
CMSC 336: Type Systems for Programming Languages

Lecture 4: Programming in the Lambda Calculus

Acar & Ahmed 22 January 2008

Contents

1 Announcements 1

2 Solution to the Exercise 1

3 Introduction 1

4 Multiple Arguments 2

5 Church Booleans 2

6 Pairs 3

7 Church Numerals 4
7.1 Recursion . 5

8 Nameless Representation of Terms 6
8.1 de Bruijn Indices . 6
8.2 Shifting and Substitution . 8

9 Homework Exercise 11

1 Announcements

Homework 1 (second homework) is now available. It is due Tuesday. The
homework has both a written part and a programming part. You should bring
the written part to class next Tuesday, unless you do it electronically. In that
case you can send it electronically later in the evening.

In this homework, you will learn two new tools, ml-lex and ml-yacc, so please
do start early—you will not be able to finish if you start within the last two
days.

2 Solution to the Exercise

Define a term t to be in normal form if there is no t′ such that t →β t′. We
say that a term t is normalizable if there is some t′ such that t →∗

β t′ and t′ is
in normal form.

1

1. Are there any normalizable terms?

Yes there are many normalizable terms. Variables are in normal form,
because we cannot reduce them further, but they are not that interesting.
The interesting terms are closed terms that we cannot reduce further. For
example, the term λ x.x. In general, if you define a language and a set of
values that are consistent with its operational semantics, then any value
will be in normal form.

2. Are there any non-normalizable terms?

Yes, there are many non-normalizable terms. In general, the terms that
“diverge” or reproduce themselves are not in normal form. For example,
the term (λ x.x x) (λ x.x x) diverges, because it beta-reduces to itself.

3 Introduction

We have defined lambda calculus and talked about how we can evaluate its
terms by applying β reduction. When we started talking about lambda calculus,
I claimed that it is Turing complete (even though it has no notion of numbers,
primitive operations such as addition, subtraction). In this class, we will see
how lambda calculus can be used to writes various short programs.

4 Multiple Arguments

Many programming languages have mechanisms to pass multiple arguments to
a function. In lambda calculus, every function (lambda abstraction) has only
one argument. How can we write a function that takes multiple argument?

As an example, suppose we want to write a function that sums its two
arguments (let’s assume for convenience that we have such a sum operator).
In analogy to the languages that you have programmed in, we expect to write
such a function as λ(x, y).x+ y. Such a function can then be applied by writing
(λ(x, y).x + y) (3, 5). Since we cannot pass multiple arguments to a lambda
abstraction we will instead use “currying” (named after Haskell Curry) and
write the function as λx.λy.x + y. We apply the function as (λx.λy.x + y) 3 5.

(λx.λy.x + y) 3 5 →β (λy.3 + y) 5
→β 3 + 5 = 8.

Note that the result of the first application itself is a function. This is critical
to the effectiveness of lambda calculus. Functions (lambda abstractions) can
return functions. This is sometimes referred as having functions as first-class
values. Languages based on this principle allow you to treat functions just like
any other data (e.g., you can place functions in data structures).

2

5 Church Booleans

How can we represent booleans in lambda calculus? To find out how let’s first
think about how booleans are used. The “elimination” for a boolean is the
if statement. What does an if statement do? It takes a boolean and two
branches and picks one of the branches. Thus, if we represent boolean values
as functions that select their first or second argument depending on their value,
we can simulate the behavior of an if statement by applying the branches to
the boolean value.

Based on this intuition, let define tru and fls as

tru := λx.λy.x
fls := λx.λy.y.

We can now define an if statement as a function that takes a boolean and
two branches and selects the right branch as follows:

test := λxb.λy1.λy2.xb y1 y2.

For example, consider the term test tru x y

test true x y = (λxb.λy1.λy2.xb y1 y2) tru x y
→β (λy1.λy2.tru y1 y2) x y
→β (λy2 tru x y2) y
→β tru x y
→β (λx.λy.x) x y
→β ([x/x]λy.x) y
→β (λy.x)y
→β [y/y](λy.x)
→β x

How about some operations on booleans? For example, how can we write the
“not” operation? Remember that booleans are function that take two arguments
and select one. So we can write “not” as function that takes a boolean and two
arguments and supplies the arguments to the boolean in reversed order.

not := λxb.λy.λz.xb z y.

To see how “not” works, consider

not tru = (λxb.λy.λz.z xb z y) tru
→β λy.λz.tru z y
→β λy.λz.(λx.λy.x) z y
→β λy.λz.z
= fls.

We can also define “not” as not := λx.x fls tru. If the argument (x) is tru,
then this function will return fls and will return tru otherwise.

How about “and”? Again, “and” will take two booleans and return a boolean

and := λx1.λx2.x1 x2 false.

Similarly, we can write “or” as or := λx1.λx2.x1 tru x2.

3

6 Pairs

Suppose we want to have pairs in our language. For example, in SML the pair of
the numbers 3 and 5 are written as (3, 5). In addition to the ability to construct
pairs, we also want to be able to project out the first and second parts using
primitives such as fst and snd, e.g., fst(3, 5) = 3 snd(3, 5) = 5. Can this be
done using lambda calculus.

Like with booleans, lets think about the elimination form for pairs. The
elimination form for pairs are the primitives for taking a pair apart, i.e., pro-
jecting their first and second components. Thus we can think of a pair as a
function that takes the elimination form as an argument and applies it to its
components. The eliminations forms fst and snd simply take the pair and apply
the tru and fls to project out the first and second components of the pair.

pair = λx1.λx2.λy.yx1x2

fst = λxp.xp(λx.λy.x)
snd = λxp.xp(λx.λy.y)

Exercise: Write the ML code for pair, fst, and snd for pairs of integers.
Try now for a pair of a boolean and an integer (of type bool*int).

Answer:

- val pair = fn (x: int) => fn (y: int) => fn (s: int -> int -> int) => s x y;
val pair = fn : int -> int -> (int -> int -> int) -> int
- pair (3,5);
val it = fn : (int -> int -> int) -> int
- val first = fn (x: (int -> int -> int) -> int) => x (fn x => fn y => x);
- val second = fn (x: (int -> int -> int) -> int) => x (fn x => fn y => y);
- first it;
3

- second it;
5

7 Church Numerals

How can we represent natural numbers using lambda calculus? Let’s again think
of the elimination form for numbers. For the case of numbers, there are many
of them. But they all can be characterized as computing some property of the
number (e.g., comparisons, sums etc). What do we need to know to compute a
property of a natural number?

We need to know what the property is for number zero and how can we
update the property for each additional increment over zero. Based on this
intuition we can think of a natural number n as a function that takes a function

4

s (successor) and z zero and applies s to z n times.

c0 = λs.λz.z
c1 = λs.λz.s z
c2 = λs.λz.s (s z)
...

This representation for natural numbers is often referred as church numerals.
We can now write some primitives for church numerals. Let’s start with a
function for testing if a number is zero.

isZero := λxn.xn(λx.fls) tru

As examples, let’s apply isZero to c0, c1 and c2

isZero c0 = (λxn.xn (λx.fls) tru) (λs.λz.z)
→β (λs.λz.z) (λx.fls) tru
→β (λz.z) tru
→β tru

isZero c2 = (λxn.xn (λx.fls) tru) (λs.λz.s z))
→β (λs.λz.s z)(λx.fls) tru
→β (λz.(λx.fls) z)) tru
→β (λx.fls) tru)
→β fls

isZero c2 = (λxn.xn (λx.fls) tru) (λs.λz.s (s z))
→β (λs.λz.s (sz))(λx.fls) tru
→β (λz.(λx.fls) ((λx.fls) z)) tru
→β (λx.fls) ((λx.fls) tru)
→β (λx.fls) fls
→β fls

Let’s define some arithmetic operations.

succ := λxn.λsλz.xns (s z)

plus := λm.λn.λs.λz.ms(nsz)

times := λm.λn.m(plusn)c0

Exercise: Write the subtraction operation for church numerals.

7.1 Recursion

In lambda calculus, we can only write anonymous functions, i.e., function that
do not have names. This is limited because it seems to prohibit us from writing
recursive functions. If we can’t name a function how can we call it within the
body of that function?

5

It turns out that recursion is not a problem. Why? Although lambda calcu-
lus does not allow us to name functions, it allows us to duplicate terms. Consider
for example the term ω = λx.x x and the application ω t = (λx x) t. By beta
reduction we have ω t = t t. We now have two copies of the term t. Based on
this intuition, it is possible to construct a fix-point combinator that gives us the
“recursive form” of an anonymous function.

Suppose we want to write a recursive function g. How can we write such a
function? Here is an example λ f. λ x. if x <= 0 then 1 else x*f (x-1) .
Now if we can get a hold on the recursive form of g, denoted G, then we can
call g with G. This is often referred to as open recursion. This is the idea be-
hind our approach. We call the recursive version G the fix-point of g, denoted
fix g. There are several ways we can come up with a fix-point combinator, a
combinator that when applied to g gives us its fix points. They are all similar
to the term ω.

Let’s develop the intuition a bit further. Suppose we are given the g. To ap-
ply g to itself twice, we want to have a way of making two copies of g, and retain
the ability to make further copies. Can we use ω? One problem with ω is that
loses its ability to replicate after one application. How about ω ω, i.e., the term
Ω = (λ x. x x) (λ x. x x). This combinator reproduces itself! Let’s now
stick a function argument f into Ω, λ f. (λ x. f (x x)) (λ x. f (x x)),
and let’s call this the Y combinator. Now note that Y g →β g (Y g).
This suffices to give us recursion under the restriction that we delay evaluation
of Y g until after g. This is exactly what the call by name evaluation would
do. The Y combinator thus suffices as a fix-point combinator in the call-by name
setting.

Does this work in the call-by value setting? Not quite. Because, the in
the call by value setting g (Y g) →β g (g (Y g)) and the evalua-
tion diverges. We need a different combinator. This new combinator is very
similar to the Y combinator—it just suspends evaluation of the fix point op-
erator until it is applied by g. This is called the Z combinator. Here it is:
Z = λ f. (λ x. f (λ y. x x y)) (λ x. f (λ y. x x y)).

8 Nameless Representation of Terms

Last class we finished the discussion of untyped lambda calculus. Defining the
calculus was easy. Programming with lambdas can be a bit tricky but it was
fun. We even showed that we can write recursive function without having the
ability to name functions themselves.

In this class, we will talk about de Bruijn indices. This is a neat trick that
allows us to do substitution without doing lambda conversions.

8.1 de Bruijn Indices

Lambda conversions require coming up with fresh names on the fly. This can
be quite difficult, so people come up with ideas to get around this problem. In

6

this class, we will talk about a particular idea due to de Bruijn (pronounced “de
brown”).

\x

x

@

\y

\x

x y

@

Figure 1: The ASTs for (λ x. λ y. x y) (λ x. x) with pointers.

Consider the term (λ x. λ y. x y) (λ x.x) and its abstract syntax tree
(see Figure 1).

Can we represent the same AST without using variable names? Yes, the
variable names do nothing but refer to the lambda where that variable is bound.
So we can simply represent them explicitly via pointers.

Figure 2: The ASTs for (λ x. λ y. x y) (λ x.x) with pointers.

Figure 2 shows such a representation. Note that when drawing the ASTs
for lambda term with pointers, the labels are redundant. The degree of a node
determines the kind of a term (application has degree two, lambda abstraction
has degree one, and the leaves are variables). This is the key idea behind de
Bruijn indices.

It is going to be difficult to work with AST’s. Can we find a textual repre-
sentation for de Bruijn’s AST’s?

How about representing pointers as the distance they travel? For example,
the AST in Figure 2 can be written as (λ. λ. 1 0) (λ. 0). We measure the
distance as the number of lambdas (starting at zero) from the leaf corresponding
to the variable to the binding lambda. If given the textual representation based
on distances, we can construct the AST, then this approach is sound. But is it?

The answer is yes. The reason is that the pointers can only go from one
node to a node that is on the path from that node to the root. So distances,
uniquely identify the binding location. But why is that the pointers can only
go up along the path from the node to the root? Because a node can only refer

7

to a variable bound by a lambda above it. So the representation based on the
distances works. The distances are known as de Bruijn indices.

Let’s develop the idea that a node can refer only to a variable that is bound
on the path to the root. Let’s denote the (naming) context, denoted Γ of a
node (i.e., a term) as a relation that maps variables to their de Bruijn in-
dices. We can write Γ as a sequence Γ = xnxn−1 . . . x0 to represent the relation
{(xn, n), (xn−1, n− 1), . . . (x0, 0). In other words, the de Bruijn index of a vari-
able is determined by its position in the sequence. Note that there can be
multiple instance of the same variable, e.g. Γ = xyzxy.

How can we construct the naming context for each node in an AST?
Consider some node in the tree and suppose we have the current context, Γ,

for that node. We can construct the context for its subtree(s) as follows. If the
root node is not a lambda then the same context is passed to the subtree(s).
If the root is a lambda then we pass Γ, x to the subtrees. This extends Γ with
x, which is given an index of 0, and it shifts the indices of all other variables
by one, which is required because they are now further away. To construct the
naming context for each node, we apply this idea starting at the root node.
Note that the subtrees can be traversed in parallel, so we need not specify the
ordering.

\x

x

L=

\x

\yL=x

L= L=

L=x

yx

@

@

L=yx L=yx

Figure 3: The ASTs for (λ x. λ y. x y) (λ x. x) with naming contexes.

For example, Figure 3 shows the naming context for each node (or term) in
the term (λ x. λ y. x y) (λ x. x).

Using the naming contexts, we can transform a term into its de Bruijn
representation. This is relatively straightforward. Just replace each variable
node with the smallest index of the variable in the context.

Now that we know what is going on, let’s write it out. Let dB(Γ, ·) be a
function that transforms a lambda term to a de-Bruijn term under the context
lambda.

dB(Γ, x) = Γx

dB(Γ, λx.t) = λ.dB((Γ, x), t)
dB(t1 t2) = dB(t1) dB(t2)

8

\x

x

@

\y

\x

x y

@

@

\y

y

x

\x

Figure 4: (λx.λy.x y) (λx.x) →β λy.(λx.x) y illustrated.

Figure 5: (λ.λ.1 0)(λ.0) →β λ.(λ.0) 0 illustrated

8.2 Shifting and Substitution

We can visualize beta reduction as an operation on AST’s as substituting the
right subtree of a degree two node into the left subtree at the leaves specified
by the variable name being bound. For example, Figure 4 show a substitution.
Since the term being substituted has not free variables, we need not work about
alpha conversion.

How does substitution work with de Bruijn indices? It is very similar, except
that we don’t need to worry about renaming whatsoever. It just works. This
example is somewhat simple because the term being substituted term does not
have any free variables.

What happens with free variables? Nothing interesting, they just keep point-
ing to the same node that they used to (no binding location that the subtree
being substituted can disappear). Figure 6 shows an example. The deleted
elements are shown dashed.

Let’s write out a formula for substitution. To get some intuition, consider
the last example. The reduction, (λ.(λ.λ.1 0)(λ.1) →β λ(λλ.2 0), transforms
an expression into something totally unrecognizable. Let’s see what is going on.

Imagine yourself substituting a tree T in place another leaf node. Remember
that during substitution the pointers keep pointing to the same binding loca-
tions. But then their length may change—we may have to stretch them. Which
pointers stretch?

9

Figure 6: λ.(λ.λ.10) (λ.1) →β λ.(λ.λ.2 0) illustrated

Only the pointers that point outside T (free variables) stretch. Let t be the
term for T , to reflect the stretching, we will have to shift t. Let’s define a d-place
shift of a term t, denoted ↑d (t), as a term where all the free terms are shifted
by d (increased by d). But how do we identify which variables are free? The
key insight is that the bound variables always constitute the smallest indices
in a term (because they are closest). We can thus carry along a parameter
called cutoff that is set the smallest index a free variable may have. Here is the
definition:

↑d
c (i) = i if i < c

↑d
c (i) = i + d if i ≥ c

↑d
c (λ.t) = λ. ↑d

c+1 (t)

↑d
c (t1 t2) = (↑d

c (t1)) (↑d
c (t2))

We will write ↑i (t) to mean ↑i
0 (t).

Examples:

1. ↑2 (λ.λ.1(0 2)) =

2. ↑2 (λ.01(λ.0 1 2)) =

We can now define substitution.

[t/j]i = t if i = j

[t/j]i = i if i 6= j

[t/j]λ.t′ = λ.[↑1 (t)/j + 1]t′

[t/j]t1 t2 = [t/j]t1 [t/j]t2

10

Based on substitution, we define beta reduction as

(λ.t1)t2 =↑−1 ([↑1 (t2)/0]t1)

11

9 Homework Exercise

1. Give the call by name and call by value operational semantics for lambda
calculus and show that they are deterministic. That is for each semantics
show that if t → t′ and t → t′′, then t′ = t′′.

2. Define g := λ f. λ x. if x <= 0 then 1 else x*f (x-1) . Apply
beta reduction on g(Z g) until g is unrolled a few times to have the if
term to be called two times. Explain (Z g) is the fixpoint of g in no more
than five lines.

3. Give the de Bruijn representation for the term tru, fls, and pair and
write out each step of the reduction isZero c2 →∗

β fls in the Bruijn
notation.

12

