
CMSC 336: Type Systems for Programming Languages

Lecture 10: Polymorphism

Acar & Ahmed 19 February 2008

Contents

1 Polymorphism 1

2 Polymorphic λ-Calculus: Syntax 1

3 Static Semantics 2

4 Dynamic Semantics 4

5 Substitution 4

6 Type Safety 5

7 Church Encodings: Defining Primitive Types in System F 5

1 Polymorphism

In the simply-typed λ-calculus, every expression must have a unique type. In
particular, every function has uniquely determined domain and range types.
Consider identity function—we must write a distinct identity function for each
type:

idτ = λx : τ.x

Consider the composition function: f o g
If f has type τ2 → τ3 and g has type τ1 → τ2 then fog has type τ1 → τ3.
oτ1,τ2,τ3 = λf : τ2 → τ3.λg : τ1 → τ2.λx : τ1.f(g(x)
Now in the type systems that we have seen thus far you have to write a

distinct composition function for each triple of types. Rather than writing the
“same” function over and over again, with the only difference being the types,
can we do something smarter? What is needed is a way to write code that is
generic or parametric in the types involved. This is called polymorphism.

2 Polymorphic λ-Calculus: Syntax

Polymorphic Typed λ- Calculus/ System F/ Second-order λ calculus.

τ ::= α | τ1 → τ2 | ∀α.τ

1

e ::= x | λx : τ1.e | e1 e2 | Λα.e | e[τ]

3 Static Semantics

Typing judgments. Before we give rules for typing expressions of the polymor-
phic λ-calculus, we need rules for type formation. We need a type variable
context ∆.

∆ = α1 type, α2 type, α3 type, . . .

Delta tells us what type variables are good.

Type formation. The judgment ∆ ` τ type says that τ is a well-formed
type under context ∆. We adopt the convention that whenever we whenever we
have the context ∆, α type that means that α /∈ ∆. The type formation rules
are as follows:

∆, α type ` α type

∆ ` τ1 type ∆ ` τ2 type

∆ ` τ1 → τ2 type

∆, α type ` τ type

∆ ` ∀α.τ

Notice that the last rule above (the rule for ∀α.τ), we do not have the premise
α /∈ ∆. While it would be perfectly fine to add that premise, we do not need
it since we adopted the convention above that whenever we have the context
∆, α type, this means that α /∈ ∆.

Typing expressions. The judgment ∆; Γ ` e : τ says that the expression
e has type τ under contexts ∆ and Γ (where ∆ ranges over finite sets of type
variable formation hypotheses α type, and Γ ranges over finite sets of expression
variable typing hypotheses x : τ). Again, we adopt the convention that when
we write ∆, α type, this means α /∈ ∆. Similarly, whenever we have the context
Γ, x : τ this means x /∈ dom(Γ).

The rules for typing expressions are as follows:

∀x ∈ dom(Γ). ∆ ` Γ(x) type
∆; Γ, x : τ ` x : τ

∆; Γ, x : τ1 ` e : τ2

∆; Γ ` λx : τ1.e : τ1 → τ2

∆; Γ ` e1 : τ2 → τ ∆; Γ ` e2 : τ2

∆; Γ ` e1 e2 : τ

2

∆, α type; Γ ` e : τ

∆; Γ ` Λα.e : ∀α.τ

∆; Γ ` e : ∀α.τ ′ ∆ ` τ type

∆; Γ ` e[τ] : [τ/α] τ ′

Notice that we want it to be the case that whenever we have a judgment
∆; Γ ` e : τ , all free type variables that appear in Γ, e or τ , must appear in ∆.
The above typing rules ensure that this is the case—in particular, notice the
premise of the typing rules for variables. In most presentations, however, the
variable rule will simply be written as follows.

∆; Γ, x : τ ` x : τ

The above rule is justified by adopting the convention that we will only be
concerned with well-formed judgments. A judgment ∆; Γ ` e : τ is well-formed
if all free type variables in Γ appear in ∆ (i.e., if FTV(Γ) ⊆ ∆, or equivalently, if
∀x ∈ dom(Γ). ∆ ` Γ(x) type).

An Example:

α type ` α type α type ` α type

α type ` α → α type

• ` ∀α.α → α type

Why is ”alpha” renaming important here. Consider the example:

Λα.Λα.λx : α.x

Which alpha is it being used. For example if we instantiate the alpha with
intand boolin that order which alpha is the inner one?

` Λα.λx : α.x : ∀α.α → α.

Let’s define the polymorphic identity function:

id = Λα.λx : α.x

We can instantiate id with bool to serve as the boolean identity function:
id[bool] ≡ λx : bool.x

Notice that we have types in our terms. This was why before adding poly-
morphism, we could not write a function that was polymorphic in the type.

3

4 Dynamic Semantics

We define a call-by-value, small-step operational semantics.
The values in the polymorphic λ-calculus are as follows:

v ::= λx : τ1.e | Λα.e

The rules are as follows:

e1 → e′
1

e1 e2 → e′
1 e2

e2 → e′
2

v1 e2 → v1 e′
2

(λx : τ.e) v → e[v/x]

e → e′

e[τ] → e′[τ]

(Λα.e)[τ] → e[τ/α]

5 Substitution

Substitution Lemma:

if ∆; Γ, x : τ1 ` e : τ and Γ ` e1 : τ1

then Γ ` [e1/x] e : τ
If ∆, α type ` τ type and ∆ ` τ1 type

then ∆ ` [τ1/α] τ type.
If ∆, α type; Γ ` e : τ and ∆ ` τ1 type

then ∆; [τ1/α] Γ ` [τ1/α] e : [τ1/α] τ .
Recall: When we write ∆; Γ ` e : τ , we assume that Γ is a well-formed

context with respect to ∆ (written ∆ ` Γ) and that tau is a well-formed type
wrt ∆ (∆ ` τ type). Here’s how we define what it means for Γ to be a well-
formed given some ∆.

∀(x : τ) ∈ Γ.∆ ` τ type

∆ ` Γ

4

6 Type Safety

Prove progress and preservation as for the simply typed lambda calculus, ap-
pealing to substitution and inversion lemmas as appropriate.

Inversion Lemma:
If ∆; Γ ` Λα.e : τ
then τ = ∀α.τ ′ and ∆, α type; Γ ` e : τ ′

If ∆; Γ ` e[τ1] : τ
then τ = [τ1/α] τ2, ∆; Γ ` e : ∀α.τ2, and ∆ ` τ1 type.

Some history: John Reynolds and Jean-Yves Girard independently worked
on a logic with variable types. Girard developed his logic for second-order
arithmetic and called it System F. Reynolds developed his logic for polymorphic
programming and called it the polymorphic typed lambda calculus or the second
order lambda calculus.

7 Church Encodings: Defining Primitive Types
in System F

void is the empty type. It has no terms in it.
unit is the type that has only one element in it.
How can we encode unit? How about mapping the type of unit to ∀α.α → α.

unit ≡ ∀α.α → α
≡ Λα.∀x : α.x

(no elim)

bool ≡ ∀α.α → α → α
true ≡ Λα.∀x : α.∀y : α.x
false ≡ Λα.∀x : α.∀y : α.y

if e0 then e1 else e2 ≡ e0[τ]e1e2

τ1 + τ2 ≡ ∀α.(τ1 → α) → (τ2 → α) → α
inle ≡ Λα.λfl : τ1 → α.λfr : τ2 → α.fl(e)
inre ≡ Λα.λfl : τ1 → α.λfr : τ2 → α.fr(e)

case e of inlx:τ1 ⇒ e1 : τ | inry:τ2 ⇒ e2 : τ ≡ e[τ](λx : τ1.e1)(λy : τ2.e2)

τ1 × τ2 ≡ ∀α.(τ1 → τ2 → α) → α
< e1, e2 > ≡ Λα.λp : τ1 → τ2 → α.p e1 e2

fst(e) ≡ e[τ1] (λx : τ1 : λy : τ2.x)
snd(e) ≡ e[τ2] (λx : τ1 : λy : τ2.y)

Bob Harper’s book (PFPL, chapter 24) shows how primitive recursion can
be encoded in this calculus (i.e., an encoding of the type nat, with intro forms
z and succ(e), and elim form rec(e, e0, x : τ.e1)).

5

