
CMSC 336: Type Systems for Programming Languages

Lecture 11: Existential Types

Acar & Ahmed 21 February 2008

Contents

1 Impredicative, Predicative, and Prenex Polymorphism 1

2 Existential Types 2

3 Dynamic Semantics 4

4 CLU Example 5

5 Representation Independence 5

1 Impredicative, Predicative, and Prenex Poly-
morphism

Impredicative Polymorphism. Consider the encoding of booleans in System
F.

bool ≡ ∀α.α → α → α
true ≡ Λα.∀x : α.∀y : α.x
false ≡ Λα.∀x : α.∀y : α.y

if e0 then e1 else e2 ≡ e0[τ]e1e2

Note that in the encoding of if we instantiate a universal type (the type of
e0) with the result type. The result type itself could be a bool. This makes
the types larger. This property of System F is call impredicativity, and we say
that System F supports impredicative polymorphism, or alternatively, System F
allows impredicative (type) quantification.

The type system is powerful enough that you can have types that get bigger.
This is essentially where the power of these type system comes from.

Another example. Consider

τ := ∀α.α → α.

Consider now an expression e : τ applied to τ itself.

` e : ∀α.α → α ` τ
` e [τ] : (α → α)[τ/α]

Hence, the type of e [τ] is bigger than the type of e:

e [τ] : (α → α)[τ/α]
≡ e [τ] : (∀α.α → α) → (∀α.α → α)

1

Compare this to what happens with application in simply typed lambda
calculus.

e : τ1 → τ2

Now, the application e v has type τ2 (assuming that v has type τ1). So in
the simply-typed lambda calculus, application does not make the types bigger.

In System F, this ability for types to get larger and larger allows us to encode
things like numbers which can be “unbounded” using universal types.

Predicative Polymorphism. The alternative to impredicative quantifica-
tion, called predicative (type) quantification, is to allow an expression e of type
∀α.τ to be applied only un-quantified types, or types that are quantifier-free.
For instance, we may apply e : ∀α.α → α to the type int → int (where int
is a primitive type), which means that the expression e [int → int] would
have type (int → int) → (int → int), which is “bigger” than the type
∀α.α → α in one sense (since it has more symbols), but it’s “smaller” in an-
other sense (it has fewer quantifiers). The predicative fragment of the language
is less expressive than the impredicative System F.

Prenex Polymorphism: For the sake of type inference, languages like
ML only permit an even more restricted form of polymorphism, called prenex
polymorphism that allows quantifiers to occur only at the outermost level of a
type. The prenex fragment can be formalized as follows, by stratifying types into
two parts: monotypes (which do not involve and quantification) and polytypes
(which include the monotypes and permit quantification over monotypes).

Mono τ ::= α : : = τ1 → τ2

Poly σ : : = τ | ∀α.σ

As mentioned above, and obvious from the above grammar of types, in
prenex polymorphism all quantifiers must occur at the beginning (outermost
level) of a type.

2 Existential Types

Consider an expression e of universal type ∀α.τ .
The logical interpretation of this is that if you have any type σ (i.e., for all

types σ), then the expression e must have that type, i.e., τ [σ/α].
Operationally, we think of an expression of universal type as a suspended

computation Λα.e that when applied to any type σ would give us an expression
that is customized for that type.

We have discussed one form of quantified types. In the rest of this lecture,
we’ll discuss existential types ∃α.τ .

Consider an expression e that has an existential type ∃α.τ .
The logical interpretation of this is that there exists some type σ such that

e : τ [σ/α].

2

We will be more interested in the operational interpretation. Operationally,
you can think of e this as a pair that consists of a witness type σ (that is hidden
by α in the existential type ∃α.τ), and an expressions e1 of type τ [σ/α].

Existential types essentially capture the notion of abstraction—they hide
the witness type.

We now extend System F with existential types:

τ : : = . . . | ∃α.τ

The introduction form for existential types is pack τ with e. Some examples
with pack:

pack nat with {a = 5, f : λx : nat.succ(x)} : ∃α.{a : nat, f : nat → nat}
: ∃α{a : α, f : α → α}
: ∃α{a : α, f : α → nat}

Notice that we can give many different types to a pack expression. Since the
existential type that can be ascribed to a pack expression is ambiguous, we have
to specify what type to ascribe to a pack expression. Thus, the introduction
form for existential types will have the following form: pack σ with e as ∃α.τ .

Typechecking pack:

∆ ` σ type ∆; Γ ` e : τ [σ/α]
∆; Γ ` pack σ with e as ∃α.τ : ∃α.τ

Examples:

pack nat with 0 as ∃α.α : ∃α.α
pack bool with true as ∃α.α : ∃α.α
pack bool with {a = true, f = λx : bool.1} as ∃α.{a : α, f : α → nat}

The elimination form for existential types is unpack e1 as α, x in e2.

e : : = . . . | pack σ with e as ∃α.τ | unpack e1 as α, x in e2

The typing rule for unpack:

∆; Γ ` e1 : ∃α.τ ∆ ` τ2 type ∆, α type; Γ, x : τ ` e2 : τ2

∆; Γ ` unpack e1 as α, x in e2 : τ2

Examples: Consider the following:

p1 = pack nat with {a = 5, f : λx : nat.succ(x)} as ∃α{a : α, f : α → nat}

Note that p1 : ∃α{a : α, f : α → nat}.

• The following expression type checks:

unpack p1 as α, x in x.f x.a : nat

3

• The following does not type check since x.f expects an argument of type
α instead of nat.

unpack p1 as α, x in x.f zero : Error

• The following type checks—notice that α appears in the body of the
unpack:

unpack p1 as α, x in (λy : α. x.f y) x.a : nat

• The following does not type check since x.a is of type α, whereas succ −
expects a nat:

unpack p1 as α, x in succ x.a : Error

• The following does not type check since the body of the unpack has type
α—but the typing rule for unpack requires that α not occur free in the
result type of the body:

unpack q1 as α, x in x.a : Error

3 Dynamic Semantics

What are the values of existential type? Any package that packs a concrete
type with a value is a value.

v ::= . . . | pack σ with v as ∃α.τ

e → e′

pack σ with e as ∃α.τ → pack σ with e′ as ∃α.τ

e1 → e′
1

unpack e1 as α, x in e2 → unpack e′
1 as α, x in e2

unpack (pack σ with v as ∃α.τ) as α, x in e2 → e2[σ/α][v/x]

4

4 CLU Example

ADT Counter =
type counter // abstract type name
representation nat // concrete type
signature
c: counter
get: counter -> nat
inc: counter -> counter

operations
c = 0
get = \ x: nat. x
inc = \ x: nat. x+1

CLU is from the 70’s. In a paper entitled “Abstract Types have Existential
Type,” Mitchell and Plotkin [POPL 1988] showed that abstract types declara-
tions in languages like CLU, Ada, and ML could be encoded using existential
types.

The signature part of the above ADT can be encoded as:

COUNTER = ∃counter. {c : counter, get : counter → nat, inc : counter → counter}

The operations part of the above ADT can be encoded as follows:

cntr1 = pack nat with {c = 0, get = λx : nat.x, inc = λx : nat.x + 1} as COUNTER

Examples of use of cntr1 :

unpack cntr1 as α, x in x.get (x.inc x.c)

unpack cntr1 as α, x in
let add3 = λc : α. x.inc (x.inc (x.inc c)) in

x.get (add3 x.c)

5 Representation Independence

Representation independence is the property that the behavior of a client cannot
depend on the particular concrete representation of an existential type. For in-
stance, consider the following implementation which also has the type COUNTER:

cntr2 = pack nat with {c = 0, get = λx : nat.− x, inc = λx : nat.x− 1} as COUNTER

Notice that cntr1 and cntr2 are observationally equivalent—that is, no client
will be able to tell the difference between them.

5

