
CMSC 336: Type Systems for Programming Languages

Lecture 7: Curry-Howard Isomorphism & Derived Forms

Acar & Ahmed 31 January 2008

Contents

1 Introduction 1

2 Phase Distinction 1

3 Introduction and Elimination 2

4 Curry-Howard Isomorphism 2

5 Base Types 3

6 Let Bindings and Derived Forms 4

7 Pairs and Product Types 5

8 Heterogeneous Data and Sum Types 6

9 Recursion 7

1 Introduction

In the last two classes we talked about simply typed lambda calculus, its op-
erational and static semantics (type system). We proved that the language is
type safe. In this lecture, we will review some themes that will recur in the
study of languages and review an interesting correspondence between languages
and logic, called Curry-Howard Isomorphism. Finally we will consider some
extensions to the lambda calculus. The extensions provide some features that
are very useful in programming.

2 Phase Distinction

The semantics of the simply typed lambda calculus maintains a phase distinction
between the static and the dynamic phase of processing. The static semantics
(typing rules) impose constraints on the formation of expressions that ensure
that the expressions when evaluated are well-behaved. We imagine the static
phase, or type checking, to be prior to evaluation.

The static phase may be seen as predicting the form of the values of an
expression computed in the dynamic phase. For example, if static phase assigns

1

the type bool → nat to some term, it is predicting that the expression will
result in function of that type. This means that, the expression can be applied
to true without fear of error.

The type safety theorem may be viewed as stating that the predictions of
the static semantics of the behavior of the dynamic semantics are accurate.

Phase distinction manifests itself in the syntax as well. The syntax of types
do not involved expressions but the syntax of expression may involve types.
This is because static phase occurs prior to execution—it is independent of it.

3 Introduction and Elimination

Consider the simply typed lambda calculus terms t ::= c | x | λx :
τ.t | t t | if t then t else t, where c denotes some set of constants (e.g.,
true, false) and types τ ::= bool | τ → τ .

There is an interesting correspondence between the terms and the types. For
booleans, we have two terms true and false that creates the elements of the
type and if t then t else t that use elements of that type. These are called
introduction and elimination forms respectively.

Similarly for arrow types, the lambda abstraction is the introduction form
and application is the elimination form.

If has natural numbers as a type, then the elimination forms would be various
primitive operations (e.g. sum, multiply) on natural numbers.

When an introduction for is an immediate subterm of an elimination form,
the resulting expression is a redex.

We will often consider the introduction and the elimination forms of types
when talking about languages and type systems.

4 Curry-Howard Isomorphism

The introduction/elimination form terminology refers to a connection between
type theory and logic known as the Curry-Howard isomorphism) invented by
Curry-Feys and Howard. The inspiration comes from constructive logics, where
a proof of a proposition P consists of a concrete evidence for P . This is because
constructive logics do not permit tautologies such as the excluded middle, i.e.,
that P∨ 6 P , which allow us to prove a proposition without producing evidence
for it. For example, in classical logics, where the law of excluded middle is
allowed, you can prove that P holds by proving that 6 P is false (by the law
of excluded middle, this would imply that P is true). Such a proof does not
provide concrete evidence that P holds, just that its opposite does not hold.

Constructive logics have strong connections with computation. For example
proving P ⇒ Q requires producing a proof of Q from a proof of P . Similarly
proving P ∧ Q, we need to take proofs of P and A and give a proof of P ∧ Q.
This gives rise to a correspondence between logics and programming languages.

• propositions ≡ types

2

• proposition P ⇒ Q ≡ type P → Q.

• proposition P ∧Q ≡ type P ×Q.

• proof of a proposition P ≡ terms of type P .

• proposition P is provable ≡ type P is inhabited by some term.

Because of this correspondence between proposition of types, Curry-Howard
isomorphism is sometimes called “propositions as types” analogy.

In other words, a term of a simply typed lambda calculus is a proof of a log-
ical proposition. Evaluation (or reduction) corresponds to the logical operation
of proof simplification by cut elimination.

This correspondence between constructive logics and programming languages
covers many different logics. For example, linear logics gives rise to linear type
systems.

5 Base Types

We often want our language to have various base types such as unit type, naturals.
Let’s add unit types and naturals to our language. We first have to decide the
values of these types. Let denote the only value in the unit type as ? and define
the natural numbers as usual. We then decide what kind of primitive operations
that we want to operate on these base types. For the unit type, we don’t require
any primitive operations, but for naturals, we can have addition, multiplication,
comparison.

Types τ : : = unit | nat | τ1 → τ2

Numbers n : : = 0 | 1 | . . .

Prim op’s o : : = + | − | ×

Values v : : = ? | n | λx : τ.t

Terms t : : = x | v | o(t, t) | t t

Context Γ : : = ∅ | Γ, x : τ

We can give the following type system for this extension of lambda calculus.

3

Γ ` ? : unit
(unit)

Γ ` n : nat
(naturals)

(x, τ) ∈ Γ

Γ ` x : τ
(variables)

Γ ` t1 : nat Γ ` t2 : nat

Γ ` o(t1, t2) : nat
(prim. op’s)

Γ, x : τ1 ` t : τ2

Γ ` λx : τ1.t : τ1 → τ2
(lambda)

Γ ` t1 : τ1 → τ2 Γ ` τ2 : τ1

Γ ` t1 t2 : τ2
(app)

Similarly, we can extend the CBV (call-by-value) operational semantics for
lambda calculus to support our base types. For the operational semantics, we
assume that we have a primitive application denoted @ that given a primitive
operation and the arguments for that operation gives us the value back. For
example @(+, 2, 3) = 5.

t1 → t′1

o(t1, t2) → o(t′1, t2)

t2 → t′2

o(t1, t2) → o(t1, t
′
2) o(n1, n2) → @(o, n1, n2)

t1 → t′1

t1 t2 → t′1 t2

t2 → t′2

t1 t2 → t1 t′2 (λx : τ.t)v → [v/x] t

6 Let Bindings and Derived Forms

It is often useful to be able to bind the value of an expression to a variable
(e.g., SML’s let construct). We can do this by extending our language with
let bindings.

t : : = . . . | let x : τ1 = t in t end

Why do we need to specify the type of the variable being bound? As it will
become clear when we write the typing rule for let, we will not be able to know
what type to give to first part otherwise.

t1 → t′1
let x : τ1 = t1 in t2 end → let x : τ1 = t′1 in t2 end

(eval-let-1)

let x : τ1 = v in t2 end → [v/x] t2
(eval-let-2)

Γ ` t1 : τ1 Γ, x : τ1 ` t2 : τ2

Γ ` let x : τ1 = t1 in t2 end : τ2
(type-let)

4

Both the evaluation rules and the typing rules look familiar to another ex-
pression that we know: application. Indeed, the let expression let x : τ1 = t1 in t2 end
is equivalent to the application (λx : τ1.t2) t1.

In other words let bindings are derived forms—they can be derived using
simply typed lambda calculus.

We can formally prove that let bindings are derived forms by supplying an
elaboration function that maps the terms of the language with let bindings—
call this the external language—to typed lambda calculus—call this the internal
language. Formally η : te 7→ ti, where te and ti are the terms for the external and
the internal languages respectively. The elaboration function η simply replaces
let bindings with the corresponding application and leaves all other terms the
same. We can then prove derivability by proving

1. Γ `e te : τ if and only if Γ `i (η(te)) : τ

2. te1
e→ te2 if and only if η(te1)

i→ η(te2)

We can specify such a function as follows:

η(v) = v
η(t1 t2) = η(t1) η(t2)

η(let x : tau = t1 in t2 end) = (λx : τ1.η(t1)) (η(t2))

Exercise: Prove that the two properties for the η function.

7 Pairs and Product Types

Most languages provide a way to build compound data structures. Perhaps
the most basic form for this is pairing. Extending typed lambda calculus to
support pairs is reasonably straightforward. We first introduce a product type
for representing pairs: the type of a pair the the product of the types of its
components.

τ : : = . . . | τ × τt : : = . . . | 〈t, t〉 | first(t) | second(t)

The pairing construct is the introduction form and the first(·) and second(·)
are the elimination forms; they project out the first and second parts of a pair.
For example first(〈1, 2〉) = 1, second(〈1, 2〉) = 2.

The following are the typing rules.

Γ ` t1 : τ1 Γ ` t2 : τ2

Γ ` 〈t1, t2〉 : τ1 × τ2

(type-pair)
Γ ` t : τ1 × τ2

Γ ` first(t) : τ1

(type-project-1)

Γ ` t : τ1 × τ2

Γ ` second(t) : τ2

(type-project-2)

Here are the evaluation rules for pairs.

5

t1 → t2
〈t1, t2〉 → 〈t′1, t2〉

(eval-pair/1)
t2 → t′2

〈t1, t2〉 → 〈t1, t′2〉
(eval-pair/2)

t → t′

first(t) → first(t′)
(eval-first/1)

first(〈v1, v2〉) → v1

(eval-first/2)

t → t′

second(t) → second(t′)
(eval-second/1)

second(〈v1, v2〉) → v2

(eval-second/2)

8 Heterogeneous Data and Sum Types

We often want to express data that has heterogeneous nature. For example, a
list can empty empty (nil) or can have a head and a tail (a cons cell). Similarly
a tree can be empty of it can be a node consisting of two children and some
data.

It is well known that many programming bugs simply result misuse of such
data. For example, in the C language, any pointer is either a valid pointer or it
is null. But the pointer type in C does not reflect this fact; typical C programs
are full of such pointer errors (accessing null pointers, etc). It is therefore critical
to ensure type safety of heterogeneous data so that their misuse can be reduced.

What should the type of a heterogeneous data be? First, the type must
represent all possible forms of data. Second, it should be possible to determine
the form of the data by inspecting it; one way to achieve this is to tag data.

As a concrete example, suppose we want to have data that can either be of
type unit or of type nat. We can write the type of such data as unit+ nat to
indicate that it can be either one of these types. If we think of types as sets of
terms, the set of this type is the union of the set of terms of type unit and the
set of terms of type nat.

How can we write terms of this type. Remember that we want a way to tell
which form the data is. So one option is to write inl(t) for terms where t has
type unit. and inr(t), where t has type nat. The tags can then tell us what
to expect from the enclosed term.

Why do we need the tags? So far we have only talked about introduction
forms for sums. We need the tags for the elimination form, case, that allows us
to investigate the tag of a sum type and perform an operation on its contents.
For example, the following term inspect t and prints “star” if the term is a ? or
prints the natural number.

case t of inl(x) ⇒ print”star” | inrx ⇒ print”natural : ”x.

Let’s make this intuitive description more concrete by giving the typing and
evaluation rules.

6

τ : : = . . . | τ1 + τ2

v : : = inlτ1+τ2(v) | inrτ1+τ2(t)
t : : = inlτ1+τ2(t) | inrτ1+τ2(t) | (case t1 of inl(x) ⇒ t2 | inr(x) ⇒ t3)

Γ ` t1 : τ1

Γ ` inlτ1+τ2(t) : τ1 + τ2

Γ ` t2 : τ2

Γ ` inrτ1+τ2(t) : τ1 + τ2

Γ ` t0 : τ1 + τ2 Γ, x1 : τ1 ` t1 : τ Γ, x2 : τ2 ` t2 : τ

Γ ` case t0 of inlτ1+τ2(x1) ⇒ t1 | inrτ1+τ2(x2) ⇒ t2 : τ

Note that we have to require the programmer specify the type of a sum type.
This is important because otherwise we don’t know what type to assign to a
term. For example, inl(1) can have type bool + nat or unit + nat.

The evaluation rules follow:

t → t′

inlτ t → inlτ t′
t → t′

inrτ t → inrτ t′

t0 → t′0

case t0 of inlτ1+τ2(x1) ⇒ t1 | inrτ1+τ2(x2) ⇒ t2
→ case t′0 of inlτ1+τ2(x1) ⇒ t1 | inrτ1+τ2(x2) ⇒ t2

case inlτv of inlτ1+τ2(x1) ⇒ t1 | inrτ1+τ2(x2) ⇒ t2 → [v/x] t1

case inrτv of inlτ1+τ2(x1) ⇒ t1 | inrτ1+τ2(x2) ⇒ t2 → [v/x] t2

Exercise: Given the extension of lambda calculus with sum types, prove
that booleans are derived forms.

9 Recursion

Previously, we showed that recursion can be “simulated” in untyped lambda
calculus using the Y and Z combinators as a fixed-point operator. The Y combi-
nator worked for call-by-name semantics, whereas for call by value, we needed a
slightly more complicated version, which is known as the Z combinator. It turns
out that none of these combinators can be given a (finite) type. It is instructive
to try to give a type for Y and Z and see where things fail.

We therefore do not know have a way to express recursion in the typed
lambda calculus in the calculus itself. In this class, we use direct support for
recursion by allowing the programmer express recursive functions directly. In
particular, we will write a recursive function as fix f(x) : τ is t end.

7

For example a factorial function can be written as
fix fact(x) : nat → nat is if x < 1 then x else x ∗ fact(x− 1) end

t : : = . . . | fix f(x) : τ1 → τ2 is t end
v : : = . . . | fix f(x) : τ1 → τ2 is t end

Note that here f is a meta variables, just like the terms t or variables x and
ranges over the set of function names. The typing rule for the fix operator is
very similar to that of lambda abstraction, except that when type-checking the
body, we get to assume that the function being defined f has the specified type.
This allow the body of the defined function to mention itself recursively.

Γ, f : τ1 → τ2, x : τ1 ` t : τ2

Γ ` fix f(x) : τ1 → τ2 is t end : τ1 → τ2

In the operational semantics, we change the application rule so that the
function is substituted for itself—this provides for recursion.

t2 → t′2
(fix f(x) : τ1 → τ2 is t end) t2 → fix f(x) : τ1 → τ2 is t end t′2

(fix f(x) : τ1 → τ2 is t end) v → [v/x, fix f(x) : τ1 → τ2 is t end/f]t

8

