+1, Âi+1) ≤ 8ε, and P̂i,0(x) 6≡ ψ′((T̃i(x), Âi(x), Âi+1(Γ̃i,0(x)), Âi+1(Γ̃i,1(x))). In this case,

the EDGE-CONSISTENCY TEST detects the error with probability at least 1− 42ε.

5. ∆(Ã0, Â0) ≤ 8ε but W and Â0|I disagree on at least δ fraction of the points. In this case, the

PROXIMITY TEST detects the error with probability at least 1/2 (in Case I).

Claims 9.2.1 to 9.2.5 below strengthen the above analysis and show that one of the tests not only

detects the error, but a significant portion of the input read by that test needs to be modified in

order to make the test accept. More formally, recall that each of our tests T (randomly) generates

a pair (I,D) where I is a set of queries to make to its oracle and D is the predicate to apply to the

answers. For such a pair (I,D) ← T and an oracle π, we define the distance of π|I to T to be the

relative Hamming distance between π|I and the nearest satisfying assignment of D. Similarly, we

say that π has expected distance ρ from satisfying T if the expectation of the distance of π|I to T over

(I,D)
R← T equals ρ.

We then have the following claims about the robustness of the individual tests.

The robustness of the LOW-DEGREE TEST can be easily be infered from the analysis of the λ-

biased low-degree test due to Ben-Sasson et al. [BSVW03] as shown below.

119

Claim 9.2.1 The following holds for all sufficiently small ε > 0. If A : Fm → F (resp., P : Fm → F) is

8ε-far from every polynomial of degree md (resp., degree κmd), then then the expected distance of A (resp.

P) from satisfying the LOW-DEGREE TEST with degree parameter d (resp., κd) is at least 2ε.

Proof: Recall that the LOW-DEGREE TEST chooses a random canonical line L and checks if A|L is

a univariate polynomial of degree d. For each canonical line L, define Alines(L) to be the degree d

univariate polynomial mapping L → F having maximum agreement with A on L, breaking ties

arbitrarily. The distance of A|L to satisfying LOW-DEGREE TEST is precisely ∆(A|L, Alines(L)).

The low-degree test LINE–POINT–TESTSλ
of Ben-Sasson et al. [BSVW03] works as follows (see

Section A.2 for more details): The test LINE–POINT–TESTSλ
has oracle access to a points-oracle

f : Fm → F and a lines oracle g. It chooses a random canonical line L using the λ-biased set,

queries the lines-oracle g on the line L and the points-oracle f on a random point x on L. It accepts

iff g(L) agrees with f at x.

By inspection, the probability that LINE–POINT–TEST
A,Alines

Sλ
rejects the points-oracle A and

lines-oracle Alines as defined above equals EL[∆(A|L, Alines(L))]. By Theorem A.2.4, if A is 8ε-far

from every degree md polynomial, then LINE–POINT–TEST
A,Alines

Sλ
rejects with probability at least

2ε (for sufficiently small ε). (Recall that our parameters satisfy the conditions of Theorem A.2.4

for sufficiently large choices of the constants c and cF .) Thus, A has expected distance 2ε from

satisfying our LOW-DEGREE TEST, as desired.

The intuition behind the proofs of robustness of IDENTITY TEST, ZERO PROPAGATION TEST, and

EDGE-CONSISTENCY TEST is as follows. The key point to be noted is that the checks made by each

of these tests are in the form of polynomial identities. Hence, if the functions read by these tests are

close to being polynomials, then it follows from the Schwartz-Zippel Lemma that the inputs read

by these tests either satisfy these polynomial identities or are in fact far from satisfying them. We

formalize this intuition and prove the robustness of IDENTITY TEST, EDGE-CONSISTENCY TEST,

and ZERO PROPAGATION TEST in Claims 9.2.2, 9.2.3, and 9.2.4 respectively.

Claim 9.2.2 The following holds for all sufficiently small ε > 0. If for some i = 0, . . . , l− 1 and b ∈ {0, 1},
∆(P

(b)
i,m, P̂

(b)
i,m) ≤ 8ε and P̂

(b)
i,m(·) 6≡ 0, then Pi,m has expected distance at least 1 − 9ε from satisfying the

IDENTITY TEST.

Proof: The expected distance of Pi,m from satisfying the IDENTITY TEST equals

EVη
[∆(Pi,m|Vη

, 0)] = ∆(Pi,m, 0)(since the {Vη} are a partition)

≥ ∆(P̂i,m, 0)−∆(Pi,m, P̂i,m)

≥
(

1− κmd

|F |

)
− 8ε(by Schwartz-Zippel and hypothesis)

≥ 1− 9ε

120

Claim 9.2.3 The following holds for all sufficiently small ε > 0. Suppose for some i = 0, . . . , l − 1,

we have ∆(P
(0)
i,0 , P̂

(0)
i,0) ≤ 8ε, ∆(P

(1)
i,0 , P̂

(1)
i,0) ≤ 8ε, ∆(Ãi, Âi) ≤ 8ε, ∆(Ãi+1, Âi+1) ≤ 8ε, and P̂i,0(·) 6≡

ψ′(T̃i(·), Âi(·), Âi+1(Γ̃i,0(·)), Âi+1(Γ̃i,1(·))). Then
{
Pi,0(·), Ai(·), Ai+1(Γ̃i,0(·))Ai+1(Γ̃i,1(·))

}
has expected

distance at least (1− 41ε)/5 from satisfying the EDGE-CONSISTENCY TEST.

Proof: Note that the distance of
{
Pi,0(·), Ai(·), Ai+1(Γ̃i,0(·))Ai+1(Γ̃i,1(·))

}
|Uη

from satisfying the

EDGE-CONSISTENCY TEST is at least 1/5 times the the distance of Pi,0(·)|Uη
to the function

ψ′(T̃i(·), Ai(·), Ai+1(Γ̃i,0(·)), Ai+1(Γ̃i,1(·)))|Uη
(Since for each point x ∈ Uη where the latter two func-

tions disagree, at least one of Pi,0, Ai, Ai+1 ◦ Γ̃i,0, Ai+1 ◦ Γ̃i,1 needs to be changed at x to make the

test accept). As in the proof of Claim 9.2.2, we have:

EUη
[∆(Pi,0(·)|Uη

, ψ′(T̃i(·), Ai(·), Ai+1(Γ̃i,0(·)), Ai+1(Γ̃i,1(·)))|Uη
)] ≥

(
1− κmd

|F |

)
− 5 · 8ε ≥ 1− 41ε,

where the (1− κmd/|F |) term corresponds to the distance if we replace all five functions with their

corrected polynomials (e.g., P̂i,0, Âi, Âi+1 ◦ Γ̃i,0, Âi+1 ◦ Γ̃i,1) and the−5 ·8ε accounts for the distance

between each of the five functions and their corrected polynomials. Thus, the overall expected

distance to satisfying the EDGE-CONSISTENCY TEST is at least (1− 41ε)/5.

Claim 9.2.4 The following holds for all sufficiently small ε > 0. Suppose for some i = 0, . . . , l − 1, j =

1, . . . ,m, and b ∈ {0, 1}, we have ∆(P
(b)
i,j , P̂

(b)
i,j) ≤ 8ε, ∆(P

(b)
i,j−1, P̂

(b)
i,j−1) ≤ 8ε, and P̂

(b)
i,j (. . . , xj , . . .) 6≡

∑|H|−1
k=0 P̂

(b)
i,j−1(. . . , hk, . . .)x

k
j . Then (P

(b)
i,j , P

(b)
i,j−1) has expected distance at least (1− 19ε)/2 from satisfy-

ing the ZERO PROPAGATION TEST.

Proof: Suppose that L is a jth axis-parallel line such that

P̂
(b)
i,j (. . . , xj , . . .)|L 6≡

|H|−1∑

k=0

P̂
(b)
i,j−1(. . . , hk, . . .)x

k
j |L,

Then in order for the ZERO PROPAGATION TEST to accept, either P
(b)
i,j |L must be modified to equal

a degree κd polynomial other than P̂
(b)
i,j−1(. . . , xj , . . .)|L or P

(b)
i,j−1|L must be modified to equal a

degree κd polynomial other than P̂
(b)
i,j−1(. . . , xj , . . .)|L. (Recall that the ZERO PROPAGATION TEST

checks that the said restrictions are in fact polynomials of degree κd.) This would require modifying

P
(b)
i,j |L (resp., P

(b)
i,j−1|L) in at least a 1 − κd/|F | − ∆(P

(b)
i,j |L, P̂

(b)
i,j |L) fraction (resp., 1 − κd/|F | −

∆(P
(b)
i,j−1|L, P̂

(b)
i,j−1|L) fraction) of points. This implies that the pair (P

(b)
i,j |L, P

(b)
i,j−1|L) would have to

be modified in at least a

1

2
·
(

1− κd

|F | −∆(P
(b)
i,j |L, P̂

(b)
i,j |L)−∆(P

(b)
i,j−1|L, P̂

(b)
i,j−1|L)

)

121

fraction of points.

Thus the expected distance of (P
(b)
i,j , P

(b)
i,j−1) to satisfying the ZERO PROPAGATION TEST is at

least

1

2
· EL

[
1− κd

|F | −∆(P
(b)
i,j |L, P̂

(b)
i,j |L)−∆(P

(b)
i,j−1|L, P̂

(b)
i,j−1|L)

]

−Pr
L


P̂ (b)

i,j (. . . , xj , . . .)|L ≡
|H|−1∑

k=0

P̂
(b)
i,j−1(. . . , hk, . . .)x

k
j |L




≥ 1

2
(1− ε− 8ε− 8ε)− κd

|F |

≥ 1

2
(1− 19ε) .

We are now left with analyzing the robustness the PROXIMITY TEST. Note that the input of

the PROXIMITY TEST comes in two parts: (a) the restriction of A0 to the line L and (b) the input W

restricted to the line L. Unlike earlier tests, we do not collate the robustness of these two parts of the

input but express them separately. The robustness of the PROXIMITY TEST is proved by repeated

applications of the Sampling Lemma (Lemma A.2.3).

Let B ⊂ Fm denote the set of locations in I where the assignment given by Â0 disagrees with

W (i.e., B = {x ∈ I|Â0(x) disagrees with W at x}). Recall that |I| = k ≥ n/5.

Claim 9.2.5 There exists a constant c and a constant ε > 0 such that for all m,λ, δ, δ′ satisfying n ≥
8000|F |m−1/δ3, λ ≤ 1/c logn, λ ≤ δ3/mcm, δ′ > δ, the following holds. Suppose ∆(Ã0, Â0) ≤ 1/4 and

the input oracle W is δ′-far from Â0|I (i.e., |B|/|L| ≥ δ′), then with probability at least 1 − δ/4 (over the

choice of the canonical line L) either at least a ε-fraction of A0|L or at least a (δ′ − δ/4)-fraction of W |L
needs to be changed to make the PROXIMITY TEST accept.

This claim is the robust analogue of Lemma 8.2.3. Observe that the robustness of the verifier

is expressed separately for the proof and input oracles. As expected, the robustness of the input

oracle depends on the proximity parameter δ while that of the proof oracle is independent of δ.

Proof: Consider the following three events.

Event 1: ∆(Ã0|L, Â0|L) ≥ 1/3 .

By the Sampling Lemma (Lemma A.2.3) with µ = 1/4 and ζ = 1/12, this event occurs with

probability at most
(

1
|F | + λ

)
· 1/4

(1/12)2 ≤ δ
12 since |F | ≥ (8000|F |m)/(δ3n) > (123/2)/δ and

λ < 2δ/123.

Event 2: |I∩L||L| >
(
1 + δ

8

)
· |I||F m| .

Again by the Sampling Lemma (Lemma A.2.3) with µ = |I|/|Fm| ≥ n
5|F |m and ζ = δµ

8 , this

122

event occurs with probability at most

(
1

|F | + λ

)
· 82

δ2µ
=

(
1

|F | + λ

)
· 320|F |m

δ2n
≤ δ

12
,

where the last inequality follows from the fact that n ≥ 24 · 320 · |F |m−1/δ3 and λ ≤ δ3/(24 ·
320(cFm

2)m).

Event 3: |B∩L||L| < |B|
|F m| − δ

8 ·
|I|
|F m| .

Again by the Sampling Lemma (Lemma A.2.3) with µ = |B|/|Fm| = δ′n
5|F |m and ζ = δn

40|F |m ,

this event occurs with probability at most

(
1

|F | + λ

)
· µ
ζ2
≤
(

1

|F | + λ

)
· 320|F |m

δ2n
≤ δ

12
.

Hence, the probability that at least one of the three events occurs is at most δ/4.

Now, suppose none of the three events occur. We then get that

|B ∩ L|
|I ∩ L| ≥

|B| − δ|I|/8
(1 + δ/8)|I| =

δ′ − δ/8
1 + δ/8

≥ δ′ − δ/4.

Now for the PROXIMITY TEST to accept the pair (Ã0|L,W ∩ L), either we must change Ã0|L to a

polynomial other than Â0|L or correct the input for all x ∈ B ∩L. The former requires us to change

at least (1 − d
|F | − 1/3) ≥ 1/2 fraction of the points of A0|L while the latter requires us to change at

least δ′− δ/4-fraction of the input read (i.e., the input oracle W restricted to the line L). This proves

the claim.

9.3 Bundling

In Section 9.2, we showed that each of the tests performed by the PCPP verifier is individually

robust. However, we need to show that the conjunction of all these tests is also robust. This is not

true for the PCPP verifier in its present form for the following reason: Suppose the input oracle

W is δ-far from satisfying the circuit. We then know that one of the tests detects this fact with

non-negligible probability. Moreover as seen in Section 9.2, this test is robust. However, since this

test is only one of the O(lm) tests being performed by the verifier, the oracle bits read by this test

comprise a small fraction of the total query complexity of the verifier. For instance, the number

of bits read by a single LOW-DEGREE TEST is about 1/lm times the query complexity. This causes

the robustness of the verifier to drop by a factor of at least lm. Note that the issue here is not

the fact that the verifier performs different types of tests (i.e., LOW-DEGREE TEST, IDENTITY TEST,

ZERO PROPAGATION TEST, etc) but rather that it performs many instances of each test and that the

soundness analysis only guarantees that one of these test instances rejects (robustly). This is not

sufficient to make the verifier robust.

123

For this purpose, we “bundle” the various functions in the proof oracle so that the inputs re-

quired for the several test instances can be read together. This maintains the robustness of the

individual tests, albeit over a larger alphabet. To understand this “bundling”, let us assume for

the present that the only type of tests that the verifier performs is the LOW-DEGREE TEST. There

exists a natural bundling in this case. Instead of l(m+ 2) different oracles {Ãi} and {Pi,j}, we have

one oracle Π which bundles together the data of all these oracles. The oracle Π : Fm → F l·(2m+3)

is supposed to satisfy Π(x) = (Ã0(x), . . . , Ãl−1(x), P0,0(x), . . . , Pl−1,m(x)) for all x ∈ Fm. It can

now be easily checked that over this proof oracle, the conjunction of all the LOW-DEGREE TESTs

is robust (over alphabet F l·(2m+3)) with the same soundness and robustness parameters as a sin-

gle LOW-DEGREE TEST(over alphabet F). However, this natural bundling does not lend itself to

the other tests performed by the PCPP verifier (namely, ZERO PROPAGATION TEST, and EDGE-

CONSISTENCY TEST). Next, we provide an alternate bundling and massage our verifier slightly to

work with this bundling.

First for some notation. As mentioned earlier, we will be able to prove robustness of the verifier

via bundling, however over a larger alphabet. This large alphabet will be Σ = F l+2l·(m+1). Unlike

before, the proof oracle for the robust PCPP verifier will consist of only one function Π : Fm → Σ.

The robust PCPP verifier simulates the PCPP verifier as follows: To answer the queries of the PCPP

verifier, the robust verifier bundles several queries together, queries the new proof oracle Π and

then unbundles the answer to obtain the answers of the queries of the original PCPP verifier. For

convenience, we index the l + 2l · (m + 1) coordinates of Σ = F l+2l·(m+1) as follows: The first l

coordinates are indexed by a single index i ranging from 0 to l− 1, while the remaining 2l · (m+ 1)

are indexed by a triplet of indices (i, j, b) where i ranges over 0, . . . , l − 1, j ranges over 0, . . . ,m

and b ∈ {0, 1}. Let S : Fm → Fm denote the (linear) transformation that performs one cyclic shift

to the right; that is, S(x0, . . . , xm−1) = (xm−1, x0, . . . , xm−2). The bundling of the proof oracles Ãi’s

and Pi,j ’s by the modified proof oracle Π is as follows:

∀x ∈ Fm,





Π(x)i = Ãi

(
S⌊

i
h
⌋(x)

)
i = 0, . . . , l − 1

Π(x)(i,j,b) = P
(b)
i,j

(
Sj+⌊ i

h
⌋(x)

)
i = 0, . . . , l − 1; j = 0, . . . ,m and b ∈ {0, 1}

(9.1)

where h = log |H | = logn/m. Note that the size of the new proof oracle Π is exactly equal to the

sum of the size of the oracles Ãi’s and Pi,j ’s.

We now state how the robust verifier performs the unbundling and the individual tests. We

consider each step of the PCPP verifier and present their robust counterparts.

The first steps of the PCP–VERIFIER (and PCPP–VERIFIER) are independent of the proof oracle

and are performed as before. That is, the robust verifier, as before, reduces the CKTSAT instance to

an instance 〈1n, 1m, F,H, {T̃0, . . . , T̃l−1}〉 of AS-CKTSAT, sets d = m · |H |, and generates a random

string R of length log(|Sλ| · |F |m−1). The remaining steps are proof-oracle dependent and we will

124

discuss each of them in detail.

Proximity Test. For the proximity test, the only portion of the proof oracle that we require is the

portion containing Ã0. Since Π(x)0 is Ã0◦S⌊
0
h
⌋(x) = Ã0(x), the ROBUST PROXIMITY TEST can easily

be describes as follows:

ROBUST PROXIMITY TESTW ; Π(R)

Use random string R to determine a random canonical line L in Fm using the λ-biased

set Sλ. Query oracle Π on all points along the line L. Unbundle Π(L) to obtain the values

of Ã0 on all points along the line L and reject if the restriction Ã0 to L is not a polynomial

of degree at most d. Query the input oracle W on all locations corresponding to those in

I ∩ L and reject if W disagrees with Ã0 on any of the locations in I ∩ L.

Low-Degree Test. We note that the distance of the polynomial Ãi : Fm → F to being degree k (for

any k ∈ Z
+) is exactly the same as that of Ãi ◦ S⌊ i

h
⌋ : Fm → F since S⌊

i
h
⌋ is an invertible linear

transformation. Hence, it is sufficient if we check that Ãi ◦ S⌊
i
h
⌋ is low-degree. The case with the

P
(b)
i,j ’s is similar. Thus, the new ROBUST LOW-DEGREE TEST can be described as follows:

ROBUST LOW-DEGREE TESTΠ(R)

Use random string R to determine a random canonical line L in Fm using the λ-biased

set Sλ.

Query the oracle Π on all points along the line L.

For i = 0, . . . , l− 1,

Unbundle Π(L) to obtain the values of Ãi ◦ S⌊ i
h
⌋ on all points along the line L and

reject if the restriction Ãi ◦ S⌊
i
h
⌋ to L is not a polynomial of degree at most d.

For i = 0, . . . , l− 1, j = 0, . . . ,m and b ∈ {0, 1},

Unbundle Π(L) to obtain the values of P
(b)
i,j ◦ Sj+⌊ i

h
⌋ on all points along the line L

and reject if the restriction of P
(b)
i,j ◦Sj+⌊ i

h
⌋ to L is not a polynomial of degree at most

κd.

Thus, effectively we are testing Ãi (respectively Pi,j) using the line space S⌊
i
h
⌋ ◦Sλ (respectively

Sj+⌊ i
h
⌋ ◦ Sλ).

Identity Test. In the case of the IDENTITY TEST, we observe that P
(b)
i,m vanishes on Fm iff P

(b)
i,m ◦

Sm+⌊ i
h
⌋ vanishes on Fm. Recall that we were allowed to use arbitrary partitions of the space Fm.

The set of random 1st axis-parallel lines is one such partition and we use this partition.

125

ROBUST IDENTITY TESTΠ(R)

Use random string R to determine a random 1st axis-parallel line in Fm of the form

L = (X, a1, . . . , am−1). Query the oracle Π on all points along the line L.

For i = 0, . . . , l− 1 and b ∈ {0, 1},

Unbundle Π(L) to obtain the values of P
(b)
i,m ◦ Sm+⌊ i

h
⌋ on all points along the line L

and reject if any of these is non-zero.

Edge Consistency Test. For any x ∈ Fm, we say that Pi,0 is well-formed at x if the Equation (7.2)

is satisfied for this x. The EDGE-CONSISTENCY TEST verifies that Pi,0 is well-formed for all x ∈ Uη

and i = 0, . . . , l − 1. This was done earlier by reading the values of Pi,0, Ãi, Ãi+1 ◦ Γ̃i,0 = Ãi+1 and

Ãi+1 ◦ Γ̃i,1 for all x ∈ Uη .

Let L be a random 1st axis-parallel line. The robust version of this test checks that Pi,0 is well-

formed for all points on S⌊
i
h
⌋(L). Consider any x = (x0, . . . , xm−1) ∈ L. To verify that Pi,0 is

well-formed at S⌊
i
h
⌋(x), the verifier needs the valuesPi,0(S

⌊ i
h
⌋(x)), Ãi(S

⌊ i
h
⌋(x)), Ãi+1(S

⌊ i
h
⌋(x)) and

Ãi+1 ◦ Γ̃i,1(S
⌊ i

h
⌋(x)). We will show that all these values can be obtained from unbundling the value

of Π on L and S−1(L). Clearly, the values Pi,0(S
⌊ i

h
⌋(x)) and Ãi(S

⌊ i
h
⌋(x)) can be obtained from

unbundling the value of Π at x. The other two values that we require are Ãi+1(S
⌊ i

h
⌋(x)) and Ãi+1 ◦

Γ̃i,1(S
⌊ i

h
⌋(x)). We first show that Γ̃i,1(S

⌊ i
h
⌋(x)) = S⌊

i
h
⌋(x′) for x′ = (x0 + e(i mod h), x1, . . . , xm−1) ∈

L (recall that {e0, . . . , ef−1} are a basis for F over GF(2) and {e0, . . . , eh−1} span H ⊂ F). For this

purpose, we first recall the definition of Γ̃i,1: Γ̃i,1(z0, . . . , zm−1) = (z0, . . . , zt−1, zt+eu, zt+1, . . . , zm−1)

where t = ⌊i/h⌋ mod m and u = i mod h. Furthermore, since Sm is the identity map, we have that

S⌊
i
h
⌋ mod m = S⌊

i
h
⌋. With these observations, we have the following:

Γ̃i,1

(
S⌊

i
h
⌋(x)

)
= Γ̃i,1

(
S⌊i/h⌋ mod m(x)

)

= Γ̃i,1

(
S⌊i/h⌋ mod m(x0, . . . , xm−1)

)

= S⌊i/h⌋ mod m
(
x0 + e(i mod h), x1, . . . , xm−1

)

= S⌊
i
h
⌋(x′)

Now, S⌊
i+1

h
⌋ is either S⌊

i
h
⌋ or S⌊

i
h
⌋+1 depending on the value of i. Suppose S⌊

i+1
h
⌋ = S⌊

i
h
⌋. We

then have that Ãi+1(S
⌊ i

h
⌋(x)) = Ai+1(S

⌊ i+1
h
⌋(x)) and Ãi+1 ◦ Γ̃i,1(S

⌊ i
h
⌋(x)) = Ãi+1(S

⌊ i
h
⌋(x′)) =

Ãi+1(S
⌊ i+1

h
⌋(x′)). Both these values can be obtained by unbundling the value of Π on L (since

both x and x′ lie on L). In the other case, where S⌊
i+1

h
⌋ = S⌊

i
h
⌋+1, we have Ai+1(S

⌊ i
h
⌋(x)) =

Ai+1(S
⌊ i+1

h
⌋(S−1x)) and Ai+1 ◦ Γ̃i,1(S

⌊ i
h
⌋(x)) = Ai+1(S

⌊ i
h
⌋(x′)) = Ai+1(S

⌊ i+1
h
⌋(S−1x′)). These

values can be obtained by unbundling the value of Π on S−1(L). Thus, to check that Pi,0 is well-

formed for all points on S⌊
i
h
⌋(L), it suffices if the verifier queries Π on all points on L and S−1(L).

126

ROBUST EDGE-CONSISTENCY TESTΠ(R)

Use the random string R to determine a random 1st axis-parallel line in Fm of the form

L = (X, a2, . . . , am). Query the oracle Π along all points in the lines L and S−1(L).

For i = 0, . . . , l− 1,

For all x ∈ S⌊ i
h
⌋(L), reject if Pi,0 is not well-formed at x. [Note that all the values

required for this verification can be obtained by unbundling Π(L) and Π(S−1(L)).]

Zero Propagation Test. For each i = 0, . . . , l − 1 and b ∈ {0, 1}, the ZERO PROPAGATION TEST

checks that P
(b)
i,0 vanishes on Hm by verifying that Equation (7.3) is satisfied for all j = 1, . . . ,m− 1

(we also need to check that P
(b)
i,m ≡ 0, however this is taken care by the IDENTITY TEST). Since

S(Hm) = Hm, checking if P
(b)
i,0 vanishes on Hm is equivalent to checking if P

(b)
i,0 ◦ S⌊

i
h
⌋ vanishes on

Hm. Hence, we can perform the zero propagation on the polynomials P
(b)
i,0 ◦S⌊

i
h
⌋; i = 0, . . . , l−1, b ∈

{0, 1} instead of the polynomials P
(b)
i,0 ; i = 0, . . . , l − 1, b ∈ {0, 1}. In other words, we need to verify

the following equation instead of Equation (7.3).

P
(b)
i,j ◦ S⌊

i
h
⌋
(
x1, . . . , xj−1︸ ︷︷ ︸, xj , xj+1, . . . , xm︸ ︷︷ ︸

)
=

|H|−1∑

k=0

P
(b)
i,j−1 ◦ S⌊

i
h
⌋
(
x1, . . . , xj−1︸ ︷︷ ︸, hk, xj+1, . . . , xm︸ ︷︷ ︸

)
xk

j ,

∀(x1, . . . , xm) ∈ Fm

(9.2)

This equation can be further rewritten in terms of the cyclic shift S as follows:

P
(b)
i,j

(
S⌊

i
h
⌋+j−1(x1, x2, . . . , xm)

)
=

|H|−1∑

k=0

P
(b)
i,j−1

(
S⌊

i
h
⌋+j−1(hk, x2, . . . , xm)

)
xk

1 , ∀(x1, . . . , xm) ∈ Fm

(9.3)

This helps us to rewrite the ZERO PROPAGATION TEST with bundling as follows:

ROBUST ZERO PROPAGATION TESTΠ(R)

Use random string R to determine a random 1st axis-parallel line in Fm of the form

L = (X, a2, . . . , am). Query the oracle Π along all points in the lines L and S−1(L).

For i = 0, . . . , l− 1, j = 1, . . . ,m, and b ∈ {0, 1}

Unbundle Π(L) to obtain the value of P
(b)
i,j−1 ◦ S⌊

i
h
⌋+j−1 on all points along the line

L. Similarly, unbundle Π(S−1(L)) to obtain the value of P
(b)
i,j ◦ S⌊

i
h
⌋+j on all points

along the line S−1(L) (Equivalently, this is the value of P
(b)
i,j ◦ S⌊

i
h
⌋+j−1 on all points

along the line L). Reject either if the restriction of P
(b)
i,j−1◦S⌊

i
h
⌋+j−1 or P

(b)
i,j ◦S⌊

i
h
⌋+j−1

to L is not a polynomial of degree at most κd or if any of the points on the line L
violate Equation (9.3).

127

The integrated robust verifier. Having presented the robust version of each of the tests, the inte-

grated robust verifier is as follows.

ROBUST-PCPP–VERIFIER
W ; Π
m,λ,δ(C).

1. Using Proposition 7.3.3, reduce the instance C of CKTSAT, using parameter m, to an

instance 〈1n, 1m, F,H, {T̃0, . . . , T̃l−1}〉 of AS-CKTSAT, and set d = m · |H |.

We let Sλ ⊂ Fm be a λ-biased set of size at most
(

log |F |m
λ

)2

[AGHP92].

2. Choose a random string R of length log(|Sλ| · |F |m−1). [Note: We reuseR in all tests, but

only the LOW-DEGREE TEST utilizes the full length of R.]

3. Run ROBUST LOW-DEGREE TESTΠ(R).

4. Run ROBUST EDGE-CONSISTENCY TESTΠ(R).

5. Run ROBUST ZERO PROPAGATION TESTΠ(R).

6. Run ROBUST IDENTITY TESTΠ(R).

7. Run ROBUST PROXIMITY TESTW ;Π(R).

Reject if any of the above tests reject.

The randomness of the ROBUST-PCPP–VERIFIER is exactly the same as before whereas the query

complexity and decision complexity increase by a constant factor1.

Proposition 9.3.1 The randomness, query and decision complexities of the ROBUST-PCPP–VERIFIER are

r =
(
1− 1

m

)
log n + O(m logm) + O(log logn) + O (log (1/δ)), q = O(m2n1/m log2 n) and d = Õ(q)

respectively.

It is straightforward to check perfect completeness of this verifier.

Robustness analysis of the integrated verifier. To state the robust soundness, it is useful for us

to separate the robustness wrt the input oracle and wrt the proof oracle. Let W : [k] → {0, 1} be

the input oracle and Π the proof oracle. For every sequence of coin tosses R (and a given setting of

parameters), let ∆W,Π
inp (R) (resp., ∆W,Π

pf (R)) denote the fraction of the bits read fromW (resp. Π) that

would need to be changed to make the ROBUST-PCPP–VERIFIER accept on coin tosses R. Then the

following lemma states the robustness property of our verifier.

Lemma 9.3.2 There are constants c ∈ Z
+ and ρ > 0 such the following holds for every n,m ∈ Z

+,

δ, δ′ > 0 satisfying m ≤ logn/loglogn, n1/m ≥ mcm/δ3, λ ≤ min{1/c logn, δ3/mcm}, δ′ > δ. If W

is δ′-far from satisfying the circuit, then for any proof oracle Π : Fm → Σ, either ER[∆W,Π
pf (R)] ≥ ρ or

ER[∆W,Π
inp (R)] ≥ δ′ − δ/2.

1Though the new proof oracle returns elements of Σ and not bits, we express the query complexity as the number of bits

read by the verifier rather than the number of symbols (i.e., elements of |Σ|) to maintain consistency across calculating the

query complexity into the proof and input oracles.

128

Proof: Unbundle the proof oracle Π to obtain the functions Ãi and Pi,j using Equation (9.1). Con-

sider the action of the PCPP–VERIFIER (i.e., the non-robust verifier) on the proof oracles Ãi, Pi,j

and input oracle W .

Let ε be a sufficiently small constant such that the Claims 9.2.1–9.2.5 hold. Suppose W is δ′-far

from satisfying the circuit. We then know that one of the following holds and that the correspond-

ing test instance of the PCPP–VERIFIER rejects its input robustly (see Claims 9.2.1 to 9.2.5).

1. There exists a i = 0, . . . , l− 1 such that Ãi is 8ε-far from every degreemd polynomial or there

exists a i = 0, . . . , l − 1, j = 0, . . . ,m and b ∈ {0, 1} such that P
(b)
i,j is 8ε-far from every degree

κmd polynomial. In this case,the expected distance of Ãi (or resp. P
(b)
i,j) from satisfying the

LOW-DEGREE TEST with degree parameter d (resp., κd) is at least 2ε (Claim 9.2.1).

2. There exists i = 0, . . . , l − 1 and b ∈ {0, 1}, such that ∆(P
(b)
i,m, P̂

(b)
i,m) ≤ 8ε and P̂i,m 6≡ 0. In this

case, Pi,m has expected distance at least 1−9ε from satisfying the IDENTITY TEST (Claim 9.2.2).

3. There exists a i = 0, . . . , l − 1 such that ∆(P
(0)
i,0 , P̂

(0)
i,0) ≤ 8ε, ∆(P

(1)
i,0 , P̂

(1)
i,0) ≤ 8ε, ∆(Ãi, Âi) ≤

8ε, ∆(Ãi+1, Âi+1) ≤ 8ε, and P̂i,0(x) 6≡ ψ′((T̃i(x), Âi(x), Âi+1(Γ̃i,0(x)), Âi+1(Γ̃i,1(x))). In this

case,
{
Pi,0(·), Ai(·), Ai+1(Γ̃i,0(·))Ai+1(Γ̃i,1(·))

}
has expected distance at least (1− 41ε)/5 from

satisfying the EDGE-CONSISTENCY TEST (Claim 9.2.3).

4. There exists i = 0, . . . , l − 1, j = 1, . . . ,m and b ∈ {0, 1} such that ∆(Pi,j , P̂i,j) ≤ 8ε,

∆(Pi,j−1, P̂i,j−1) ≤ 8ε, and P̂i,j(. . . , xj , . . .) 6≡
∑|H|−1

k=0 P̂i,j−1(. . . , hk, . . .)x
k
j . In this case,

(P
(b)
i,j , P

(b)
i,j−1) has expected distance at least (1 − 19ε)/2 from satisfying the ZERO PROPA-

GATION TEST (Claim 9.2.4).

5. ∆(Ã0, Â0) ≤ 8ε but W and Â0|I disagree on at least δ fraction of the points. In this case, with

probability at least 1− δ/4 (over the choice of the canonical line L) either at least a ε-fraction

of A0|L or at least a (δ′ − δ/4)-fraction of W |L needs to be changed to make the PROXIMITY

TEST accept (Claim 9.2.5).

This implies that eitherA0 has expected distance (1− δ/4)ε ≥ ε/2 or W has expected distance

(1− δ/4)(δ′ − δ/4) ≥ (δ′ − δ/2) from satisfying the PROXIMITY TEST.

For instance, lets us assume Ã0 is 8ε-far from being low degree so the LOW-DEGREE TEST rejects

it robustly; that is, for a random canonical line L, the expected distance of Ã0|L from satisfying the

LOW-DEGREE TEST is at least 2ε. Recall from Equation (9.1) that Ã0(x) is one of the co-ordinates

in the bundled Π(x). Hence, if Ã0|L is ρ-far from satisfying the LOW-DEGREE TEST, so is ΠL from

satisfying the ROBUST LOW-DEGREE TEST. Thus, Π has expected distance at least 2ε from satisfy-

ing the ROBUST LOW-DEGREE TEST. Now, the oracle positions read by the ROBUST LOW-DEGREE

TEST constitute a constant fraction of the oracle positions read by the ROBUST-PCPP–VERIFIER,

129

so Π has expected distance Ω(ε) from satisfying the ROBUST-PCPP–VERIFIER. Thus, the robust-

ness of the individual test instance is transfered to the combined ROBUST LOW-DEGREE TEST by

bundling. The case with the other test types is similar. We thus have that ER[∆W,Π
pf (R)] ≥ Ω(ε) or

ER[∆W,Π
inp (R)] ≥ δ′ − δ/2. The lemma then follows by setting ρ = Ω(ε).

9.4 Robustness over the binary alphabet

The transformation from a robust verifier over the alphabet Σ to one over the binary alphabet is

analogous to converting non-Boolean error correcting codes to Boolean ones via “code catenation”.

This transformation is identical to the transformation mentioned in Section 5.4.3. As the proof

mimics the proof indicated in Section 5.4.3, we merely state the final result.

Lemma 9.4.1 There are constants c ∈ Z
+ and ρ > 0 such the following holds for every n,m ∈ Z

+, δ, δ′ > 0

satisfying m ≤ log n/loglogn, n1/m ≥ mcm/δ3, λ ≤ min{1/c logn, δ3/mcm}, δ′ > δ. If W is δ′-far from

satisfying the circuit, then then for any proof oracles Π : Fm → {0, 1}log |Σ|,Υ : Fm → {0, 1}b, either

ER[∆W,Π◦Υ
pf (R)] ≥ ρ or ER[∆W,Π◦Υ

inp (R)] ≥ δ′ − δ/2.

It is to be noted that the expected robustness of the proof oracle (ρ) is not the same as similar

parameters in Lemmas 9.3.2, but weaker by a constant factor as suggested in Lemma 2.4.5.

Finally, we conclude by proving Theorem 9.1.1.

Proof (of Theorem 9.1.1): Theorem 9.1.1 is proved using the ROBUST-PCPP–VERIFIER defined in

this section setting λ = min{1/c logn, δ3/mcm}. The randomness, query and decision complex-

ity of the ROBUST-PCPP–VERIFIER (i.e., before the transformation to the binary alphabet) are as

mentioned in Proposition 9.3.1. As mentioned in the earlier paragraph, the transformation from

the alphabet Σ to the binary alphabet maintains the randomness complexity while the query (and

decision) complexity increase by at most a constant factor. Hence, the randomness, query and

decision complexities of the verifier are as claimed in Theorem 9.1.1

So far, we have considered the proof and input oracle separately. Hence the expected robustness

in Lemma 9.4.1 was expressed separately for the proof and input oracles. We can consider them

together by giving weights to the two oracle portions in the decision circuits (i.e. repeating queries,

see Remark 8.2.1).

We give weight (1 − γ) to the input oracle and γ to the proof oracle, where γ is as specified

in Theorem 9.1.1. Recall that these weights mean that each query to the input oracle is repeated

several times such that the relative length of the input-part in the decision circuit is 1 − γ. These

repeated queries may increase the query (and decision) complexity increase by a factor of at most

130

1/γ. Note that weighting does not afect the randomness complexity (or any other parameter such

as the proximity parameter δ).

Since n1/m ≥ mcm/δ3, we have n1/m ≥ 8000(cFm
2)m−1/δ3 or equivalently n ≥ 8000|F |m−1/δ3.

Hence, Lemma 9.4.1 applies and we have that either ER[∆W,Π◦Υ
pf (R)] ≥ ρ or ER[∆W,Π◦Υ

inp (R)] ≥
δ′−δ/2. Note that the first expression refers to the “expected robustness” of the proof-part whereas

the second expression refers to the input-part. The overall expected robustness is obtained by a

weighted average of these two expressions, where the weights are with respect to the aforemen-

tioned weighting (which assigns weight γ to the input-part). Hence, the expected robustness with

respect to the said weighting is

γ · ER[∆W,Π◦Υ
pf (R)] + (1− γ) · ER[∆W,Π◦Υ

inp (R)] ≥ min{γ · ρ, (1− γ) · (δ′ − δ/2)} .

Thus, the expected robustness is as claimed. Noting that the other parameters (e.g., the ran-

domness and decision complexities) are as claimed, Theorem 9.1.1 follows.

9.5 Linearity of encoding

In this section we point out that, for linear circuits (to be defined below), the mapping from an as-

signment to the corresponding PCP of proximity is linear. Throughout this section, “linear” means

GF (2)-linear (yet, we will sometimes refer to F -linearity, for an extension field F of GF (2)). The

main motivation to the current study is to derive linear codes satisfying local-testability and relaxed

local-decodability (i.e., Theorems 1.3.4 and 1.3.5, respectively). Specifically, the constructions pre-

sented in Section III yield linear codes provided that the corresponding PCP of proximity is linear

in the aforementioned sense.

We call a circuit is linear if it is a conjunction of linear constraints. However, instead of repre-

senting this conjunction via AND gates, it is more convenient for us to work with circuits that have

multiple output gates, one for each linear constraint. That is:

Definition 9.5.1 A multi-output circuit is linear if all its internal gates are parity gates and an input is

accepted by it if and only if all output gates evaluate to zero.

Proposition 9.5.2 IfC is a linear circuit, then there is a linear transformation T mapping satisfying assign-

ments w of C to proof oracles T (w) such that the PCPP verifier of Theorem 6.1.1 will, on input C, accept

oracle (w, T (w)) with probability 1. Moreover, all the decision circuits produced by the verifier, on input C,

can be made linear (while maintaining the claimed decision complexity).

In the rest of this section, we provide a proof of Proposition 9.5.2, starting with an assignment w

that satisfies the linear circuit. We prove that the mapping from w to a proof-oracle is linear by

reviewing our construction of this mapping and ensuring that all steps in this construction are

linear transformations.

131

Phase I - STRUCTURED-CKTSAT: In this phase (described in Section 7.2) we write down the val-

ues to all gates of the circuit and route them along the wrapped de Bruijn graph. Actually, we make

a few minor and straightforward modifications to Definition 7.2.2: we allow multiple output gates

(rather than a single output gate) and require that each such gate evaluates to zero (rather than

to 1).2 Also, here we deal with gate types that are linear (e.g., XOR), rather than arbitrary (e.g.,

AND and OR).

Since all the circuit gates are linear functions of the input, the values on the wires leaving the

zero-th layer of the well-structured circuit (i.e., the last two bits of the mapping A0 : {0, 1}N →
{0, 1}4 in Section 7.2) are linear in the input (i.e., in w). As to Ai, i > 0, (and the first two bits of A0)

notice that it is obtained by permuting the values of the previous layerAi−1 and setting some wires

to zero (if they are not needed in the routing, e.g. gates 3 and 4 in Figure 7-3). These operations are

linear, and so all assignment functions are linear in the input.

Phase II - Arithmetization: In this phase (described in Section 7.3) we extend the values given

by Ai to an evaluation of a low-degree multivariate polynomial over some finite field F that is

an extension field of GF (2) of degree f . Each value of Ai is four bits long (say b0, b1, b2, b3) and

identified with the element b0e0 + b1e1 + b2e2 + b3e3, where e0, . . . , ef−1 is a basis for F viewed

as a vector space over GF (2). We view Ai as a function Ai : Hm → F and construct a low-

degree extension Ãi : Fm → F of Ai by interpolation. on all inputs in Hm and use these values

to interpolate and evaluate Ãi on all points in Fm. Notice that interpolation is F -linear and hence

also GF (2)-linear. We conclude that the values of Ãi on all points in Fm is a linear transformation

of the values of Ai. Since Ai is linear in the input assignment, so is Ãi.

Clarification: Many parts of our encoding (starting with Ãi) consist of evaluations of multivariate

polynomials P (x) over Fm. The linearity we claim is not linearity in x (the free variables of the

polynomial). Rather, we claim the table of values {P (a) : a ∈ Fm} is linear in the initial assignment

w, which may be viewed as the information encoded in this table. In contrast, throughout this

section, x is merely an index to this table. For example, in Phase II we showed the table {Ãi(a) :

a ∈ Fm} is obtained by a linear transformation applied to the table {Ai(a
′) : a′ ∈ Hm} (but we

certainly do not claim Ãi(a) is linear in a). That is, each Ãi(a) is a linear combination of theAi(a
′)’s.

Phase III - The Constraint Polynomials: We now discuss the polynomials P
(0)
i,0 and P

(1)
i,1 defined

in Equation (7.2), and show their values are a linear transformation of the values of Ãi. The first

polynomial (i.e., P
(0)
i,0) is obtained by applying the univariate polynomial ψ0 defined in Equation 7.1

to each value of Ãi (i.e., P
(0)
i,0 (x) = ψ0(Ãi(x))). By definition, ψ0 evaluates to zero iff its input, when

2Recall that an input is accepted by the linear circuit if and only if all output gates evaluate to zero.

132

represented as a vector in GF (2)f , belongs to the linear space spanned by {e0, e1, e2, e3}. This

polynomial defines a linear transformation, as claimed by the following lemma.

Lemma 9.5.3 Let L be a GF(2)-linear subspace of F = GF (2f) and ψL(t) =
∏

α∈L(t − α). Then the

mapping ψL : F → F is linear.

Proof: We use the fact that for any integer i, the transformation t 7→ t2
i

is linear; that is, (t+ t′)2
i

=

t2
i

+ t′2
i

. Our main claim is that the polynomial ψL(t) can be written as
∑

i cit
2i

and hence is linear

(being a sum of linear transformations). We prove this claim by induction on the dimension of

L ⊆ GF (2)f . Indeed, for dim(L) = 0 (i.e., L = {0f}), it holds that ψL(t) = t and our claim follows.

In the induction step, write L as L = L′∪{α+L′}where L′ is some linear space of dimension k− 1

and α ∈ L \ L′. Clearly, ψL(t) = ψL′(t) · ψL′(t+ α). Using the inductive hypothesis for L′ (and the

linearity of t 7→ t2
j

), we get

ψL(t) =

(
∑

i

ci · t2
i

)
·



∑

j

cj · (t+ α)2
j




=

(
∑

i

ci · t2
i

)
·



∑

j

cj ·
(
t2

j

+ α2j
)



=
∑

i,j

cicjt
2i

t2
j

+
∑

i,j

cicjt
2i

α2j

=
∑

i

c2i t
2i+1

+
∑

i

c′it
2i

where c′i =
∑

j cicjα
2j

and
∑

i6=j cicjt
2i

t2
j

= 2
∑

i<j cicjt
2i

t2
j

= 0 (because F has characteristic 2).

This completes the proof of the inductive claim.

We now turn to the second polynomial, P
(1)
i,0 . Recall that P

(1)
i,0 (x) = ψ1(s, a, a0, a1), where

s = T̃i(x), a = Ãi(x) and aj = Ãi+1(Γ̃i,j(x)). It can be verified that T̃i(x) (which represents the

gate type) is independent of the input w to the circuit, and by our previous discussion a, a0, a1 are

linear in the input w (to the circuit). Thus, it will suffice to show that ψ′ is linear in its last three in-

puts. When discussing Equation (7.2) we did not go into the specific construction of the polynomial

ψ′ because only its functionality mattered, and we showed that there exists some constant-degree

polynomial that does the job. But for our current purposes (of showing linearity) we need to present

some specific polynomial ψ′ that is linear (as an operator over GF (2)f) and has the desired prop-

erties needed by the verification process. To do this, recall C is the set of allowable gates in the

well-structured circuit, and so we define δs0(z) to be the (minimal degree) uni-variate polynomial

of degree |C| that is 1 if z = s0 and is 0 if z ∈ C \ {s0}, and write ψ′ as

ψ′(s, a, a0, a1) =
∑

s0∈C
δs0(s) · ψ′s0

(a, a0, a1) (9.4)

133

Claim 9.5.4 For any s0 ∈ C that can occur as a gate in a well-structured circuit constructed from a lin-

ear circuit C, the polynomial ψ′s0
(a, a0, a1) of Equation 9.4 can be written as a linear transformation (of

(a, a0, a1)).

Proof: Recall that the value of ψ′s0
(a, a0, a1) is supposed to represent whether or not the four

least significant bits of the three inputs (denoted a′, a′0 and a′1) satisfy some condition. By inspect-

ing Definition 7.2.2, it can be verified that (in our case) this condition is a linear one. That is,

ψ′s0
(a, a0, a1) = 0 if and only if the triplet (a′, a′0, a

′
1), viewed as a 12-bit vector over GF (2), belongs

to some specific linear space Ls0 ⊆ GF (2)12.

Recall that we may assume that a = 0f−4a′ (and similarly for a0 and a1), because this condition

is imposed by the constraint polynomial P
(0)
i,0 . Thus, we seek a polynomial (over F 3) such that

if each of its three inputs belongs to Span(e0, . . . , e3) then it will output 0 iff the inputs reside

in the linear space that is analogous to Ls0 ; that is, the input (a, a0, a1) should evaluate to 0 iff

a′ ◦a′0 ◦a′1 ∈ Ls0 . To obtain this, we assume the existence of α ∈ F such that multiplying an element

by α corresponds to a left cyclic shift by four positions (e.g., α · σ0 · · ·σf−1 = σ4 · · ·σf−1σ0 · · ·σ3).

Such an element exists for the standard representation of F . Using this element we can write

ψ′s0
: F 3 → F as

ψ′s0
(a, a0, a1) = ψLs0

(α2a+ αa0 + a1)

where ψLs0
is the univariate polynomial that is zero iff its input is in Ls0 . Note that, for inputs in

Span(e0, . . . , e3), indeed ψ′s0
(a, a0, a1) = 0 iff a′ ◦ a′0 ◦ a′1 ∈ Ls0 . By Lemma 9.5.3, ψLs0

is linear. It

follows thatψ′s0
is linear, because multiplication by a fixed element of F (i.e., α) is a linear operation.

Recall δs0(s) depends only on the circuit and not on its input (i.e., w). Thus, each summand of

(9.4) is linear in w and hence the sum is itself linear in w. We conclude that the table of evaluations

of the polynomials given by Equation (7.2) is obtained by linear transformations applied to the

input to the circuit.

Phase IV - The Sum-check Polynomials: In this phase (described by Equation (7.3)) we apply a

sequence of interpolations to previously constructed polynomials P
(b)
i,j . Each such interpolation is

an F -linear transformation and hence also a GF(2)-linear one. Thus, the sequence of polynomials

P
(b)
i,j is obtained by a linear transformation applied to the input.

Phase V - Bundling and Encoding: In this phase (described in Sections 9.3 and 9.4) we apply some

cyclic shifts to the (values of the) sequence of l + 2l(m + 1) polynomials obtained in the previous

phases. Then we bundle the polynomials together, obtaining an alphabet of size |F |l+2l(m+1). This

bundling does not change the encoding (only the partitioning of the proof into symbols) and hence

134

is also a linear transformation. Finally, we apply an error correcting code to each symbol in order

to reduce the alphabet size (from |F |l+2l(m+1)) to binary, and this is also a linear transformation as

long as the error correcting code is itself linear.

The result of this shifting, bundling and encoding is the actual proof given to the (outer) verifier

of Theorem 9.1.1. Notice this transformation from l + 2l(m+ 1) polynomials (each evaluated in F)

to one proof (over the binary alphabet) is linear, because all three parts of it are linear.

Now we argue that all tests performed by the verifier are linear and the decision complexity

claimed in Theorem 9.1.1 can be achieved by using small linear circuits. This can be seen by inspect-

ing the various tests described in Section 7.4, noticing that they all check either linear or F -linear

conditions, and applying the general result of Strassen [Str73] showing that any algebraic circuit

that computes a linear function (as a formal polynomial) can be converted into a linear circuit with

only a constant-factor increase in size. This completes the proof of Proposition 9.5.2.

135

136

CHAPTER 10

Putting them together: Very short

PCPs with very few queries

10.1 Main Construct - Recalled

In this chapter we prove the main results of this work; that is, we establish Theorem 1.3.2 and 1.3.3.

Our starting point is the following Robust PCP of proximity, which is constructed in the second

part of this work.

Theorem 6.1.1 (Main Construct - restated): There exists a universal constant c such for all n,m ∈ Z
+,

0 < δ, γ < 1/2 satisfying n1/m ≥ mcm/(γδ)3 and δ ≤ γ/c, CIRCUIT VALUE has a robust PCP of

proximity (for circuits of size n) with the following parameters

• randomness
(
1− 1

m

)
logn+O(m logm) +O(log logn) +O(log(1/δ)),

• decision complexity n1/m · poly(logn, 1/δ), which also upper-bounds the query complexity.1

• perfect completeness, and

• for proximity parameter δ, the verifier has robust-soundness error γ with robustness parameter (1 −
γ)δ.

We comment that the condition δ < γ/cmerely means that we present robust PCPs of proximity

only for the more difficult cases (when δ is small), and our robustness parameter does not improve

1In fact, we will upper-bound the query complexity by q = n1/m · poly(log n, 1/δ) and show that the verifier’s decision

can be implemented by a circuit of size eO(q), which can also be bounded by n1/m · poly(log n, 1/δ) with a slightly larger

unspecified polynomial.

137

for larger values of δ. We call the reader’s attention to the typically small value of the query and

randomness complexities, which yield a proof length that is upper-bounded by poly(mm logn) · n
(for δ and γ as small as 1/poly(mm, logn)), as well as to the small values of the soundness error and

the the small deterioration of robustness wrt proximity.

We also need the following robust PCP of proximity which we constructed while proving

the PCP Theorem in Chapter 5. This robust has parameters similar to the PCP constructed by

Arora et al. [ALM+98]. In comparison to the main construct above, this PCPP is not very efficient

in randomness. However, as we plan to use this robust PCPP only towards the final stages of

composition, we can afford to pay this cost in randomness.

Theorem 5.1.2 (ALMSS-type Robust PCP of proximity - restated): For all n ∈ Z
+ and δ ∈ (0, 1),

CIRCUIT VALUE has a robust PCP of proximity (for circuits of size n) with the following parameters

• randomness O(log n),

• decision complexity poly(logn), which also upper-bounds the query complexity.

• perfect completeness, and

• for proximity parameter δ, the verifier has robust-soundness error 1−Ω(δ) with robustness parameter

Ω(1).

10.2 Composing the Main Construct

Using Theorems 6.1.1 and 5.1.2, we derive the general trade-off (captured by the following The-

orem 10.2.1) between the length of PCPs and their query complexity via repeated applications of

Composition Theorem (Theorem 3.2.1).

Theorem 10.2.1 (Randomness vs. query complexity trade-off for PCPs of proximity) For every pa-

rameters n, t ∈ N such that 3 ≤ t ≤ 2 log log n
log log log n there exists a PCP of proximity for CIRCUIT VALUE (for

circuits of size n) with the following parameters

• randomness complexity log2 n+At(n), where

At(n) , O
(
t+ (logn)

1
t

)
log logn+O((log n)

2
t) (10.1)

• query complexity O(1),

• perfect completeness, and

• soundness error 1− Ω(1/t) with respect to proximity parameter Ω(1/t).

Alternatively, we can have query complexityO(t) and soundness error 1/2 maintaining all other parameters

the same.

138

For t ∈ [3, ..., 0.99 log log n
log log log n], we have (logn)

1
t > (log logn)1/0.99 and so At(n) = O((log n)

2
t). On the

other hand, for t ≥ 1.01 log log n
log log log n , we have (logn)

1
t ≤ (log logn)1/1.01 and so At(n) =

O

(
(log logn)2/ log log logn

)
= o(log logn)2.

Theorem 10.2.1 actually asserts a PCP of proximity (for CIRCUIT VALUE), but a PCP for CIRCUIT

SATISFIABILITY and a PCP of proximity for NONDETERMINISTIC CIRCUIT VALUE (of the same com-

plexity) follow; see Propositions 2.2.2 and 2.2.3. Theorems 1.3.2 and 1.3.3 follow by suitable settings

of the parameter t. Further detail as well as another corollary appear in Section 10.2.2.

10.2.1 Proof of Theorem 10.2.1

Theorem 10.2.1 is proved by using the robust PCP of proximity described in Theorem 6.1.1. Specif-

ically, this robust PCP of proximity is composed with itself several times (using the Composition

Theorem from Section 2). Each such composition drastically reduces the query complexity of the

resulting PCP, while only increasing very moderately its randomness complexity. The deteriora-

tion of the soundness error and the robustness is also very moderate. After composing the robust

PCP of proximity with itself O(t(n)) times, we compose the resulting robust PCP with the ALMSS-

type robust PCP of proximity thrice to reduce the query complexity to poly log log logn. Finally

we compose this resultant robust PCP of proximity with a PCPP of proximity parameter roughly

Ω(1/t) that has query complexity O(1) and exponential length. The latter PCP of proximity can

be obtained by a suitable modification of the Hadamard-based PCP of [ALM+98], as shown in

Chapter 4.

Proof: We construct the PCP of proximity of Theorem 10.2.1 by composing the robust PCP of

proximity described in Theorem 6.1.1 with itself several times. Each such composition reduces

the query complexity from n to approximately n1/m. Ideally, we would like to do the following:

Set m = (log n)
1
t and compose the robust PCPP of Theorem 6.1.1 with parameter m with itself

t − 1 times. This would result in a robust PCPP of query complexity roughly n1/mt

= n1/log n =

O(1) giving us the desired result. However, we cannot continue this repeated composition for all

the t − 1 steps as the requirements of Theorem 6.1.1 (namely, n1/m ≥ mcm/(δγ)3) are violated in

the penultimate two steps of the repeated composition. So we instead do the following: In the

first stage, we compose the (new and) highly efficient verifier from Theorem 6.1.1 with itself t − 3

times. This yields a verifier with query complexity roughly (n1/mt

)m2

= 2m2

= exp(log2/t n) < n,

while the soundness error is bounded away from 1 and robustness Ω(1/t). In the second stage,

we compose the resultant robust PCPP a constant number of times with the ALMSS-type robust

PCPP described in Theorem 5.1.2 to reduce the query complexity to poly log log logn (and keeping

the other parameters essentially the same). The ALMSS-type PCPP is (relatively) poor in terms of

randomness, however the input size to the ALMSS-type PCPP is too small to affect the randomness

139

of the resultant PCPP. Finally, we compose with the Hadamard-based verifier of Theorem 4.1.1 to

bring the query complexity down to O(1). In all stages, we invoke the Composition Theorem

(Theorem 3.2.1).

Throughout the proof, n denotes the size of the circuit that is given as explicit input to the PCPP

verifier that we construct. We shall actually construct a sequence of such verifiers. Each verifier

in the sequence will be obtained by composing the prior verifier (used as the outer verifier in the

composition) with an adequate inner verifier. In the first stage, the inner verifier will be the verifier

obtained from Theorem 6.1.1, whereas in the second and third stages it will be the one obtained

from Theorem 5.1.2 and Theorem 4.1.1, respectively. Either way, the inner verifier will operate on

circuits of much smaller size (than n) and will use a proximity parameter that is upper-bounded by

the robustness parameter of the corresponding outer verifier.

Stage I: Let m = (log n)
1
t ≥ 2 and γ = 1

t . For this choice of m and γ, let V0 be the verifier obtained

from Theorem 6.1.1. We recall the parameters of this verifier: For circuits of size ℓ and any proximity

parameter δ0 ∈ (γ/3c, γ/c), its randomness complexity is r0(ℓ) , (1 − 1
m) · log2 ℓ + O(log log ℓ) +

O(m logm)+O(log t), its decision (and query) complexity is d0(ℓ) , ℓ
1
m ·poly(log ℓ, t), its soundness

error is s0 , γ and its robustness is ρ0 ≥ (1− γ)δ0.

We compose V0 with itself t−3 times for the same fixed choice ofm and γ to obtain a sequence of

verifiers of increasingly smaller query complexity. While doing so, we will use the largest possible

proximity parameter for the inner verifier (V0) in each stage; that is, in the ith composition, we set

the proximity parameter of the inner verifier to equal the robustness of the outer verifier, where the

latter is the result of i− 1 compositions of V0 with itself. We get a sequence of verifiers V1, . . . , Vt−2

such that V1 = V0 and the verifier Vi is obtained by composing (the outer verifier) Vi−1 with (the

inner verifier) V0, where the proximity parameter of the latter is set to equal the robustness of the

former. Unlike V0, which is invoked on different circuit sizes and (slightly) different values of

the proximity parameter, all the Vi’s (i ∈ [t − 2]) refer to circuit size n and proximity parameter

δ , γ/c < 1/t.

Let ri, di, δi, si and ρi denote the randomness complexity, decision (and query) complexity, prox-

imity parameter, soundness error, and the robustness parameter of the verifier Vi. (Recall that Vi

will be composed with the inner-verifier V0, where in this composition the input size and prox-

imity parameter of the latter will be set to di and ρi respectively, and so we will need to verify

that d
1/m
i ≥ mcm/(γρi)

3 and ρi < γ/c for i < t − 2).2 We first claim that the decision complexity,

proximity, soundness-error, robustness, and proof size parameters satisfy the following conditions:

1. Decision complexity: di(n) ≤ a(n,m)2 ·n1/mi

, where a(ℓ,m) , d0(ℓ)/ℓ
1/m = poly(log ℓ, t). On

2We also need to verify that n1/m ≥ mcm/(γδ0)3 and δ0 < γ/c for the initial verifier V1 = V0 but this is true for our

choice of parameters. Furthermore, as ρi can only deteriorate with each composition, we have that ρi ≤ ρ0 ≤ γ/c. Thus,

the only condition that needs to be verified is d
1/m
i ≥ mcm/(γρi)

3 for i < t− 2.

140

the other hand, di(n) ≥ n1/mi

.

2. Proximity: δi = δ.

3. Soundness error: si ≤ 1− (1− γ)i (In particular, si < iγ).

4. Robustness: ρi ≥ (1− γ)i · δ. On the other hand, ρi ≤ ρ0 < γ/c.

5. Proof length: 2ri(n)di(n) ≤ b(n,m)i · n, where b(ℓ,m) , 2r0(ℓ) · d0(ℓ)/ℓ = poly(mm, log ℓ, t).

We prove this claim by induction on i. For starters, note that the base case (i.e., i = 1) follows from

the properties of V0: In particular, d1(n) ≤ poly(logn, t)·n1/m and 2r1(n)d1(n) ≤ poly(mm, logn, t)·n.

Turning to the induction step, assuming that these claims holds for Vi, we prove that they hold also

for Vi+1. For (1), note that

di+1(n) = d0(di(n)) [By the Composition Theorem]

= a(di(n),m) · di(n)1/m [By the properties of V0]

≤ a(n,m) · di(n)1/m [By monotonicity of a(·, ·) and di(n) ≤ n]

≤ a(n,m) ·
(
a(n,m)2 · n1/mi

)1/m

[By induction]

≤ a(n,m)2 · n1/mi+1

[Using m ≥ 2]

and di+1(n) ≥ di(n)1/m ≥ n1/mi+1

also holds. Clearly δi = δ and the bound on si is straightforward

from the Composition Theorem. Recalling that the proximity parameter for V0 in this composition

is set to ρi, the robustness of the composed verifier Vi+1 is ρi+1 = (1−γ)ρi = (1−γ)i+1δ as desired.

Furthermore, ρi = (1 − γ)iδ ≥ (1 − 1
t)

tδ ≥ e−1δ = γ/O(1). We now move to the last condition

(essentially bounding the randomness). Notice first that ri+1(n) = ri(n) + r0(di(n)) and thus

2ri+1(n) · di+1(n) = 2ri(n) · 2r0(di(n)) · d0(di(n)) [By the Composition Theorem]

≤ 2ri(n) · di(n) · b(di(n),m) [By the properties of V0]

≤ n · b(n,m)i · b(n,m) [By induction and monotonicity of b(·, ·)]
≤ n · b(n,m)i+1

Thus, Part (5) is verified. Recall that we have to verify that d
1/m
i ≥ mcm/(γρi)

3 for i < t − 2 as

promised before. We have d
1/m
i ≥ (n1/mi

)1/m = n1/mi+1 ≥ n1/mt−2

(since i < t − 2). Since m =

(logn)
1
t , we have n1/mt

= 2. Hence, d
1/m
i ≥ (n1/mt

)m2

= 2m2

. On the other hand, mcm/(γρi)
3 ≤

mcm/(e−1γδ)3 = mcm · poly(t). Thus it suffices to verify that 2m2

/mcm ≥ poly(t), for 3 ≤ t ≤
2 log logn/ log log logn, which is straightforward.3

3Note that as t varies from 3 to 2 log logn/ log log logn, the value of m varies from
√

logn to
√

log logn. For

t ∈ [3, 2 log logn/ log log logn], the maximum value of poly(t) is poly(log logn/ log log logn) = poly(log log n). On

the other hand, for m ∈ [
√

log logn,
√

logn], the minimum value of 2m2
/mcm > 2m2/2 is 2

√
log log n2/2 =

√
logn >

poly(log logn).

141

Lastly, we consider the running-time of Vi, denoted Ti. A careful use of the Composition The-

orem (Theorem 3.2.1) indicates that Ti(n) = poly(n) + Ti−1(n), for every i = 2, . . . , t − 2, where

T1(n) = poly(n) (since V1 = V0). Alternatively, unraveling the inductive composition, we note that

Vi consists of invoking V0 for i times, where in the first invocation V0 is invoked on Vi’s input and

in later invocations V0 is invoked on an input obtained from the previous invocation. Furthermore,

the output of Vi is obtained by a combining the inputs obtained in these i ≤ t− 2 < n invocations.

We now conclude the first stage by showing that the final verifier Vc = Vt−2 has the desired

properties. By Part (5) above (and the fact that dt−2 ≥ 1), we have rc(n) = rt−2(n) ≤ logn +

(t − 2) · log b(n,m) ≤ logn + t log b(n,m). By the definition of b(n,m), we have log b(n,m) =

O(log logn)+O(m logm)+O(log t) = O(log logn+m logm), whereasm logm = (logn)
1
t · 1t log logn.

Thus rc(n) ≤ log2 n+O(t · log logn)+t ·O(m logm) = log2 n+O(t+(logn)
1
t) · log logn. The decision

complexity of Vc is dc(n) = dt−2(n) ≤ a(n,m)2 ·n1/mt−2

= a(n,m)2 · 2m2

, because n1/mt

= 2. Using

a(n,m) = poly(logn, t), it follows that dc(n) ≤ 2m2 · poly(logn). The proximity of Vc equals δ, its

soundness error is sc = st−2 = 1 − (1 − γ)t−2 = 1 − (1 − (1/t))t−2 < 1/2, and its robustness is

ρc = ρt−2 ≥ (1 − γ)t−2δ = δ/e = Ω(1/t).

Stage II: We now compose the verifier Vc with the ALMSS-type verifier Va described in Theo-

rem 5.1.2 thrice to obtain the verifiers V ′, V ′′, and V ′′′ respectively (i.e., V ′ equals Vc composed

with Va, V ′′ equals V ′ composed with Va, and V ′′′ equals V ′′ composed with Va). We compose

as before setting the proximity parameter of the inner verifer equal to the robustness parameter

of the outer verifier. Recall from Theorem 5.1.2 that the ALMSS-type verifer Va has the following

parameters: randomness ra(ℓ, δ) = O(log ℓ), decision complexity da(ℓ, δ) = poly log ℓ, soundness

error sa(ℓ, δ) = 1− Ω(δ) and robustness ρa(ℓ, δ) = Ω(1) for input size ℓ and proximity parameter δ.

Thus each composition with the inner verifier Va adds O(log q) to the randomness while reducing

the query complexity to poly log q where q is the decision complexity of the outer verifier. Further-

more, the robustness parameter improves to the constant Ω(1) while the soundness error increases

from a constant to 1− Ω(ρ) where ρ is the robustness of the outer verifier (provided the soundness

error of the outer verifier is a constant). Hence, the parameters of the verifiers V ′, V ′′ and V ′′′ are

as follows:

Parameters of V ′ (recall that dc = 2m2 · poly(logn) and δ = Ω(1/t)):

r′ = rc +O(m2 + log logn) d′ = poly(m, log log n)

s′ = 1− Ω(δ) ρ′ = Ω(1)

Parameters of V ′′:

r′′ = r′ +O(logm+ log log logn) d′′ = poly(logm, log log logn)

s′′ = 1− Ω(δ) ρ′′ = Ω(1)

Parameters of V ′′′:

r′′′ = r′′ +O(log logm+ log log log logn) d′′′ = poly(log logm, log log log logn)

142

s′′′ = 1− Ω(δ) ρ′′′ = Ω(1)

while the proximity parameter for all three verifiers is that of Vc (i.e., δ). We have that

r′′′ = log2 n+O(t+ (logn)1/t) · log logn+O(m2),

q′′′ < d′′′ = poly(log log log log n, log logm),

whereas δ′′′ = δ = 1/(ct), s′′′ = 1 − Ω(δ) and ρ′′′ = Ω(1). Substituting m = (logn)
1
t , we get

r′′′ = log2 n+O(t+ (logn)1/t) · log logn+O((log n)
2
t) and q′′′ = poly(log log logn).

Stage III: Finally, we compose V ′′′ with the Hadamard-based inner verifier Vh of Theorem 4.1.1

to obtain our final verifier Vf . The query complexity of Vh and hence that of Vf is constant. The

randomness complexity of Vf is rf (n) , r′′′(n) + rh(q′′′(n)) = r′′′(n) + poly(log log logn), because

rh(ℓ) = O(ℓ2). Thus, rf (n) = log2 n+O(t+(log n)
1
t)·log logn+O((log n)

2
t). On proximity parameter

δh, the soundness error of Vh is sh = 1 − Ω(δh). Setting δh = ρ′′′ = Ω(1), we conclude that the

soundness error of Vf on proximity parameter δ is 1−Ω(δ) = 1−Ω(1/t) (since the soundness error

of V ′′′ is 1− Ω(δ)).

To obtain soundness error 1/2, we repeat perform O(t) repetitions of Vh, yielding a query com-

plexity ofO(t). This can be done without increasing the randomness complexity by using “recycled

randomness” (specifically, the neighbors of a uniformly selected vertex in a Ramanujan expander

graph; see [Gol97, Apdx. C.4]).

10.2.2 Corollaries to Theorem 10.2.1

Recall that Theorem 10.2.1 asserts a PCP of proximity with randomness complexity log2 n+At(n),

where At(n) , O(t + (logn)
1
t) log logn + O((log n)

2
t) and query complexity O(t) (for soundness

error 1/2). For constant t ≥ 3, we have At(n) = O((log n)
2
t). On the other hand, for t ≥ 1.01 log log n

log log log n ,

we have At(n) = o(log logn)2.

Deriving Theorems 1.3.2 and 1.3.3: Two extreme choices of t(n) are when t(n) = 2
ε , for some

ε > 0 (which maintains a constant query complexity), and t(n) = 2 log log n
log log log n (which minimizes

the randomness complexity of the verifier). Setting t(n) = 2
ε yields Theorem 1.3.3 (i.e., constant

query complexity O(1/ε) and randomness log2 n + O(logε n)), whereas setting t(n) = 2 log log n
log log log n

yields Theorem 1.3.2 (i.e., query complexity O((log logn)/ log log logn) and randomness log2 n +

O
(
(log logn)2/ log log logn

)
). Thus, both Theorems 1.3.2 and 1.3.3 follow from Theorem 10.2.1.

Deriving a PCP of proximity for NONDETERMINISTIC CIRCUIT VALUE: By Proposition 2.2.3, we

conclude that for every 3 ≤ t(n) ≤ 2 log log n
log log log n , there exists a PCP of proximity for NONDETER-

MINISTIC CIRCUIT VALUE of the same complexities (i.e., randomness complexity log2 n + At(n),

143

query complexity O(t(n)), perfect completeness, and soundness error 1/2 with respect to proxim-

ity δ = Ω(1/t(n))).

Comment: We note that the tight bound on the robustness (as a function of the proximity param-

eter) in our main construct (Theorem 6.1.1) plays an important role in the proof of Theorem 10.2.1.

The reason is that when we compose two robust PCPs of proximity, the proximity parameter of

the second must be upper-bounded by the robustness parameter of the first. Thus, when we com-

pose many robust PCPs of proximity, the robustness parameter deteriorates exponentially in the

number of composed systems where the base of the exponent is determined by the tightness of the

robustness (of the second verifier). That is, let τ , ρ/δ, where δ and ρ are the proximity and robust-

ness parameters of the system. Then composing this system t times with itself, means that at the

lowest PCP-instance we need to set the proximity parameter to be τ t−1 times the initial proximity.

This requires the lowest PCP-instance to make at least 1/τ t−1 queries (or be composed with a PCP

of proximity that can handle proximity parameter τ t, which again lower-bounds the number of

queries). For a constant τ < 1, we get exp(t) query complexity, whereas for τ = 1− γ = (1− (1/t))

we get query complexity that is linear in 1/((1 − γ)t · γ) = O(t). Finally, we argue that in the con-

text of such an application, setting γ = 1/t is actually the “natural” choice. Such a choice, assigns

each proof-oracle encountered in the composition almost equal weight (of 1/t); that is, such a proof

oracle is assigned weight 1/t when it appears as the current proof-oracle and maintains its weight

when it appears as part of the input-oracle in subsequent compositions.

A more flexible notion of a PCP of proximity: Our definition of a PCP of proximity (see Defi-

nition 2.2.1) specifies for each system a unique proximity parameter. In many settings (see, e.g.,

Section 12), it is better to have the proximity parameter be given as an input to the verifier and

have the latter behave accordingly (e.g., make an adeqaute number of queries). We refrain from

presenting a formal definition as well as a general transformation of PCPs of proximity to their

more relaxed form. Instead, we state the following corollary to Theorem 10.2.1.

Corollary 10.2.2 For every parameters n, t, T ∈ N such that 3 ≤ t ≤ T ≤ 2 log log n
log log log n there exists a PCP

of proximity for CIRCUIT VALUE (for circuits of size n) with proof length 2At(n) · n, where At(n) is as in

Eq. (10.1), query complexityO(T), perfect completeness, and soundness error 1/2 with respect to proximity

parameter 1/T . Furthermore, when given (as auxiliary input) a proximity parameter δ ∈ (T−1, t−1), the

verifier makes only O(1/δ) queries and rejects any input oracle that is δ-far from satisfying the circuit with

probability at least 1/2.

Underlying the following proof is a general transformation of PCPs of proximity to the more re-

laxed form as stated in Corollary 10.2.2.

144

Proof: The proof oracle consists of a sequence of proofs for the system of Theorem 10.2.1, when

invoked with proximity parameter 2−i, for i = ⌊log2 t⌋, ..., ⌈log2 T ⌉. When the new verifier is in-

voked with proximity parameter δ, it invokes the original verifier with proximity parameter 2−i,

where i = ⌈log2 1/δ⌉, and emulates the answers using the i-th portion of its proof oracle.

145

146

Part III

Coding Theory Applications

147

CHAPTER 11

Introduction

In this part, we describe some of the applications of our PCP constructions to coding theory. The

flexibility of PCPs of proximity makes them relatively easy to use in obtaining results regarding

locally testable and decodable codes. In particular, using a suitable PCP of proximity, we obtain an

improvement in the rate of locally testable codes (improving over the results of [GS02, BSVW03]).

We also introduce a relaxed notion of locally decodable codes, and show how to construct such

codes using any PCP of proximity (and ours in particular). Before defining either locally testable

codes or locally decodable codes, we first give a brief introduction to coding theory and sublinear

time algorithms. We then show how locally testable codes and locally decodable codes appear nat-

urally in the context of sublinear time algorithms for coding theory. We defer the formal definitions

of these codes and their constructions to the next two chapters (Chapters 12 and 13).

11.1 Coding Theory

The fundamental problem in coding theory is to design “good” codes that can be “efficiently”

decoded even if a faulty communication channel corrupts a small fraction of bits in the code. Before

formalizing this question, we need the following coding theory preliminaries.

Preliminaries: For a string w ∈ {0, 1}n and i ∈ [n] , {1, 2, ..., n}, unless stated differently, wi

denotes the i-th bit of w.

0This introductory chapter is based on the following talk by Madhu Sudan:

“Sublinear Time Algorithms in Coding Theory” (Invited Talk), RANDOM ’04 (Cambridge, Massachusetts, 22–24 Aug. 2004)

I am thankful to Madhu Sudan for letting me include some of the material from his talk in this chapter.

149

We consider codes mapping sequences of k (input) bits into sequences of n ≥ k (output) bits.

Such a generic code is denoted by C : {0, 1}k → {0, 1}n, and the elements of {C(x) : x∈{0, 1}k} ⊆
{0, 1}n are called codewords (of C). Throughout this part, the integers k and n are to be thought of as

parameters, and we are typically interested in the relation of n to k (i.e., how n grows as a function

of k). Thus, we actually discuss infinite families of codes (which are associated with infinite sets of

possible k’s), and whenever we say that some quantity of the code is a constant we mean that this

quantity is constant for the entire family (of codes). We denote the ratio k/n as the rate of the code

C.

The distance of a code C : {0, 1}k → {0, 1}n is the minimum (Hamming) distance between

its codewords; that is, minx 6=y{∆(C(x),C(y))}, where ∆(u, v) denotes the number of bit-locations

on which u and v differ. Throughout this work, we focus on codes of “linear distance”; that is, codes

C : {0, 1}k → {0, 1}n of distance Ω(n). The distance of w ∈ {0, 1}n from a code C : {0, 1}k →
{0, 1}n, denoted ∆C(w), is the minimum distance between w and the codewords; that is, ∆C(w) ,

minx{∆(w,C(x))}. For δ ∈ [0, 1], the n-bit long strings u and v are said to be δ-far (resp., δ-close) if

∆(u, v) > δ ·n (resp., ∆(u, v) ≤ δ ·n). Similarly, w is δ-far from C (resp., δ-close to C) if ∆C(w) > δ ·n
(resp., ∆C(w) ≤ δ · n).

Equipped with these preliminaries, we observe that if a communication channel is slightly

faulty in the sense that it corrupts at most ε-fraction of the bits, then in order to be uniquely de-

codable any code C must have relative distance at least δ(C) ≥ 2ε. The fundamental question

mentioned above can now be formalized as follows: For any ε ∈ (0, 1), design a code with relative

distance at least 2ε that has maximum rate. In addition to this problem, we will also be interested

in the algorithmic complexities of the following problems.

Let C : {0, 1}k → {0, 1}n be a fixed code.

Encoding: Encoding is the problem of finding the encoding of a given message. Formally, given

any message m ∈ {0, 1}k, encoding is the problem of computing C(m) ∈ {0, 1}n.

Error Detection (Testing): Testing is the problem of deciding whether a given string is a codeword.

Formally, given any string w ∈ {0, 1}k, testing is the problem of deciding whether there exists

a m ∈ {0, 1}k such that w = C(m). A related (and possibly more interesting problem) is the

problem of ε-testing: Given a string w ∈ {0, 1}n, does there exist a string m ∈ {0, 1}k such

that δ(w,C(m)) ≤ ε.

Error Correction (Decoding): Decoding involves finding the closest codeword to a given word.

Formally, given an error parameter ε, decoding is the following problem: Given any string

w ∈ {0, 1}n such that δ(w,C) ≤ ε, find m ∈ {0, 1}k that minimizes δ(w,C(m)).

150

11.2 Sublinear time algorithms

The main question in sublinear time algorithms is the following: Given a computable function

f : {0, 1}k → {0, 1}n, can it be computed in time significantly less than both k and n, i.e., can it

be computed in o(k, n) time? On a first glance, the answer seems to be no since we do not have

sufficient time to even read the input or for that matter even write the output. However, we can

expect to perform such sublinear computations if we make the following modifications to the way

the input and output are represented.

• The input is represented implicitly by an oracle. Whenever the sublinear time algorithm

wants to access the jth bit of the input string x (for some j ∈ [k]), it queries the input x-oracle

for the jth bit and obtains xj . This (implicit) representation lets the algorithm work with the

input even when it cannot read the entire input. Thus, the running time is not bounded below

by the length of the input but by the number of queries made by the algorithm to the input

oracle. We call the maximum number of queries made by the algorithm, the query complexity

of the algorithm. We will be interested in algorithms that have very low query complexity,

typically constant.

Figure 11-1: Sublinear Time Algorithms

• The output is not explicitly written by the algorithm, instead it is only implicitly given by the

algorithm. Formally, on being queried for index i of the output string f(x) (for some i ∈ [n]),

the algorithm outputs the bit f(x)i. Thus, the algorithm itself behaves as an oracle for the

string f(x), which in turn has oracle access to the input oracle x.

Thus, sublinear time algorithms are oracle machines with oracle access to the input string. As

in the case of PCPs, all oracle machines considered in this part are non-adaptive. Representing

both the input and output implicitly as suggested above, has the added advantage that these

algorithms can now be composed in a very natural fashion.

• Since the algorithm does not read the entire input x, we cannot expect it compute the output

151

f(x) exactly. We instead relax our guarantee on the output as follows: On input x ∈ {0, 1}k,

the algorithm must compute f(x′) exactly for some x′ ∈ {0, 1}k that is ε-close to the actual

input x. In other words, the algorithm computes functions on some approximation to the

input instead of the input itself.

Figure 11-1 gives a pictorial description of a sublinear time algorithm with the above mentioned

relaxations.

Sublinear time algorithms were first studied in the context of program checking/testing and

interactive proofs and PCPs. More recently, sublinear time algorithms are widely used in property

testing, large graph problems, web-based algorithms, sorting, searching, high-dimensional com-

putational geometry, statistics/entropy computations etc. In the context of coding theory, we will

study whether each of the three algorithmic tasks mentioned in the earlier section (Sec. 11.1) can be

performed in sublinear time.

Encoding: For a code to have good error-correcting properties, most bits of the codeword needs to

depend on most message-bits. Taking this into account, it does not seem reasonable to expect

a “good” code to have sublinear time encoding.

Decoding: Several codes have very efficient sublinear decoding procedures. In fact, many of the

initial results in decoding actually yield sublinear time decoding procedures. Informally, a

code that admits sublinear time decoding is called a locally decodable code.

Testing: Like decoding, sublinear time testing is also an interesting problem and several codes

admit sublinear time testing. Informally, a a code that admits sublinear time testing is called

a locally testable code.

In the next two sections, we will take a closer look at these types of codes (locally testable codes

and locally decodable codes) and explain why they are interesting both from an algorithmic and

complexity theoretic perspective. For further applications of coding theory to complexity theory,

please refer to the excellent survey by Trevisan [Tre04].

11.3 Locally Testable Codes

Loosely speaking, a codeword test (for a code C) is a randomized (non-adaptive) oracle machine

that is given oracle access to a string. The tester may query the oracle at a constant number of

bit-locations and is required to (always) accept every codeword and reject with (relatively) high

probability every string that is “far” from the code. A code C is said to be locally testable if there

exists such a tester for the code C. Observe that according to this definition, the local testability of

a code is based on the query complexity of the tester and not on the running time of the tester. If

152

furthermore the tester also runs in sublinear time, we say that the code is efficiently locally testable.

This notion of local testability was hinted at in the work of Babai et al. [BFLS91]. It was later formal-

ized in the works of Rubinfeld and Sudan [RS96], Arora [Aro95], Spielman [Spi95] and Friedl and

Sudan [FS95]. The interest in locally testable codes was revived by the recent works of Goldreich

and Sudan [GS02] and Ben-Sasson et al. [BSVW03].

We do not know of any generic applications of locally testable codes, however they are interest-

ing objects in their own right. Locally testable codes are intimately connected to PCPs. In fact, the

notion of locally testable codes was introduced to study the possible limitations of PCP construc-

tions. Surprisingly, this study, on the contrary, has only led to improvements in PCP constructions.

Locally testable codes do not have any algorithmic applications at present. One of the reasons

for this might be that the present constructions of such codes involve such a huge blowup in the

message length (i.e., rate of code is inverse polynomial) that it makes it infeasible for any practi-

cal application. However, there does not seem to be any inherent lower-bound on the blowup in

message length of locally testable codes. It is possible that there exist locally testable codes with

constant rate, good distance and testable with a constant number of queries. Some potential algo-

rithmic applications of such codes are explained below.

• Efficient Spam Filters: Current spam-filters need to read the entire email to check for pos-

sible spam. If efficient locally testable codes with constant rate exist, then it is possible to

have spam-filters that distinguish between spam-free email and far from spam-free email by

merely probing the email at a constant number of locations.

• Efficient Hard-disk Virus Scans: Current Virus Scans for the hard disks consume a lot of time

to check if the disk is infected or not since they have to read every byte of information on

the disk. However, if constant rate locally testable codes exist, it is possible to encode the

contents of the disk according to such a locally testable code so that the resulting encoding

can be scanned for possible virus infections by merely probing the disk at a constant number

of locations. A complete scan of the disk could then be run at less frequent intervals while a

scan using locally testable codes can be performed more frequently without consuming too

much time.

We defer the formal definition of locally testable codes to Chapter 12, where we also present our

improved constructions of such codes via PCPs of proximity.

11.4 Locally Decodable Codes

Loosely speaking, a code is said to be locally decodable if whenever a few locations are corrupted,

the decoder is able to recover each information-bit, with high probability, based on a constant

153

number of queries to the (corrupted) codeword. This notion was formally defined by Katz and

Trevisan [KT00]. As in the case of locally testable codes, observe that the notion of local decodabil-

ity is defined not on the basis of the running time of the decoder but rather on the basis of the query

complexity of the decoder. Again as before, if a code admits a local decoder that runs in sublinear

time, we say that the code is efficiently locally decodable.

Though locally decodable codes were defined by Katz and Trevisan [KT00] only in 2000, their

constructions predate this definition. Goldreich and Levin in their work on the hardcore predi-

cates [GL89] showed that the Hadamard code is efficiently locally decodable. Beaver and Feigen-

baum [BF90], Lipton [Lip91], Blum, Luby and Rubinfeld [BLR93] and Chor et al. [CGKS98] gave

several constructions of locally decodable codes in the context of program checking, testing and

private information retrieval. Babai et al. [BFLS91] in their work on program checking hinted

at a possible definition and an interpretation of locally decodable codes in the context of error-

correcting codes. The definition of locally decodable codes can be extended to the case when a

lot of bits of the codeword are corrupted. In such a case, the corrupted codeword can no longer

be uniquely decoded but can instead only be list-decoded. Surprisingly, the notion of local-list-

decodability was introduced by Sudan, Trevisan and Vadhan [STV01] before the formal definition

of local-decodability due to Katz and Trevisan [KT00]. Locally decodable codes appeared in various

forms due to their applicability to worst-case to average-case analysis [Lip91, STV01], information

hiding [BF90] and private information retrieval [CGKS98].

Katz and Trevisan in their seminal work on locally decodable codes also proved that if the

decoder makes q queries then the length of the code is at least n = Ω(k1+1/(q−1)). This lower

bound is far from the best known upper bound, due to Beimal et al. [BIKR02] that asserts n =

O(exp(ko(1/q))) which barely improves on the Hadamard code which satisfies n = 2k. Unable to

improve either the lower-bound or upper-bound, we instead introduce a new relaxed notion of

locally decodable codes, with the hope of obtaining more efficient constructions (i.e., n = poly(k)).

11.4.1 Relaxed Locally Decodable Codes

We relax the definition of locally decodable codes by requiring that, whenever a few locations are

corrupted, the decoder should be able to recover most of the individual information-bits (based on

a few queries) and for the rest of the locations, the decoder may output either the right message

bit or a fail symbol (but not the wrong value). That is, the decoder must still avoid errors (with

high probability), but is allowed to say “don’t know” on a few bit-locations. We show that this

relaxed notion of local decodability can be supported by codes that have codewords of length that

is almost-linear in the number of information bits (i.e., n = k1+ε for every ε > 0).

We defer the formal definition of relaxed locally decodable codes to Chapter 13, where we also

present our construction of such codes using PCPs of proximity.

154

CHAPTER 12

Locally Testable Codes

In this chapter, we show that, combined with any good code, any PCP of proximity yields a Locally

Testable Code (LTC). Using our PCPs of proximity, we obtain an improvement in the rate of LTCs

(improving over the results of [GS02, BSVW03]).

12.1 Definitions

Loosely speaking, by a codeword test (for the code C : {0, 1}k → {0, 1}n) we mean a randomized

(non-adaptive) oracle machine, also called a tester, that is given oracle access to w ∈ {0, 1}n. The

tester may query the oracle at a constant number of bit-locations and is required to (always) accept

every codeword and reject with (relatively) high probability every oracle that is “far” from the

code. Indeed, since our focus is on positive results, we use a strict formulation in which the tester is

required to accept each codeword with probability 1. (This corresponds to “perfect completeness”

in the PCP setting.) The first definition below provides a general template (in terms of several

parameters) for the rejection condition. Later we will discuss the kinds of asymptotic parameters

we would like to achieve.

Definition 12.1.1 (codeword tests): A randomized (non-adaptive) oracle machine M is called a (δ, s)-

codeword test for C : {0, 1}k → {0, 1}n if it satisfies the following two conditions:

1. Accepting codewords (aka completeness): For every x ∈ {0, 1}k, given oracle access tow = C(x),

machine M accepts with probability 1. That is, Pr[MC(x) =1] = 1, for every x ∈ {0, 1}k.

2. Rejection of non-codeword (aka soundness): Given oracle access to any w ∈ {0, 1}n that is δ-

far from C, machine M accepts with probability at most s. That is, Pr[Mw = 1] ≤ s, for every

155

w ∈ {0, 1}n that is δ-far from C.

The parameter δ is called the proximity parameter and s is called the soundness error. The query com-

plexity q of M is the maximum number of queries it makes (taken over all sequences of coin tosses).

Note that this definition requires nothing with respect to non-codewords that are relatively close to the

code (i.e., are δ-close to C). In addition to the usual goals in constructing error-correcting codes

(e.g., maximizing minimum distance and minimizing the blocklength n = n(k)), here we are also

interested in simultaneously minimizing the query complexity q, the proximity parameter δ, and

the soundness error s. More generally, we are interested in the tradeoff between q, δ, and s. (As

usual, the soundness error can be reduced to sk by increasing the query complexity to k · q.) A

minimalistic goal is to have a family of codes with q, δ, and s all fixed constants. However, note

that this would only be interesting if δ is sufficiently small with respect to the distance parameters

of the code, e.g. smaller than half the relative minimum distance. (For example, if δ is larger than

the “covering radius” of the code, then there does not exist any string that is δ-far from the code,

and the soundness condition becomes vacuous.) A stronger definition requires the tester to work

for any given proximity parameter δ > o(1), but allows its query complexity to depend on δ:

Definition 12.1.2 (locally testable codes): A family of codes {Ck : {0, 1}k → {0, 1}n}k∈N is locally

testable if it satisfies

1. Linear Distance: There is a constant ρ > 0, such that for every k, Ck has minimum distance at least

ρ · n.

2. Local Testability: There is a randomized, non-adaptive oracle machine M such that for every constant

δ > 0, there is a constant q = q(δ) such that for all sufficiently large k, Mw(1k, δ) is a (δ, 1/2)-

codeword test for Ck with query complexity q.

The family is called explicit if both Ck and Mw(1k, δ) can be evaluated with computation time polynomial

in k.

We comment that Definition 12.1.2 is somewhat weaker than the definitions used in [GS02].1

12.2 Constructions

Using an adequate PCP of proximity, we can transform any code to a related code that has a code-

word tester. This is done by appending each codeword with a PCP of proximity proving the code-

word is indeed the encoding of a message. One technical problem that arises is that the PCP of

1In the weaker among the definitions in [GS02], the tester is not given δ as input (and thus has query complexity that is a

fixed constant independent of δ) but is required to be a (δ, 1−Ω(δ))-codeword test for every constant δ > 0 and sufficiently

large k. That is, strings that are δ-far from the code are rejected with probability Ω(δ). Such a tester implies a tester as in

Definition 12.1.2, with query complexity q(δ) = O(1/δ) .

156

proximity constitutes most of the length of the new encoding. Furthermore, we cannot assume

much about the Hamming distance between different proofs of the same statement, thus the dis-

tance of the new code may deteriorate. But this is easily fixed by repeating the codeword many

times, so that the PCP of proximity constitutes only a small fraction of the total length.2 Specif-

ically, given a code C0 : {0, 1}k → {0, 1}m, we consider the code C(x) , (C0(x)
t, π(x)), where

t = (d(k) − 1) · |π(x)|/|C0(x)| such that (say) d(k) = log k, and π(x) is a PCP of proximity that

asserts that an m-bit string (given as an input oracle) is a codeword (of C0).

Construction 12.2.1 Let d be a free parameter to be determined later, C0 : {0, 1}k → {0, 1}m be a code, and

V be a PCP of proximity verifier for membership in S0 = {C0(x) : x∈{0, 1}k}. Let π(x) be the proof-oracle

corresponding to the claim that the input-oracle equals C0(x); that is, π(x) is the canonical proof obtained

by using x as an NP-proof for membership of C0(x) in S0. Consider the code C(x) , (C0(x)
t, π(x)), where

t = (d− 1) · |π(x)|/|C0(x)|.

The codeword test emulates the PCP-verifier in the natural way. Specifically, given oracle access

to w = (w1, ..., wt, π) ∈ {0, 1}t·m+ℓ, the codeword tester selects uniformly i ∈ [t], and emulates the

PCP-verifier providing it with oracle access to the input-oracle wi and to the proof-oracle π. In

addition, the tester checks that the repetitions are valid (by inspecting randomly selected positions

in some qrep randomly selected pairs of m-bit long blocks, where qrep is a free parameter to be

optimized later). Let us denote this tester by T . That is, Tw proceeds as follows

1. Uniformly selects i ∈ [t] and invokes V wi,π.

2. Repeats the following qrep times: Uniformly selects i1, i2 ∈ [t] and j ∈ [m] and checks whether

(wi1)j = (wi2)j .

Proposition 12.2.2 Let d and qrep be the free parameters in the above construction of the code C and tester

T . Suppose that the code C0 : {0, 1}k → {0, 1}m has relative minimum distance ρ0, and that the PCP of

proximity has proof length ℓ > m, soundness error 1/4 for proximity parameter δpcpp and query complexity

qpcpp. Then, the code C and tester T have the following properties:

1. The blocklength of C is n , d · ℓ and its relative minimum distance is at least ρ0 − 1/d.

2. The oracle machine T is a (δ, 1/2)-codeword tester for the C, where δ = δpcpp + 4
qrep

+ 1
d .

3. The query complexity of T is q = qpcpp + 2qrep.

2Throughout this section we will use repetitions to adjust the “weights” of various parts of our codes. An alterna-

tive method would be to work with weighted Hamming distance (i.e. where different coordinates of a codeword receive

different weights), and indeed these two methods (weighting and repeating) are essentially equivalent. For the sake of

explicitness we work only with repetitions.

157

Proof: The parameters of the code C are obvious from the construction. In particular, C has block-

length t ·m + ℓ = d · ℓ = n, and the PCP of proximity π(x) constitutes only an ℓ/n = 1/d fraction

of the length the codeword C(x). Since the remainder consists of replicated versions of C0(x), it

follows that the relative minimum distance of C is at least (n− ℓ)ρ0/n > ρ0 − 1/d.

The query complexity of T is obvious from its construction, and so we only need to show that

it is a good codeword tester. Completeness follows immediately from the completeness of the

PCP of proximity, and so we focus on the soundness condition. We consider an arbitrary w =

(w1, ..., wt, π) ∈ {0, 1}t·m+ℓ that is δ-far from C, and observe that w′ = (w1, ..., wt) must be δ′-far

from C′ = {C0(x)
t : x ∈ {0, 1}k}, where δ′ ≥ (δn − ℓ)/n = δ − (1/d). Let u ∈ {0, 1}m be a string

that minimizes ∆(w′, ut) =
∑t

i=1 ∆(wi, u); that is, ut is the “repetition sequence” closest to w′. We

consider two cases:

Case 1: ∆(w′, ut) ≥ tm/qrep. In this case, a single execution of the basic repetition test (comparing

two locations) rejects with probability:

Er,s∈[t]

[
∆(wr , ws)/m

]
≥ Er∈[t]

[
∆(wr, u)/m

]

= ∆(w′, ut)/(t ·m)

≥ 1/qrep

where the last inequality is due to the case hypothesis. It follows that qrep executions of the

repetition test would accept with probability at most (1− 1/qrep)
qrep < 1/e < 1/2.

Case 2: ∆(w′, ut) ≤ tm/qrep. In this case

∆C0(u)

m
=

∆C′(ut)

tm
≥ ∆C′(w′)−∆(w′, ut)

tm
≥ δ′ − 1

qrep

where the last inequality is due to the case hypothesis. Also, recalling that on the average (i.e.,

average i) wi is 1/qrep-close to u, it holds that at least two thirds of the wi’s are 3/qrep-close

to u. Recalling that u is (δ′ − (1/qrep))-far from C0 and using δpcpp = δ′ − (4/qrep), it follows

at least two thirds of the wi’s are δpcpp-far from C0. Thus, by the soundness condition of the

PCP of proximity, these wi will be accepted with probability at most 1/4. Thus, in the current

case, the tester accepts with probability at most 1
3 + 2

3 · 1
4 = 1

2 .

The soundness condition follows.

To prove Theorem 1.3.4, we instantiate the above construction as follows. We let C0 : {0, 1}k →
{0, 1}m come from a family of codes with constant relative minimum distance ρ0 > 0 and nearly

linear blocklength m = Õ(k), where encoding can be done by circuits of nearly linear size s0 =

s0(k) = Õ(k). We take the PCP of proximity from Corollary 10.2.2, setting t1 = O(1/ε) (for an

arbitrarily small constant ε > 0) and t2 = 2loglogs0/ log log log s0 = ω(1). Thus, we obtain proof

158

length ℓ = s0 · exp(logε/2 s0) and query complexity qpcpp = O(max{1/δpcpp, t1}) = O(1/δpcpp) for

any proximity parameter δpcpp ≥ 1/t2 = o(1). We actually invoke the verifier twice to reduce its

soundness error to 1/4. Setting d = log k = ω(1), we obtain final blocklength n = d·ℓ < k·exp(logε k)

and relative distance ρ0−o(1). We further specify the test T as follows. Given a proximity parameter

δ ≥ 6/t2 = o(1), the tester T invokes the aforementioned PCPP with δpcpp = δ/6, and performs the

repetition test qrep = 6/δ times. Observing that δpcpp + (4/qrep) + (1/d) < δ, we conclude that the

resulting test (i.e., T = T (1k, δpcpp)) is a (δ, 1/2)-codeword tester of query complexity O(1/δpcpp) +

2qrep = O(1/δ). Thus we conclude:

Conclusion (Restating Theorem 1.3.4): For every constant ε > 0, there exists a a family of locally testable

codes Ck : {0, 1}k → {0, 1}n, where n = exp(logε k) · k, with query complexity q(δ) = O(1/δ).

159

160

CHAPTER 13

Relaxed Locally Decodable codes

In this chapter, we introduce a relaxed notion of Locally Decodable Codes, and show how to con-

struct such codes using any PCP of proximity (and ours in particular).

13.1 Definitions

We first recall the definition of Locally Decodable Codes (LDCs), as formally stated by Katz and

Trevisan [KT00]. A code C : {0, 1}k → {0, 1}n is locally decodable if for some constant δ > 0

(which is independent of k) there exists an efficient oracle machine M that, on input any index

i ∈ [k] and access to any oracle w ∈ {0, 1}n such that ∆(w,C(x)) ≤ δn, recovers the i-th bit of x

with probability at least 2/3 while making a constant number of queries to w. That is, whenever

relatively few location are corrupted, the decoder should be able to recover each information-bit,

with high probability, based on a constant number of queries to the (corrupted) codeword.

Katz and Trevisan showed that ifM makes q queries then n = Ω(k1+1/(q−1)) must hold [KT00].1

This lower-bound is quite far from the best known upper-bound, due to Beimal et al. [BIKR02], that

asserts n = O(exp(kε(q))), where ε(q) = O((log log q)/(q log q)) = o(1/q), which improves (already

for q = 4) over a previous upper-bound where ε(q) = 1/(2q + 1). It has been conjectured that, for a

constant number of queries, n should be exponential in k; that is, for every constant q there exists a

constant ε > 0 such that n > exp(kε) must hold. In view of this state of affairs, it is natural to relax

1Their lower-bound refers to non-adaptive decoders, and yields a lower-bound of n = Ω(k1+1/(2q−1)) for adaptive

decoders. A lower-bound of n = Ω(k1+1/O(q)) for adaptive decoders was presented in [DJK+02], and lower-bound of

n = Ω(k1+1/(q/2−1)) for non-adaptive decoders was presented in [KdW03]. (We note that below we use a non-adaptive

(relaxed) decoder.)

161

the definition of Locally Decodable Codes, with the hope of obtaining more efficient constructions

(e.g., n = poly(k)).

We relax the definition of Locally Decodable Codes by requiring that, whenever few location are

corrupted, the decoder should be able to recover most (or almost all) of the individual information-

bits (based on few queries) and for the remaining locations the decoder may output either the right

message bit or a fail symbol (but not the wrong value). That is, the decoder must still avoid errors

(with high probability), but is allowed to say “don’t know” on a few bit-locations. The follow-

ing definition is actually weaker; yet, the (aforementioned) stronger formulation is obtained when

considering ρ ≈ 1 (and using amplification to reduce the error from 1/3 to any desired constant).2

Furthermore, it is desirable to recover all bits of the information, whenever the codeword is not

corrupted.

Definition 13.1.1 (Relaxed LDC) A code C : {0, 1}k → {0, 1}n is relaxed locally decodable if for some

constants δ, ρ > 0 there exists an efficient probabilistic oracle machine M that makes a constant number of

queries and satisfies the following three conditions with respect to any w ∈ {0, 1}n and x ∈ {0, 1}k such

that ∆(w,C(x)) ≤ δn:

1. If w = C(x) is a codeword then the decoder correctly recovers every bit of x with probability at least

2/3. That is, for every x ∈ {0, 1}k and i ∈ [k], it holds that Pr[MC(x)(i) = xi] ≥ 2
3 .

2. On input any index i ∈ [k] and given access to the oracle w, with probability at least 2/3 machine M

outputs either the i-th bit of x or a special failure symbol, denoted ⊥. That is, for every i, it holds that

Pr[Mw(i) ∈ {xi,⊥}] ≥ 2
3 .

3. For at least a ρ fraction of the indices i ∈ [k], on input i and oracle access to w ∈ {0, 1}n, with

probability at least 2/3, machineM outputs the i-th bit of x. That is, there exists a set Iw ⊆ [k] of size

at least ρk such that for every i ∈ Iw it holds that Pr[Mw(i) = xi] ≥ 2
3 .

We call δ the proximity parameter.

One may strengthen the definition by requiring that ρ be greater than 1/2 or any other favorite

constant smaller than 1 (but probably refrain from setting ρ > 1−δ or so). A different strengthening

is for Condition 1 to hold with probability 1 (i.e., Pr[MC(x)(i) = xi] = 1). In fact, we achieve both

the stronger forms.

Remark 13.1.2 The above definition refers only to strings w that are δ-close to the code. However, using

Construction 12.2.1, any relaxed LDC can be augmented so that strings that are δ-far from the code are

2Here error reduction may be performed by estimating the probability that the machine outputs each of the possible bits,

and outputting the more frequent bit only if it has sufficient statistical support (e.g., say 50% support, which the wrong bit

cannot have). Otherwise, one outputs the don’t know symbol.

162

rejected with high probability (i.e., for every index i, the decoder outputs ⊥ with high probability). This can

be achieved with only a nearly linear increase in the length of the code (from length n to length n·exp(logε n)).

Remark 13.1.3 We stress that Condition 2 does NOT mean that, for every i and w that is δ-close to C(x),

either Pr[Mw(i) = xi] ≥ 2
3 or Pr[Mw(i) = ⊥] ≥ 2

3 holds. We refer to the latter condition as Condition X,

and conjecture that the seemingly minor difference between Conditions 2 and X is actually substantial.

This conjecture is enforced by a recent work of Buhrman and de Wolf [BdW04] who showed that codes that

satisfy Condition X are actually locally decodable in the standard, non-relaxed sense (i.e., according to the

definition of [KT00]).

13.1.1 Definitional issues and transformations

Note that it is very easy to come up with constructions that satisfy each one of the three condi-

tions of Definition 13.1.1. For example, Condition 2 can be satisfied by (any code and) a trivial

decoder that always returns ⊥. On the other hand, the identity encoding (combined with a trivial

decoder) satisfies Conditions 1 and 3.3 Our aim, however, is to obtain a construction that satisfies

all conditions and beats the performance of the known locally decodable codes.

It turns out that codes that satisfy Conditions 1 and 2 can be converted into “equally good”

codes that satisfy all three conditions. Let us start with a key definition, which refers to the distri-

bution of the decoder’s queries when asked to recover a random bit position.

Definition 13.1.4 (Average smoothness) Let M be a randomized non-adaptive oracle machine having

access to an oracle w ∈ {0, 1}n and getting input i ∈ [k]. Further suppose that M always makes q queries.

Let M(i, j, r) denote the j-th query of M on input i and coin tosses r. We say that M satisfies the average

smoothness condition if, for every v ∈ [n],

1

2n
< Pri,j,r[M(i, j, r) = v] <

2

n

where the probability is taken uniformly over all possible choices of i ∈ [k], j ∈ [q], and coin tosses r.

By having M randomly permute its queries, average smoothness implies that for every j ∈ [q]

and v ∈ [n], it holds that 1
2n < Pri,r[M(i, j, r) = v] < 2

n , where now the probability is taken

uniformly over all possible choices of i ∈ [k] and the coin tosses r). We stress that average smoothness

is different from the notion of smoothness as defined by Katz and Trevisan [KT00]: They require that for

every i ∈ [k] (and for every j ∈ [q] and v ∈ [n]), it holds that 1
2n < Prr[M(i, j, r) = v] < 2

n . Indeed,

average smoothness is a weaker requirement, and (as we will shortly see) any code and decoder

pair can be easily modified to satisfy it, while preserving decoding properties. (In contrast, Katz

3In case one wishes the code to have a linear distance this can be achieved too: Consider C(x) = (x,C′(x)), where C′ is

any code of linear length and linear distance, and a decoder that merely retrieves the desired bit from the first part.

163

and Trevisan [KT00] present a modification that achieves smoothness while preserving strict local-

decodability, but their transformation does not preserve Definition 13.1.1.)

Lemma 13.1.5 Let C : {0, 1}k → {0, 1}n be a code and M be a machine that satisfies Conditions 1 and 2

of Definition 13.1.1 with respect to proximity parameter δ. Then, for some n′ ∈ [3n, 4n], there exists a code

C′ : {0, 1}k → {0, 1}n′

and a machineM ′ that satisfies average smoothness as well as Conditions 1 and 2 of

Definition 13.1.1 with respect to proximity parameter δ′ = δ/20. Furthermore, the query complexity of M ′

is twice the one of M , and if M satisfies also Condition 3, with respect to a constant ρ, then so does M ′.

Jumping ahead, we mention that for a decoder that satisfies average smoothness, Conditions 1

and 2 essentially imply Condition 3, hence our interest in Lemma 13.1.5.

Proof: As noted above, we may assume without loss of generality that each of M ’s queries is dis-

tributed identically. Throughout the analysis, we refer to the distribution of queries for a uniformly

distributed index i ∈ [k]. Let q denote the query complexity of M .

We first modify M such that for a random i ∈ [k], each query probes each possible location with

probability Ω(1/n). This is done by adding q dummy queries, each being uniformly distributed.

Thus, each location gets probed by each query with probability at least 1/2n.

Next we modify the code and the decoder such that each location is probed with almost uni-

form distribution. The idea is to repeat heavily-probed locations for an adequate number of times,

and have the decoder probe a random copy. Specifically, let pv be the probability that location v

is probed (i.e., pv , Pri∈[k],r[M(i, 1, r) = v] or equivalently pv =
∑

i∈[k],j∈[2q] Pri,j,r[M(i, j, r) =

v]/2kq). By the above modification, we have pv ≥ 1/2n. Now, we repeat location v for rv = ⌊4npv⌋
times. Note that rv ≤ 4npv and rv > 4npv − 1 ≥ 2 − 1 (and so rv ≥ 2). We obtain a new code C′ of

length n′ =
∑

v rv ≤ 4n. (Note that n′ > 3n.) The relative distance of C′ is at least one fourth that of

C, and the rate changes in the same way. The new decoder, M ′, when seeking to probe location v

will select and probe at random one of the rv copies of that location. (Interestingly, there is no need

to augment this decoder by a testing of the consistency of the copies of an original location.)

Each new location is probed with probability p′v , pv · 1
rv

(by each of these queries). Recalling

that pv

rv
= pv

⌊4npv⌋ , it follows that p′v ≥ 1/4n and p′v ≤ pv

4npv−1 ≤ 1/2n (using pv ≥ 1/2n). Recalling

that n′ ∈ [3n, 4n], each p′v is in [(3/4) · (1/n′), 2 · (1/n′)], i.e., within a factor of 2 from uniform.

Clearly, M ′ satisfies Condition 1 (of Definition 13.1.1) and we turn to show that it (essentially)

satisfies Condition 2 as well. Let w = (w1, ..., wn) ∈ {0, 1}n′

be δ′-close to C′(x), where |wv| = rv .

Let Yv be a 0-1 random variable that represents the value of a random bit in wv ; that is, Pr[Yv = 1]

equals the fraction of 1’s in wv . Then, Pr[Yv 6= C(x)v] > 0 implies that ∆(wv, cv) ≥ 1, where

C′(x) = (c1, ..., cn) and |cv| = rv . For Y = Y1 · · ·Yn, it follows that E(∆(Y,C(x))) ≤ ∆(w,C′(x)),

and so E(∆(Y,C(x))) ≤ δ′n′ ≤ δ
5 · n (since δ′ = δ/20 and n′ ≤ 4n). Thus, with probability at least

164

4/5, the random string Y is δ-close to C(x), in which case the M must succeed with probability at

least 2/3. Noting that M ′w(i) merely invokes MY (i), we conclude that

Pr[M ′
w
(i) ∈ {xi,⊥}] = Pr[MY (i) ∈ {xi,⊥}]

≥ Pr[∆(Y,C(x)) ≤ δn] · Pr[MY (i) ∈ {xi,⊥} |∆(Y,C(x)) ≤ δn]

≥ 4

5
· 2
3

=
8

15

An analogous argument can be applied in the case M satisfies Condition 3. In both cases, ad-

ditional error-reduction is needed in order to satisfy the actual conditions, which require success

with probability at least 2/3. (For details see Footnote 2.)

Lemma 13.1.6 Let C : {0, 1}k → {0, 1}n be a code and M be a machine that satisfies Conditions 1 and 2 of

Definition 13.1.1 with respect to a constant δ. Suppose thatM satisfies the average smoothness condition and

has query complexity q. Then, invoking M for a constant number of times (and ruling as in Footnote 2)

yields a decoder that satisfies all three conditions of Definition 13.1.1. Specifically, Condition 3 holds with

respect to a constant ρ = 1− 18qδ. Furthermore, for any w and x, for 1− 18q∆(w,C(x)) fraction of the i’s,

it holds that Pr[Mw(i) = xi] ≥ 5/9.

Our usage of the average smoothness condition actually amounts to using the hypothesis that, for

a uniformly distributed i ∈ [k], each query hits any fixed position with probabilty at most 2/n.

Proof: By Condition 1, for any x ∈ {0, 1}k and every i ∈ [k], it holds that Pr[MC(x)(i) = xi] ≥ 2/3.

Considering any w that is δ-close to C(x), the probability that on input a uniformly distributed i ∈ [k]

machine M queries a location on which w and C(x) disagree is at most q · (2/n) · δn = 2qδ. This

is due to the fact that, for a uniformly distributed i, the queries are almost uniformly distributed;

specifically, no position is queried with probabilty greater than 2/n (by a single query).

Let pw
i denote the probability that on input imachineM queries a location on which w and C(x)

disagree. We have just established that (1/k)·∑k
i=1 p

w
i ≤ 2qδ. For Iw , {i ∈ [k] : pw

i ≤ 1/9}, it holds

that |Iw| ≥ (1−18qδ) ·k. Observe that for any i ∈ Iw, it holds that Pr[Mw(i) = xi] ≥ (2/3)− (1/9) =

5/9. Note that, by replacing δ with ∆(w,C(x))/n, the above argument actually establishes that for

1− 18q ·∆(w,C(x)) fraction of the i’s, it holds that Pr[Mw(i) = xi] ≥ 5/9.

Additional error-reduction is needed in order to satisfy the actual definition (of Condition 3),

which require success with probability at least 2/3. The error-reduction should be done in a manner

that preserves Conditions 1 and 2 of Definition 13.1.1. For details see Footnote 2.

In view of the furthermore clause of Lemma 13.1.6, it makes sense to state a stronger definition

of relaxed locally decodable codes.

165

Definition 13.1.7 (Relaxed LDC, revisited) A code C : {0, 1}k → {0, 1}n is relaxed locally decod-

able if for some constants δ > 0 there exists an efficient probabilistic oracle machineM that makes a constant

number of queries and satisfies the following two conditions with respect to anyw ∈ {0, 1}n and x ∈ {0, 1}k

such that ∆(w,C(x)) ≤ δn:

1. For every i ∈ [k] it holds that Pr[Mw(i) ∈ {xi,⊥}] ≥ 2
3 .

2. There exists a set Iw ⊆ [k] of density at least 1−O(∆(w,C(x))/n) such that for every i ∈ Iw it holds

that Pr[Mw(i) = xi] ≥ 2
3 .

Note that the “everywhere good” decoding of codewords (i.e., Condition 1 of Definition 13.1.1) is

implied by Condition 2 of Definition 13.1.7. By combining Lemmas 13.1.5 and 13.1.6, we get:

Theorem 13.1.8 Let C : {0, 1}k → {0, 1}n be a code and M be a machine that makes a constant q number

of queries and satisfies Conditions 1 and 2 of Definition 13.1.1 with respect to a constant δ. Then, for some

n′ ∈ [3n, 4n], there exists a code C′ : {0, 1}k → {0, 1}n′

that is relaxed locally decodable with respect to

proximity parameter δ′ = δ/20. Furthermore, this code satisfies Definition 13.1.7.

13.2 Constructions

Using Lemma 13.1.6, we focus on presenting codes with decoders that satisfy Conditions 1 and 2

of Definition 13.1.1 as well as the average smoothness property. We will start with a code that

has nearly quadratic length (i.e., n = k2+o(1)), which serves as a good warm-up towards our final

construction in which n = k1+ε, for any desired constant ε > 0.

Motivation to our construction: We seek a code of linear distance that has some weak “local de-

codability” properties. One idea is to separate the codeword into two parts, the first allowing for

“local decodability” (e.g., using the identity map) and the second providing the distance property

(e.g., using any code of linear distance). It is obvious that a third part that guarantees the consis-

tency of the first two parts should be added, and it is natural to try to use a PCP of proximity in the

latter part. The natural decoder will check consistency (via the PCPP), and in case it detects no error

will decode according to the first part. Indeed, the first part may not be “robust to corruption” but

the second part is “robust to corruption” and consistency means that both parts encode the same

information. Considering this vague idea, we encounter two problems. First, a PCP of proximity

is unlikely to detect a small change in the first part. Thus, if we use the identity map in the first

part then the decoder may output the wrong value of some (although few) bits. Put in other words,

the “proximity relaxation” in PCPPs makes sense for the second part of the codewords but not for

the first part. Our solution is to provide, for each bit (position) in the first part, a proof of the con-

sistency of this bit (value) with the entire second part. The second problem is that the PCPPs (let

166

alone all of them combined) are much longer than the first two parts, whereas the corruption rate

is measured in terms of the entire codeword. This problem is easy to fix by repeating the first two

parts sufficiently many times. However, it is important not to “overdo” this repetition, because if

the third part is too short, then corrupting it may prevent meaningful decoding (as per Condition 3

of Definition 13.1.1) even at low corruption rates (measured in terms of the entire codeword). Put

in other words, if the third part too short then we have no chance to satisfy the average smoothness

condition.

The actual construction. Let C0 : {0, 1}k → {0, 1}m be a good code of relative distance δ0, then we

encode x ∈ {0, 1}k by C(x) , (xt,C0(x)
t′ , π1(x), ..., πk(x)), where t = |π1(x), ..., πk(x)|/|x| (resp.,

t′ = |π1(x), ..., πk(x)|/|C0(x)|), and πi(x) is a PCP of proximity to be further discussed. We first

note that the replicated versions of x (resp., C0(x)) takes a third of the total length of C(x). As for

πi(x), it is a PCP of proximity that refers to an input of the form (z1, z2) ∈ {0, 1}m+m and asserts

that there exists an x = x1 · · ·xk (indeed the one that is a parameter to πi) such that z1 = xm
i and

z2 = C0(x).4 We use our PCP of proximity from Theorem 10.2.1, while setting its parameters such

that the proximity parameter is small enough but the query complexity is a constant. Specifically,

let δpcpp > 0 be the proximity parameter of the PCP of proximity, which will be set to be sufficiently

small, and let q = O(1/δpcpp) denote the number of queries the verifier makes in order to support a

soundness error of 1/6 (rather than the standard 1/2). A key observation regarding this verifier is

that its queries to its input-oracle are uniformly distributed. The queries to the the proof oracle can

be made almost uniform by a modification analogous to the one used in the proof of Lemma 13.1.5.

Observe that the code C maps k-bit long strings to codewords of length n , 3 · k · ℓ, where

ℓ = s0(m)1+o(1) denotes the length of the PCPP-proof and s0(m) denotes the size of the circuit for

encoding relative to C0. Using a good code C0 : {0, 1}k → {0, 1}m (i.e., of constant relative distance

δ0, linear length m = O(k), and s0(m) = Õ(m)), we obtain n = k2+o(1). The relative distance of C is

at least δ0/3.

We now turn to the description of the decoder D. Recall that a valid codeword has the form

(xt,C0(x)
t′ , π1(x), ..., πk(x)). The decoding of the i-th information bit (i.e., xi) will depend on a

random (possiblly wrong) copy of xi located in the first part (which supposedly equals xt), a ran-

dom (possibly corrupted) copy of C0(x) located in the second part, and the relevant (i.e., i-th) proof

located in the third part (hich is also possibly corrupted). On input i ∈ [k] and oracle access to

w = (w1, w2, w3) ∈ {0, 1}n, where |w1| = |w2| = |w3|, the decoder invokes the PCPP-verifier while

providing it with access to an input-oracle (z1, z2) and a proof oracle π that are defined and emu-

lated as follows: The decoder selects uniformly r ∈ [t] and r′ ∈ [t′], and defines each bit of z1 to

equal the ((r − 1)k + i)-th bit of w1, the string z2 is defined to equal the r′-th (m-bit long) block

4Indeed z1 is merely the bit xi repeated |C0(x)| times in order to give equal weight to each part in measuring proximity.

167

of w2, and π is defined to equal the i-th block (ℓ-bit long) of w3. That is, when the verifier asks to

access the j-th bit of z1 (resp., z2) [resp., π], the decoder answers with the ((r − 1)k + i)-th bit of w1

(resp., ((r′ − 1)m+ j)-th bit of w2) [resp., the ((i − 1)ℓ+ j)-th bit of w3]. If the verifier rejects then

the decoder outputs a special (failure) symbol. Otherwise, it outputs the ((r − 1)k + i)-th bit of w1.

The above construction can be performed for any sufficiently small constant proximity param-

eter δ ∈ (0, δ0/18). All that this entails is setting the proximity parameter of the PCPP to be suffi-

ciently small but positive (e.g., δpcpp = (δ0−18δ)/2). We actually need to augment the decoder such

that it makes an equal number of queries to each of the three (equal length) parts of the codeword,

which is easy to do by adding (a constant number of) dummy queries. Let us denote the resulting

decoder by D.

Proposition 13.2.1 The above code and decoder satisfy Conditions 1 and 2 of Definition 13.1.1 with respect

to proximity parameter δ ∈ (0, δ0/18). Furthermore, this decoder satisfies the average smoothness property.

Proof: Condition 1 (of Definition 13.1.1) is obvious from the construction (and the completeness

property of the PCPP). In fact, the perfect completeness of the PCPP implies that bits of an uncor-

rupted codeword are recovered with probability one (rather than with probability at least 2/3). The

average smoothness property of the decoder is obvious from the construction and the smoothness

property of the PCPP. We thus turn to establish Condition 2 (of Definition 13.1.1).

Fixing any x ∈ {0, 1}k, we consider an arbitrary oracle w = (w1, w2, w3) that is δ-close to C(x),

where w1 (resp., w2) denotes the alleged replication of x (resp., C0(x)) and w3 = (u1, ..., uk) denotes

the part of the PCPs of proximity. Note that w2 is 3δ-close to C0(x)
t′ . To analyze the performance

of Dw(i), we define random variables Z1 and Z2 that correspond to the input-oracles to which the

PCP-verifier is given access. Specifically, Z1 = σm, where σ is set to equal the ((r − 1)k + i)-th bit

of w1, when r is uniformly distributed in [t]. Likewise, Z2 is determined to be the r′-th block of w2,

where r′ is uniformly distributed in [t′]. Finally, we set the proof-oracle, π, to equal the i-th block of

w3 (i.e., π = ui). We bound the probability that the decoder outputs ¬xi by considering three cases:

Case 1: σ = xi. Recall that σ is the bit read by D from w1, and that by construction D always

outputs either σ or ⊥. Thus, in this case, Condition 2 is satisfied (because, regardless of

whether D outputs σ or ⊥, the output is always in {xi,⊥}).

Case 2: Z2 is 18δ-far from C0(x). Recall that w2 is 3δ-close to C0(x)
t′ , which means that the ex-

pected relative distance of Z2 and C0(x) is at most 3δ. Thus, the current case occurs with

probability at most 1/6.

Case 3: Z2 is 18δ-close to C0(x) and σ 6= xi. Then, on one hand, (Z1, Z2) is 1/2-far from (xm
i ,C0(x)),

because Z2 = σt. On the other hand, Z2 is (δ0 − 18δ)-far from any other codeword of C0,

because Z2 is 18δ-close to C0(x) and the codewords of C0 are δ0-far from one another, Thus,

168

(Z1, Z2) is (δ0−18δ)/2-far from any string of the form (ym
i ,C0(y)). Using δpcpp ≤ (δ0−18δ)/2,

we conclude that the PCPP verifier accepts (Z1, Z2) with probability at most 1/6. It follows

that, in the current case, the decoder outputs ¬xi with probability at most 1/6.

Thus, in total, the decoder outputs ¬xi with probability at most 1/6 + 1/6 = 1/3.

Improving the rate: The reason that our code has quadratic length codewords (i.e., n = Ω(k2)) is

that we augmented a standard code with proofs regarding the relation of the standard codeword to

the value of each information bit. Thus, we had k proofs each relating to a statement of length Ω(k).

Now, consider the following improvement: Partition the message into
√
k blocks, each of length

√
k. Encode the original message as well as each of the smaller blocks, via a good error correcting

code. Let w be the encoding of the entire message, and wi (i = 1, ...,
√
k) be the encodings of the

blocks. For every i = 1, ...,
√
k, append a PCP of proximity for the claim “wi is the encoding of the

i-th block of a message encoded by w”. In addition, for each message bit x(i−1)
√

k+j residing in

block i, append a PCP of proximity of the statement “x(i−1)
√

k+j is the j-th bit of the
√
k-bit long

string encoded in wi”. The total encoding length has decreased, because we have
√
k proofs of

statements of length O(k) and k proofs of statements of length O(
√
k), leading to a total length that

is almost linear in k3/2.

In general, for any constant ℓ, we consider ℓ successively finer partitions of the message into

blocks, where the (i + 1)-st partition is obtained by breaking each block of the previous partition

into k1/ℓ equally sized pieces. Thus, the i-th partition uses ki/ℓ blocks, each of length k1−(i/ℓ).

Encoding is done by providing, for each i = 0, 1, ..., ℓ, encodings of each of the blocks in the i-

th partition by a good error-correcting code. Thus, for i = 0 we provide the encoding of the

entire messages, whereas for i = ℓ we provide an “encoding” of individual bits. Each of these

ℓ + 1 levels of encodings will be assigned equal weight (via repetitions) in the new codeword.

In addition, the new codeword will contain PCPs of proximity that assert the consistency of “di-

rectly related” blocks (i.e., blocks of consecutive levels that contain one another). That is, for

every i = 1, ..., ℓ and j ∈ [ki/ℓ], we place a proof that the encoding of the j-th block in the i-

th level is consistent with the encoding of the ⌈j/k1/ℓ⌉-th block in the (i − 1)-st level. The i-th

such sequence of proofs contains ki/ℓ proofs, where each such proof refers to statements of length

O(k1−(i/ℓ) + k1−((i−1)/ℓ)) = O(k1−((i−1)/ℓ)), which yields a total length of proofs that is upper-

bounded by ki/ℓ · (k1−((i−1)/ℓ))1+o(1) = k1+(1/ℓ)+o(1). Each of these sequences will be assigned

equal weight in the new codeword, and the total weight of all the encodings will equal the total

weight of all proofs. The new decoder will just check the consistency of the ℓ relevant proofs and

act accordingly. We stress that, as before, the proofs in use are PCPs of proximity. In the current

context these proofs refer to two input-oracles of vastly different length, and so the bit-positions of

the shorter input-oracle are given higher “weight” (by repetition) such that both input-oracles are

169

assigned the same weight.5

Construction 13.2.2 Let C0 be a code of minimal relative distance δ0, constant rate, and nearly linear-sized

encoding circuits. For simplicity, assume that a single bit is encoded by repetitions; that is, C0(σ) = σO(1)

for σ ∈ {0, 1}. Let V be a PCP of proximity of membership in S0 = {C0(x) : x ∈ {0, 1}∗} having

almost-linear proof-length, query-complexity O(1/δpcpp) and soundness error 1/9, for proximity parameter

δpcpp. Furthermore, V ’s queries to both its input-oracle and proof-oracle are distributed almost uniformly.6

For a fixed parameter ℓ ∈ N, let b , k1/ℓ. For x ∈ {0, 1}k, we consider ℓ different partitions of x,

such that the j-th partition denoted (xj,1, ..., xj,bj), where xj,j′ = x(j′−1)·bℓ−j+1 · · ·xj′·bℓ−j . We define

Cj(x) , (C0(xj,1),C0(xj,2), ...,C0(xj,bj)), and πj(x) = (πj,1(x), ..., πj,bj (x)), where pj,j′(x) is a PCPP

proof-oracle that asserts the consistency of j′-th block of Cj(x) and the ⌈j′/b⌉-th block of Cj−1(x). That

is, pj,j′(x) refers to an input oracle of the form (z1, z2), where |z1| = |z2| = O(bℓ−j+1), and asserts the

existence of x such that z1 = C0(xj,j′)
b and z2 = C0(xj−1,⌈j′/b⌉). We consider the following code

C(x) , (C0(x)
t0 ,C1(x)

t0 , ...,Cℓ(x)
t0 , πt1

1 , ..., π
tℓ

ℓ)

where the tj ’s are selected such that each of the 2ℓ + 1 parts of C(x) has the same length. The decoder,

denoted D, operates as follows. On input i ∈ [k] and oracle access to w = (w0, w1, ..., wℓ, v1, ..., vℓ), where

|w0| = |wj | = |vj | for all j:

• D selects uniformly r0, r1, ..., rℓ ∈ [t0], and (r′1, r
′
2, ..., r

′
ℓ) ∈ [t1]× [t2]× · · · × [tℓ].

• For j = 1, ..., ℓ, the decoder invokes the PCPP-verifier providing it with access to an input-oracle

(z1, z2) and a proof oracle π that are defined as follows:

– z1 = ub, where u is the ((rj − 1) · bj + ⌈i/bℓ−j⌉)-th block of wj .

– z2 is the ((rj−1 − 1) · bj−1 + ⌈i/bℓ−j+1⌉)-th block of wj−1.

– π is the ((r′j − 1) · bj + ⌈i/bℓ−j⌉)-th block of vj .

The PCPP-verifier is invoked with proximity parameter δpcpp = 13ℓδ > 0, where δ ≤ δ0/81ℓ is the

proximity parameter sought for the decoder.

• If the PCPP-verifier rejects, in any of the aforementioned ℓ invocations, then the decoder outputs a

special (failure) symbol. Otherwise, the decoder outputs a random value in the ((rℓ − 1) · k + i)-th

block of wℓ (which is supposedly a repetition code of xi).

• In order to make D satisfy the average smoothness property, we issue some dummy queries that are

uniformly distributed in adequate parts of w that are queried less by the above.

5Indeed, this was also done in the simpler code analyzed in Proposition 13.2.1.
6Recall that all these conditions hold for the PCP of proximity of Theorem 10.2.1, where almost-uniformly distributed

queries to the proof-oracle are obtained by a modification analogous to the proof of Lemma 13.1.5.

170

(Suppose that V makes q1 (resp., q2) queries to the first (resp., second) part of it input-oracle

and q′ queries to its proof oracle. Then, w0 is accessed q2 times, wℓ is accessed q1 times, each

other wj is accessed q1 +q2 times, and each vj is accessed q′ times. Thus, we may add dummy

queries to make each part accessed max(q1+q2, q
′) times, which means increasing the number

of queries by a factor of at most (2ℓ+ 1)/(ℓ− 1) assuming ℓ ≥ 2.)

Using an adequate PCP of proximity, it holds that |C(x)| = ℓ ·(|x|1+(1/ℓ))1+o(1) < |x|1+ε, for ε = 2/ℓ.

The query complexity of D is O(ℓ) · O(1/δpcpp) = O(ℓ2). The proof of Proposition 13.2.1 can be

extended, obtaining the following:

Proposition 13.2.3 The code and decoder of Construction 13.2.2 satisfy Conditions 1 and 2 of Defini-

tion 13.1.1 with respect to proximity parameter δ ≤ δ0/81ℓ. Furthermore, this decoder satisfies the average

smoothness property.

Using Lemma 13.1.6, Theorem 1.3.5 follows.

Proof: Again, Condition 1 as well as the average smoothness property are obvious from the con-

struction, and we focus on establishing Condition 2. Thus, we fix an arbitrary i ∈ [k] and follow

the outline of the proof of Proposition 13.2.1.

We consider an oracle (w0, w1, ..., wℓ, π1, ..., πℓ) that is δ-close to an encoding of x ∈ {0, 1}k,

where each wj is supposed to consist of encodings of the kj/ℓ (non-overlapping) k1−(j/ℓ)-bit long

blocks of x, and πi consists of the corresponding proofs of consistency. It follows that each wj is

(2ℓ+1) ·δ-close to Cj(x)
t0 . LetZj denote the block of wj that was selected and accessed byD. Thus,

the expected relative distance of Z0 from C0(x) is at most (2ℓ+ 1) · δ, but we do not know the same

about the other Zj ’s because their choice depends on i (or rather on ⌈i/bℓ−j⌉). Assuming, without

loss of generality, that δ0 < 1/3 (and ℓ ≥ 1), we consider three cases:

Case 1: Zℓ is 1/9-close to C0(xi). In this case, D outputs either ⊥ or a uniformly selected bit in Zℓ,

and so D outputs ¬xi with probability at most 1/9.

Using δ ≤ δ0/81ℓ and δ0 < 1/3, it follows that 27ℓδ < 1/9. Thus, if Case 1 does not hold then

Zℓ is 27ℓδ-far from C0(xi).

Case 2: Z0 is 27ℓδ-far from C0(x). This case may occur with probability at most 1/9, because

E[∆(Z0,C0(x))] ≤ 3ℓδ · |C0(x)|.

Note that if both Cases 1 and 2 do not hold then Z0 is 27ℓδ-close to C0(x) but Zℓ is 27ℓδ-far

from C0(xi). Also note that x = x0,1 and xi = xℓ,i.

Case 3: For some j ∈ [ℓ], it holds that Zj−1 is 27ℓδ-close to Cj−1(xj−1,⌈i/bℓ−j+1⌉) but Zj is 27ℓδ-far

from Cj(xj,⌈i/bℓ−j⌉). In this case, the pair (Zb
j , Zj−1) is 27ℓδ/2-far from the consistent pair

171

(Cj(xj,⌈i/bℓ−j⌉),Cj−1(xj−1,⌈i/bℓ−j+1⌉)) and is (δ0 − 27ℓδ)/2-far from any other consistent pair.

Using δpcpp = 13ℓδ < min(27ℓδ/2, δ0 − 27ℓδ)/2), which holds because δ ≤ δ0/81ℓ, it follows

that in the current case the PCPP-verifier accepts (and the decoder does not output ⊥) with

probability at most 1/9.

Thus, in total, the decoder outputs ¬xi with probability at most 1/3.

Conclusion (Restating Theorem 1.3.5): For every constant ε > 0, there exists a code C : {0, 1}k →
{0, 1}n, where n = k1+ε, that is relaxed locally decodable under Definition 13.1.7. The query complexity of

the corresponding decoder is O(1/ε2) and the proximity parameter is ε/O(1).

Open Problem: We wonder whether one can obtain relaxed-LDC that can be decoded using q

queries while having length n = o(k1+1/(q−1)). The existence of such relaxed-LDC will imply that

our relaxation (i.e., relaxed-LDC) is actually strict, because such codes will beat the lower-bound

currently known for LDC (cf. [KT00]). Alternatively, it may be possible to improve the lower-bound

for (q-query) LDC to n > k1+
√

c/q, for any constant c and every sufficiently large constant q (where,

as usual, k is a parameter whereas q is a fixed constant). (In fact, some conjecture that n must be

super-polynomial in k, for any constant q.)

13.3 Linearity of the codes

We note that the codes presented above (establishing both Theorems 1.3.4 and 1.3.5) are actu-

ally GF(2)-linear codes, whenever the base code C0 is also GF(2)-linear. Proving this assertion

reduces to proving that the PCPs of proximity used (in the aforementioned constructions) have

proof-oracles in which each bit is a linear functions of the bits to which the proof refers. The main

part of the latter task is undertaken in Section 9.5, where we show the the main construct (i.e.,

the PCPs of proximity stated in Theorems 6.1.1 and 5.1.2) when applied to a linear circuit yields

a an GF(2)-linear transformation of assignments (satisfying the circuit) to proof-oracles (accepted

by the verifier). In addition, we need to show that also the construction underlying the proof of

Theorem 10.2.1 satisfy this property. This is done next, and consequently we get:

Proposition 13.3.1 If C is a linear circuit (see Definition 9.5.1), then there is a linear transformation T

mapping satisfying assignments w of C to proof oracles T (w) such that the PCPP verifier of Theorem 10.2.1

will, on input C, accept oracle (w, T (w)) with probability 1.

Proof Sketch: In Section 9.5, we establish a corresponding result for the main construct (i.e.,

Proposition 9.5.2 refers to the linearity of the construction used in the proof of Theorem 9.1.1, which

in turn underlies Theorems 6.1.1 and 5.1.2). Here we show that linearity is preserved in composi-

tion as well as by the most inner (or bottom) verifier.

172

In each composition step, we append the proof-oracle with new (inner) PCPs of proximity per

each test of the (outer) verifier. Since all these tests are linear, we can apply Proposition 9.5.2 and

infer that the new appended information is a linear transformation of the input-oracle and the outer

proof-oracle (where, by induction, the latter is a linear transformation of the input).

At the bottom level of composition we apply a Hadamard based PCP (Chapter 4). The encoding

defined there is not GF (2)-linear (rather it is quadratic), but this was necessary for dealing with

non-linear gates. It can be verified that for a linear circuit, one can perform all necessary tests of

Chapter 4 with the Hadamard encoding of the input. Thus, we conclude this final phase of the

encoding is also linear, and this completes the proof of Proposition 13.3.1.

173

174

APPENDIX A

Low Degree Test

Low-degree tests have been a subject of much research in the context of program checking and

PCPs. Most constructions of PCPs involve checking whether a given function is a low-degree poly-

nomial as an intermediate step. Low-degree tests are procedures designed to address this verifica-

tion step ,i.e., to verify that an arbitrary function f : Fm → F is close to some (unknown) polynomial

p of degree d. We are especially interested in randomness-efficient low-degree tests. For the sake of

completeness, we recall the discussion on the low-degree test of [ALM+98] from Chapter 5, explain

why it performs poorly with respect to randomness and finally present the randomness-efficient

low-degree test of [BSVW03].

A.1 The Line-Point Test

A line in Fm is a collection of points parametrized by one variable. Specifically, given a, b ∈ Fm

the line la,b = {la,b(t) = a + tb|t ∈ F}. Several parameterizations are possible for a given line.

We assume some canonical one is fixed for every line, and thus the line is equivalent to the set of

points it contains. The low-degree test uses the fact that for any polynomial p : Fm → F of degree

at most d, the function pl : F → F given by pl(t) = p(l(t)) is a univariate polynomial of degree at

most d. The verifier tests this property for a function f by picking a random line through Fm and

verifying that there exists a univariate polynomial that has good agreement with f restricted to this

line. The verifier expects an auxiliary oracle fL that gives such a univariate polynomial for every

line. In other words, fL : L→ Pd where L is the set of all lines in Fm and Pd the set of all univariate

polynomial of degree at most d.. This motivates the test below.

LINE–POINT–TEST

175

Input: A function f : Fm → F and an oracle fL : L→ Pd.

1. Choose a random point in the space x ∈R Fm.

2. Choose a random line l passing through x in Fm.

3. Query fL on l to obtain the polynomial hl. Query f on x.

4. Accept iff the value of the polynomial hl at x agrees with f(x).

It is clear that if f is a degree d polynomial, then there exists an oracle fL such that the above

test accepts with probability 1. It is non-trivial to prove any converse and Arora et al. [ALM+98]

give a strikingly strong converse.

Theorem 5.3.2 ([ALM+98], Theorem 65 - restated): There exists a universal constants 0 < δ0 < 1 and

α > 0 such that the following holds. For all integers m, d > 0, δ < δ0 and fields F of size at least αd3, if

f : Fm → F and fL : L→ Pd are two functions that f is at least 2δ-far from, any m-variate polynomial of

degree at most d, we have the following:

Pr[LINE–POINT–TEST
f ; fL = reject] > δ.

This low degree test suffices to prove the PCP Theorem. However, for the purpose of construct-

ing short PCPs, this test is too expensive in terms of randomness for the following two reasons.

• The field size is cubic in terms of the total degree of the field. This causes a cubic blow-up in

the size of the proof.

• Choosing a random line in Fm requires choosing two random points in the space Fm and this

costs randomness at least 2m log |F |. This results in a further quadratic blowup in the proof

size.

However, luckily for us, they have been several improvements in the analysis of the low-

degree test since [ALM+98]. We will be using the derandomized low-degree test due to Ben-

Sasson et al. [BSVW03] which solves both the above problems: the field size needs to be only linear

in the total degree of the polynomial and further more, their analysis works even when the lines

are chosen from a derandomized set. In the following section, we cite the main results of the work

which we would require for our PCP constructions.

A.2 Randomness-efficient low-degree tests and the sampling lemma

A.2.1 λ-biased sets and the sampling lemma

Following [BSVW03], our construction makes heavy use of small-bias spaces [NN90] to save on

randomness when choosing random lines. For a field F and parameters m ∈ Z
+ and λ > 0, we

176

require a set S ⊆ Fm that is λ-biased (with respect to the additive group of Fm). Rather than define

small-bias spaces here, we simply state the properties we need. (See, e.g., [BSVW03] for definitions

and background on small-bias spaces.)

Lemma A.2.1 ([AGHP92]) For every F of characteristic 2, m ∈ Z
+, and λ > 0, there is an explicit

construction of a λ-biased set S ⊆ Fm of size at most (log |Fm|)/λ2.

We now discuss the properties of such sets that we will use.

Expanding Cayley Graphs. λ-biased sets are very useful pseudorandom sets in algebraic applica-

tions, and this is due in part to the expansion properties of the Cayley graphs they generate:

Lemma A.2.2 If S ⊆ Fm is λ-biased and we let GS be the graph with vertex set Fm and edge set {(x, x+

s) : x ∈ Fm, s ∈ S}, then all the nontrivial eigenvalues of GS have absolute value at most λ|S|.

Randomness-Efficient Line Samplers. In [BSVW03], Lemma A.2.2 was used to prove the follow-

ing sampling lemma. This lemma says that if one wants to estimate the density of a set B ⊆ Fm

using lines in Fm as the sample sets, one does not need to pick a random line in Fm which costs

2 log |Fm| random bits. A pseudorandom line whose slope comes from an λ-biased set will do

nearly as well, and the randomness is only (1 + o(1)) · log |Fm|. In what follows lx,y is the line

passing through point x in direction y, formally: lx,y = {x+ ty : t ∈ F}

Lemma A.2.3 ([BSVW03], Sampling Lemma 4.3) Suppose S ⊆ Fm is λ-biased. Then, for anyB ⊆ Fm

of density µ = |B|/|Fm|, and any ζ > 0,

Prx∈F m,y∈S

[∣∣∣∣
|lx,y ∩B|
|lx,y|

− µ
∣∣∣∣ > ζ

]
≤
(

1

|F | + λ

)
· µ
ζ2
.

A.2.2 Randomness-Efficient Low Degree Tests

Ben-Sasson et al. [BSVW03] use the randomness-efficient Sampling Lemma A.2.3 to obtain random-

ness efficient low degree tests, by performing a “line vs. point” test only for pseudorandom lines

with a direction y coming from a small λ-biased set. That is for a set S ⊆ Fm, we consider lines of

the form lx,y(t) = x + ty, for x ∈ Fm and y ∈ S, and let LS be the set of all such lines, where each

line is parametrized in a canonical way.

Then for functions f : Fm → F , and fLS
: LS → Pd, where Pd is the set of univariate polynomi-

als of degree at most d over F , we let LINE–POINT–TEST
f,fLS

S be the following modified line-point

low degree test:

LINE–POINT–TESTS

Input: A function f : Fm → F and an oracle fLS
: LS → Pd.

177

1. Choose a random point in the space x ∈R Fm.

2. Choose a random point y ∈ S and let l be the line {x+ ty|t ∈ F}.

3. Query fLS
on l to obtain the polynomial hl. Query f on x.

4. Accept iff the value of the polynomial hl at x agrees with f(x).

We quote the main theorem of [BSVW03] and will use it in our constructions.

Theorem A.2.4 ([BSVW03], Theorem 4.1) There exists a universal constant α > 0 such that the follow-

ing holds. Let d ≤ |F |/3,m ≤ α|F |/ log |F |, S ⊆ Fm be a λ-biased set for λ ≤ α/(m log |F |), and δ ≤ α.

Then, for every f : Fm → F and g : L→ Pd such that f is at least 4δ-far from, any polynomial of degree at

most md, we have the following:

Pr[LINE–POINT–TEST
f ; g
S,d = rej] > δ.

178

Bibliography

[AGHP92] ALON, N., GOLDREICH, O., HÅSTAD, J., AND PERALTA, R. Simple constructions

of almost k−wise independent random variables. Journal of Random Structures and

Algorithms 3, 3 (Fall 1992), 289–304.

[Aro95] ARORA, S. Reductions, codes, PCPs, and inapproximability. In Proc. 36th IEEE Symp.

on Foundations of Comp. Science (Milwaukee, Wisconsin, 23–25 Oct. 1995), pp. 404–413.

[ALM+98] ARORA, S., LUND, C., MOTWANI, R., SUDAN, M., AND SZEGEDY, M. Proof verifica-

tion and the hardness of approximation problems. Journal of the ACM 45, 3 (May 1998),

501–555. (Preliminary Version in 33rd FOCS, 1992).

[AS98] ARORA, S., AND SAFRA, S. Probabilistic checking of proofs: A new characterization

of NP. Journal of the ACM 45, 1 (Jan. 1998), 70–122. (Preliminary Version in 33rd FOCS,

1992).

[AS97] ARORA, S., AND SUDAN, M. Improved low degree testing and its applications. In

Proc. 29th ACM Symp. on Theory of Computing (El Paso, Texas, 4–6 May 1997), pp. 485–

495.

[Bab85] BABAI, L. Trading group theory for randomness. In Proc. 17th ACM Symp. on Theory

of Computing (Providence, Rhode Island, 6–8 May 1985), pp. 421–429.

[BFLS91] BABAI, L., FORTNOW, L., LEVIN, L. A., AND SZEGEDY, M. Checking computations in

polylogarithmic time. In Proc. 23rd ACM Symp. on Theory of Computing (New Orleans,

Louisiana, 6–8 May 1991), pp. 21–31.

[BFL91] BABAI, L., FORTNOW, L., AND LUND, C. Non-deterministic exponential time has

two-prover interactive protocols. Computational Complexity 1 (1991), 3–40. (Preliminary

Version in 31st FOCS, 1990).

[Bar01] BARAK, B. How to go beyond the black-box simulation barrier. In Proc. 42nd IEEE

Symp. on Foundations of Comp. Science (Las Vegas, Nevada, 14–17 Oct. 2001), pp. 106–

115.

179

[BF90] BEAVER, D., AND FEIGENBAUM, J. Hiding instances in multioracle queries. In Proc. 7th

Annual Symposium on Theoretical Aspects of Computer Science (STACS) (Rouen, France,

22–24 Feb. 1990), C. Choffrut and T. Lengauer, Eds., vol. 415 of Lecture Notes in Com-

puter Science, Springer Verlag, pp. 37–48.

[BIKR02] BEIMEL, A., ISHAI, Y., KUSHILEVITZ, E., AND RAYMOND, J. F. Breaking the

O(n1/(2k−1)) barrier for information-theoretic private information retrieval. In Proc.

43rd IEEE Symp. on Foundations of Comp. Science (Vancouver, British Columbia, Canada,

16–19 Nov. 2002), pp. 261–270.

[BGS98] BELLARE, M., GOLDREICH, O., AND SUDAN, M. Free bits, PCPs, and

nonapproximability—towards tight results. SIAM Journal of Computing 27, 3 (June

1998), 804–915. (Preliminary Version in 36th FOCS, 1995).

[BGLR93] BELLARE, M., GOLDWASSER, S., LUND, C., AND RUSSELL, A. Efficient probabilisti-

cally checkable proofs and applications to approximation. In Proc. 25th ACM Symp. on

Theory of Computing (San Diego, California, 16–18 May 1993), pp. 294–304.

[BGKW88] BEN-OR, M., GOLDWASSER, S., KILIAN, J., AND WIGDERSON, A. Multi-prover inter-

active proofs: How to remove intractability assumptions. In Proc. 20th ACM Symp. on

Theory of Computing (White Plains, New York, 24–26 Oct. 1988), pp. 113–131.

[BGH+04a] BEN-SASSON, E., GOLDREICH, O., HARSHA, P., SUDAN, M., AND VADHAN, S. Ro-

bust PCPs of proximity, Shorter PCPs and Applications to Coding. In Proc. 36th ACM

Symp. on Theory of Computing (Chicago, Illinois, 13–15 June 2004), pp. 1–10.

[BGH+04b] BEN-SASSON, E., GOLDREICH, O., HARSHA, P., SUDAN, M., AND VADHAN, S. Ro-

bust PCPs of proximity, Shorter PCPs and Applications to Coding. Tech. Rep. TR04-

021, Electronic Colloquium on Computational Complexity, March 2004.

[BHR03] BEN-SASSON, E., HARSHA, P., AND RASKHODNIKOVA, S. Some 3CNF properties are

hard to test. In Proc. 35th ACM Symp. on Theory of Computing (San Diego, California,

9–11 June 2003), pp. 345–354.

[BS04] BEN-SASON, E., AND SUDAN, M. Simple PCPs with poly-log rate and query com-

plexity. Tech. Rep. TR04-060, Electronic Colloquium on Computational Complexity,

2004.

[BSVW03] BEN-SASSON, E., SUDAN, M., VADHAN, S., AND WIGDERSON, A. Randomness-

efficient low degree tests and short PCPs via epsilon-biased sets. In Proc. 35th ACM

Symp. on Theory of Computing (San Diego, California, 9–11 June 2003), pp. 612–621.

180

[BLR93] BLUM, M., LUBY, M., AND RUBINFELD, R. Self-testing/correcting with applications to

numerical problems. Journal of Computer and System Sciences 47, 3 (Dec. 1993), 549–595.

(Preliminary Version in 22nd STOC, 1990).

[BOT02] BOGDANOV, A., OBATA, K., AND TREVISAN, L. A lower bound for testing 3-

colorability in bounded-degree graphs. In Proc. 43rd IEEE Symp. on Foundations of

Comp. Science (Vancouver, Canada, 16–19 Nov. 2002), pp. 93–102.

[BT04] BOGDANOV, A., AND TREVISAN, L. Lower bounds for testing bipartiteness in dense

graphs. In Proc. 19th IEEE Conference on Computational Complexity (Amherst, Mas-

sachusetts, 21–24 June 2004), pp. 75–81.

[BdW04] BUHRMAN, H., AND DE WOLF, R. On relaxed locally decodable codes. Unpublished

manuscript, July 2004.

[CGH98] CANETTI, R., GOLDREICH, O., AND HALEVI, S. The random oracle methodology,

revisited. In Proc. 30th ACM Symp. on Theory of Computing (Dallas, Texas, 23–26 May

1998), pp. 209–218.

[CGKS98] CHOR, B., GOLDREICH, O., KUSHILEVITZ, E., AND SUDAN, M. Private information

retrieval. Journal of the ACM 45, 6 (Nov. 1998), 965–981. (Preliminary Version in 36th

FOCS, 1995).

[Coo88] COOK, S. A. Short propositional formulas represent nondeterministic computations.

Information Processing Letters 26, 5 (Jan. 1988), 269–270.

[DJK+02] DESHPANDE, A., JAIN, R., KAVITHA, T., RADHAKRISHNAN, J., AND LOKAM, S. V.

Better lower bounds for locally decodable codes. In Proc. 17th IEEE Conference on Com-

putational Complexity (Montréal, Québec, Canada, 21–24 May 2002), pp. 184–193.

[DR04] DINUR, I., AND REINGOLD, O. Assignment-testers: Towards a combinatorial proof of

the PCP-Theorem. To appear in Proc. 45rd IEEE Symp. on Foundations of Comp. Science

(Rome, Italy, 17–19 Oct. 2004).

[EKR99] ERGÜN, F., KUMAR, R., AND RUBINFELD, R. Fast approximate PCPs. In Proc. 31st

ACM Symp. on Theory of Computing (Atlanta, Georgia, 1–4 May 1999), pp. 41–50.

[Fei98] FEIGE, U. A threshold of lnn for approximating set cover. Journal of the ACM 45, 4

(July 1998), 634–652. (Preliminary Version in 28th STOC, 1996).

[FGL+96] FEIGE, U., GOLDWASSER, S., LOVÁSZ, L., SAFRA, S., AND SZEGEDY, M. Interactive

proofs and the hardness of approximating cliques. Journal of the ACM 43, 2 (Mar. 1996),

268–292. (Preliminary version in 32nd FOCS, 1991).

181

[FRS94] FORTNOW, L., ROMPEL, J., AND SIPSER, M. On the power of multi-prover interactive

protocols. Theoretical Computer Science 134, 2 (Nov. 1994), 545–557. (Preliminary Version

in 3rd IEEE Symp. on Structural Complexity, 1988).

[FS95] FRIEDL, K., AND SUDAN, M. Some improvements to total degree tests. In Proc. 3rd

Israel Symposium on Theoretical and Computing Systems (Tel Aviv, Israel, 4–6 Jan. 1995),

pp. 190–198.

[Gol97] GOLDREICH, O. A sample of samplers – a computational perspective on sampling.

Tech. Rep. TR97-020, Electronic Colloquium on Computational Complexity, 1997.

[GGR98] GOLDREICH, O., GOLDWASSER, S., AND RON, D. Property testing and its connection

to learning and approximation. Journal of the ACM 45, 4 (July 1998), 653–750. (Prelimi-

nary Version in 37th FOCS, 1996).

[GL89] GOLDREICH, O., AND LEVIN, L. A. A hard-core predicate for all one-way functions.

In Proc. 21st ACM Symp. on Theory of Computing (Seattle, Washington, 15–17 May 1989),

pp. 25–32.

[GMW91] GOLDREICH, O., MICALI, S., AND WIGDERSON, A. Proofs that yield nothing but their

validity or all languages in NP have zero-knowledge proof systems. Journal of the ACM

38, 3 (July 1991), 691–729. (Preliminary Version in 27th FOCS, 1986).

[GR02] GOLDREICH, O., AND RON, D. Property testing in bounded degree graphs. Algorith-

mica 32, 2 (Jan. 2002), 302–343. (Preliminary Version in 29th STOC, 1997).

[GS00] GOLDREICH, O., AND SAFRA, S. A combinatorial consistency lemma with applica-

tion to proving the PCP theorem. SIAM Journal of Computing 29, 4 (2000), 1132–1154.

(Preliminary Version in RANDOM, 1997).

[GS02] GOLDREICH, O., AND SUDAN, M. Locally testable codes and PCPs of almost linear

length. In Proc. 43rd IEEE Symp. on Foundations of Comp. Science (Vancouver, Canada,

16–19 Nov. 2002), pp. 13–22. (See ECCC Report TR02-050, 2002).

[GW97] GOLDREICH, O., AND WIGDERSON, A. Tiny families of functions with random prop-

erties: A quality–size trade–off for hashing. Journal of Random structures and Algorithms

11, 4 (Dec. 1997), 315–343. (Preliminary Version in 26th STOC, 1994).

[GMR89] GOLDWASSER, S., MICALI, S., AND RACKOFF, C. The knowledge complexity of inter-

active proof systems. SIAM Journal of Computing 18, 1 (Feb. 1989), 186–208. (Prelimi-

nary Version in 17th STOC, 1985).

182

[GLST98] GURUSWAMI, V., LEWIN, D., SUDAN, M., AND TREVISAN, L. A tight characterization

of NP with 3-query PCPs. In Proc. 39th IEEE Symp. on Foundations of Comp. Science (Palo

Alto, California, 8–11 Nov. 1998), pp. 18–27.

[HS00] HARSHA, P., AND SUDAN, M. Small PCPs with low query complexity. Computational

Complexity 9, 3–4 (Dec. 2000), 157–201. (Preliminary Version in 18th STACS, 2001).

[Hås99] HÅSTAD, J. Clique is hard to approximate within n1−ε. Acta Mathematica 182 (1999),

105–142. (Preliminary Version in 28th STOC, 1996 and 37th FOCS, 1997).

[Hås01] HÅSTAD, J. Some optimal inapproximability results. Journal of the ACM 48, 4 (July

2001), 798–859. (Preliminary Version in 29th STOC, 1997).

[HS66] HENNIE, F. C., AND STEARNS, R. E. Two-tape simulation of multitape Turing ma-

chines. Journal of the ACM 13, 4 (Oct. 1966), 533–546.

[KT00] KATZ, J., AND TREVISAN, L. On the efficiency of local decoding procedures for error-

correcting codes. In Proc. 32nd ACM Symp. on Theory of Computing (Portland, Oregon,

21–23 May 2000), pp. 80–86.

[KdW03] KERENIDIS, I., AND DE WOLF, R. Exponential lower bound for 2-query locally decod-

able codes via a quantum argument. In Proc. 35th ACM Symp. on Theory of Computing

(San Diego, California, 9–11 June 2003), pp. 106–115.

[Kho04] KHOT, S. Ruling out PTAS for graph min-bisection, densest subgraph and bipartite

clique. To appear in Proc. 45rd IEEE Symp. on Foundations of Comp. Science (Rome, Italy,

17–19 Oct. 2004).

[Kil92] KILIAN, J. A note on efficient zero-knowledge proofs and arguments (extended ab-

stract). In Proc. 24th ACM Symp. on Theory of Computing (Victoria, British Columbia,

Canada, 4–6 May 1992), pp. 723–732.

[LS91] LAPIDOT, D., AND SHAMIR, A. Fully parallelized multi prover protocols for NEXP-

time (extended abstract). In Proc. 32nd IEEE Symp. on Foundations of Comp. Science (San

Juan, Puerto Rico, 1–4 Oct. 1991), pp. 13–18.

[Lei92] LEIGHTON, F. T. Introduction to Parallel Algorithms and Architectures. Morgan Kauf-

mann Publishers, Inc., San Mateo, CA, 1992.

[Lip91] LIPTON, R. J. New directions in testing. In Proc. DIMACS Workshop on Distributed

Computing and Cryptography (Providence, Rhode Island, 1991), vol. 2 of DIMACS Series

on Discrete Mathematics and Theoretical Computer Science, pp. 191–202.

183

[LFKN92] LUND, C., FORTNOW, L., KARLOFF, H. J., AND NISAN, N. Algebraic methods for

interactive proof systems. Journal of the ACM 39, 4 (Oct. 1992), 859–868. (Preliminary

Version in 31st FOCS, 1990).

[LY94] LUND, C., AND YANNAKAKIS, M. On the hardness of approximating minimization

problems. Journal of the ACM 41, 5 (Sept. 1994), 960–981.

[Mic00] MICALI, S. Computationally sound proofs. SIAM Journal of Computing 30, 4 (2000),

1253–1298. (Preliminary Version in 35th FOCS, 1994).

[NN90] NAOR, J., AND NAOR, M. Small-bias probability spaces: Efficient constructions and

applications. In Proc. 22nd ACM Symp. on Theory of Computing (Baltimore, Maryland,

4–16 May 1990), pp. 213–223.

[PY91] PAPADIMITRIOU, C. H., AND YANNAKAKIS, M. Optimization, approximation, and

complexity classes. Journal of Computer and System Sciences 43, 3 (Dec. 1991), 425–440.

(Preliminary Version in 20th STOC, 1988).

[PF79] PIPPENGER, N., AND FISCHER, M. J. Relations among complexity measures. Journal

of the ACM 26, 2 (Apr. 1979), 361–381.

[PS94] POLISHCHUK, A., AND SPIELMAN, D. A. Nearly-linear size holographic proofs. In

Proc. 26th ACM Symp. on Theory of Computing (Montréal, Québec, Canada, 23–25 May

1994), pp. 194–203.

[Raz98] RAZ, R. A parallel repetition theorem. SIAM Journal of Computing 27, 3 (June 1998),

763–803. (Preliminary Version in 27th STOC, 1995).

[RS97] RAZ, R., AND SAFRA, S. A sub-constant error-probability low-degree test, and a sub-

constant error-probability PCP characterization of NP. In Proc. 29th ACM Symp. on

Theory of Computing (El Paso, Texas, 4–6 May 1997), pp. 475–484.

[RS96] RUBINFELD, R., AND SUDAN, M. Robust characterizations of polynomials with ap-

plications to program testing. SIAM Journal of Computing 25, 2 (Apr. 1996), 252–271.

(Preliminary Version in 23rd STOC, 1991 and 3rd SODA, 1992).

[ST00] SAMORODNITSKY, A., AND TREVISAN, L. A PCP characterization of NP with opti-

mal amortized query complexity. In Proc. 32nd ACM Symp. on Theory of Computing

(Portland, Oregon, 21–23 May 2000), pp. 191–199.

[Sch77] SCHÖNHAGE, A. Schnelle multiplikation von polynomen über Körpern der charak-

teristik 2 (German). Acta Informatica 7, 4 (1977), 395–398.

184

[SS71] SCHÖNHAGE, A., AND STRASSEN, V. Schnelle multiplikation großer zahlen (German).

Computing 7, 3–4 (1971), 281–292.

[Sch80] SCHWARTZ, J. T. Fast probabilistic algorithms for verification of polynomial identities.

Journal of the ACM 27, 4 (Oct. 1980), 701–717.

[Sha92] SHAMIR, A. IP = PSPACE. Journal of the ACM 39, 4 (Oct. 1992), 869–877.

[Spi95] SPIELMAN, D. A. Computationally Efficient Error-Correcting Codes and Holographic Proofs.

PhD thesis, Massachusetts Institute of Technology, June 1995.

[Spi96] SPIELMAN, D. Linear-time encodable and decodable error-correcting codes. IEEE

Transactions on Information Theory 42, 6 (Nov. 1996), 1723–1732. (Preliminary Version in

27th STOC, 1995).

[Str73] STRASSEN, V. Vermeidung von Divisionen (German). J. Reine Angew. Math., 264 (1973),

184–202.

[STV01] SUDAN, M., TREVISAN, L., AND VADHAN, S. P. Pseudorandom generators without

the XOR lemma. Journal of Computer and System Sciences 62, 2 (Mar. 2001), 236–266.

(Preliminary Version in 31st STOC, 1999).

[Sze99] SZEGEDY, M. Many-valued logics and holographic proofs. In Proc. 26th International

Colloquium of Automata, Languages and Programming (ICALP ’99) (Prague, Czech Repub-

lic, 11–15 July 1999), J. Wiedermann, P. van Emde Boas, and M. Nielsen, Eds., vol. 1644

of Lecture Notes in Computer Science, Springer-Verlag, pp. 676–686.

[Tre04] TREVISAN, L. Some applications of coding theory in computational complexity. Tech.

Rep. TR04-043, Electronic Colloquium on Computational Complexity, 2004.

[Zip79] ZIPPEL, R. Probablistic algorithms for sparse polynomials. In Proc. International Sym-

posium of Symbolic and Algebraic Computation (EUROSAM ’79) (Marseille, France, June

1979), Edward W. Ng, Ed., vol. 72 of Lecture Notes in Computer Science, Springer-Verlag,

pp. 216–226.

185

