
CMSC 336: Type Systems for Programming Languages

Notes on ml-lex and ml-yacc

Acar & Ahmed January 22, 2008

Contents

1 Introduction 1

2 Lexing 1
2.1 Regular Expressions, ml-lex style . 2

3 Parsing 2

4 Miscellaneous 3

1 Introduction

Compilers and interpreters generally start out by lexing (tokenizing) the pro-
gram source text and then parsing the resulting tokens into a parse tree. These
two subjects have significant bodies of theory and therefore deserve a course of
their own: CMSC22610, Compilers-I.

2 Lexing

Program source text can be messy. People use whitespace and parenthesization
differently. The compiler should not be treating each character in the source
text individually. Instead, it should treat a group of characters as a token.
Tokens are syntactic elements. Lexing generates a list of tokens from the source
text. For example, LET, FN, +, and 1234 are all tokens in ML. The ml-lex
program is a tool for generating lexers from a lexical specification of the
object language.

ML code goes here ...
%%
Lexer definitions...
%%
regexp => (ML code to produce Token); ...

Figure 1: The form of lexical specs

The lexical specification consists of some boilerplate ML declarations, some
character class/lex definitions, and the token specifications. These three sec-

1

tions are separated from each other by %%. Lex definitions have the form
classname=regexp. For example, digit=[0-9] defines a character class digit
that includes all the digits from 0 to 9.

A token specification consists of a regular expression for matching a token
and an action that communicates the token type plus some additional informa-
tion to the parser. Actions are SML expressions. Token specifications have the
form regexp => (action);.

2.1 Regular Expressions, ml-lex style

Symbols a ab ab1 “/” “(”
Empty String “”

Alternation (OR) true — false
Concatenation sticktogether

Groupings (10) — (34)
Repetition (Zero+) (10)*
Repetition (Once+) (10)+

Repetition (none or once) (10)?
Character sets (Ranges) [a-z], [a-zA-Z], [0-9]

Character classes (lex def’n) {digits}
Wildcard (matches all characters) .

Escaped characters newline (\n), space (\), tab (\t) ...
The parser provides a Tokens structure that contains functions for each

of the token types. Each function takes at least two tupled arguments that
represent the starting and ending points of the token in the program text. For
the purpose of HW1, you may just use line numbers for the starting and ending
points. Consequently, the starting and ending points should be the same (the
line of the token). This position information can be used in error reporting.
Some token functions take additional arguments called “semantic values”. The
semantic value usually precedes the position information in a tupled argument
(3-tuple). Be sure to check the generated parser.grm.sig to check how the token
functions are supposed to be called.

If we get to a token that we want to ignore, we use the lex function to move
on to the next token.

3 Parsing

Parsing turns the sequence of tokens into a parse tree. We generate parsers from
specifications by means of the ml-yacc tool. The specification is partitioned into
three sections (separated by %%) similar to the lex specifications: user decla-
rations, parser declarations, and grammar rules. Grammar rules look similar
to BNF except each line is followed by a “semantic action” to process the given
grammatical element. BNF grammars are composed of terminals and non-
terminals. Both must be declared up front. Nonterminals are metavariables
standing in for some other grammar element each of which must be defined as

2

a BNF grammar. The ml-yacc specification also has a default case for every
nonterminal (indicated by omitting a grammar element and only indicating a
semantic action).

ML code ...
%%
%term TERMINALS
%nonterm nonterminals
Parser definitions ...
%%
nonterm : Terminal/Nonterminal sequence (ML code for semantic action)

| another terminal/nonterminal seq (ML code for semantic action)

Figure 2: Parser spec (grm files)

Parsers find the true structure of expressions. As such, associativity and
precedences must be declared explicitly in the parser specification.

The pitfall in specifying grammars is that you can specify ambiguous gram-
mars. Ambiguous grammars can generate a single expression in the language
in multiple ways. We can get rid of ambiguity by restructuring the grammar or
defining some operator precedences in the parser declaration part of the spec-
ification. Precedence directives have the form %assoc symbol symbol symbol
where assoc is nonassoc (i.e., give an error if ambiguous), left, or right. Sym-
bols are either terminals or nonterminals and the space delimited sequence of
can be of any length ≥ 1. Directives that come earlier bind more weakily.

Modern parsers can also do some error recovery by trying different combina-
tions of replacements or insertions to fix erroneous code. The %prefer directive
allows us to specify a sequence (space delimited) of terminals we would prefer
to insert for error recovery.

The %eop or %noshift directive can specify a space delimited list of terminals
that signal that we would like to stop parsing.

4 Miscellaneous

print : string -> unit
Int.toString: int -> string
Int.fromString: string -> int option

Reference cells
val r = ref 0
!r
r := 1

3

