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Abstract Rail inspection generally includes a wide variety of spe-

For safety purposes, railroad tracks need to be inspected
on a regular basis for physical defects or design non-
compliances. Such track defects and non-compliances, if
not detected in a timely manner, may eventually lead to
grave consequences such as train derailments.

In this paper, we present a real-time automatic vision-
based rail inspection system, with main focus on anchors -
an important rail component type, and anchor-related rail
defects, or exceptions. Our system robustly detects impor-
tant rail components including ties, tie plates, anchors with
high accuracy and efficiency. Detected objects are then con-
solidated across video frames and across camera views to
map to physical rail objects, by combining the video data
streams from all camera views with GPS information and
speed information from the distance measuring instrument
(DMI). After these rail components are detected and con-
solidated, further data integration and analysis is followed
to detect sequence-level track defects, or exceptions. Quan-
titative analysis performed on a real online field test con-
ducted on different track conditions demonstrates that our
system achieves very promising performance in terms of
rail component detection, anchor condition assessment, and
compliance-level exception detection. We also show that
our system outperforms another advanced rail inspection
system in anchor detection.

1. Introduction and Related Work

According to recent safety statistics published by the
Federal Railroad Administration (FRA), the total impact
of damage caused by all reported derailment accidents in
the US amount to hundreds of millions of dollars annu-
ally, more than 10% of which were due to track problems.
For safety and efficiency reason, railroad track inspection
for physical defects and irregularities is required to be per-
formed in a regular basis in order to maintain a high stan-
dard of track condition.
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cific tasks, ranging from locating and evaluating the con-
dition of different rail components (tie plates, anchors,
joint bars, etc) to monitoring rail surfaces, alignments and
curvatures, to detecting sequence-level track design non-
compliances. It is very error-prone, time-consuming and
expensive for railroad companies to use human inspectors
to perform those tasks manually, especially for long-term
and large scale deployment. It is therefore of their great
interest to enhance, or even replace the current manual in-
spection process by automatic rail inspection systems using
advanced computer technologies.
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Figure 1. Overall architecture of our rail inspection system.
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In this paper, we present a real-time automatic vision-
based rail inspection system, with main focus on anchors -
an important rail component type, as well as anchor-related
rail exceptions. There are two types of anchor-related ex-
ceptions: tie-level exception and compliance-level excep-
tion. The tie-level exception mainly refers to shifted and
spread anchors, while a compliance-level exception is iden-
tified when there are more than 15% of ties that have abnor-
mal anchor patterns within a 100-foot track segment. Our
system focuses on solving the following problems:

e Detect ties, tie plates and various types of rail anchors.
e Assess the condition of anchors (shift, spread, normal).

e Consolidate detected components across video frames



Figure 2. Rail components that we want to detect: Tie plate (in
green), tie (in blue), anchor (in red). The purple rectangular region
is ROI in which anchors are searched.

and across camera views to map to physical rail ob-
jects.

e Detect anchor pattern compliance-level exceptions.

Recently, many machine-vision based automatic systems
have been introduced to solve different tasks in rail inspec-
tion [10, 7, 1,2, 3,4, 5, 9], including our own work [6, 8].
Each of these systems is focused on a different subset of
rail inspection problems. For example, [2] proposed an ap-
proach to detecting steel fasteners, e-clips and fast clips
using SIFT features and a correlation-based matching ap-
proach. In [9] and [5], image processing techniques were
presented to detect broken rail clips, which are very com-
mon on concrete ties. Several commercial systems include
the one developed by MERMEC Group to detect track sur-
face defect with high-speed line-scan cameras [7], or by
RailVision for measuring rail wear, track gauge, curvature,
rail cant and vegetation cover using an array of cameras and
laser equipment [10].

Although anchor is a vital type of rail fastener compo-
nent, very few existing systems have investigated that rail
component type [4, 1]. Moreover, no quantitative analysis
or performance report in anchor detection are available for
such systems. In addition, the cart used in [4] traveled with
a much slower speed than our hi-rail vehicle. Besides iden-
tifying the presence/absence of anchors, it is equally impor-
tant to assess the shift and spread conditions of the anchors.
A shifted anchor is certainly not functioning as it is sup-
posed to, and therefore is equivalent to being absent. To our
knowledge, our system is the only one to address and suc-
cessfully solve the problem of anchor condition assessment.
We also believe that our system is the first to present a solu-
tion for the problem of anchor pattern compliance exception
detection.

2. Detecting Rail Components

In this section, we describe our work on detecting three
vital rail components: tie plate, tie and anchor. Figure 2
shows an example of each type of components in one cap-
tured video frame.

Figure 3. The four cameras (blue) mounted on a hi-rail vehicle
and their fields of view. The captured videos have resolution of
640 x 400 and frame rate 20 FPS.

2.1. Background on Rail Components and Camera
Setting

Tie plates are attached to the rail by steel spikes to pre-
vent the rail from latitudinal movements. There are two tie
plates associated to each tie, one for each rail; and each tie
plate has two sides (gauge side and field side). Ties are used
as a base to support and fix railroad tracks, and to trans-
fer the loads from rails to the underlying ballasts and sub-
grades. Anchors wrap around the bottom and sides of the
rail base, on both sides of a tie to prevent it from longitudi-
nal movement. There are at most 4 anchors for one tie, two
anchors on each side of the rail.

In order to capture lateral views of the gauge side and the
field side of both rails, we use four cameras in total. (Fig-
ure 3) All four cameras are connected on the same FireWire
bus, which controls the time-synchronization between cam-
eras with high accuracy. The field of view of each camera
are set to 24 inches to guarantee 50% overlap of images
when traveling at 10 mph. For this camera setting, at each
time point, each side of each tie plate is seen by only one
camera, a tie will be seen by all four cameras, and the an-
chors will be seen only by the two gauge view cameras.

2.2. Tie Plate Detection

To detect tie plates, we applied the same approach pre-
sented in [6]. Specifically:

1. Use Hough transform to detect two dominant horizon-
tal lines in the image, which correspond to two hori-
zontal edges of the tie plate.

2. Find the two vertical edges of the tie plate as follows.

e For the image region between the two detected
horizontal lines, compute its edge map using the
Sobel operator, then sum up the edge magnitude
for each column.

e For each column, sum up all magnitudes within
a window that is centered on it. The window size



Figure 4. Candidate left vertlcal edges (in red) and right vertical
edges (in green) of a tie, and the two selected edges (the two thick-
est lines).

approximately equals the width of a tie plate (as-
sumed to be fixed).

e Find the two minimums in the above plot, corre-
sponding to the tie plates left and right vertical
edges.

2.3. Tie Detection

After tie plates are detected, we implement a simple and
robust approach for tie detection. The upper horizontal edge
of the tie is aligned with the upper edge of the tie plate. The
lower horizontal edge of the tie usually is aligned with the
bottom boundary of the image. The remaining task is to
identified two near-vertical edges of the tie:

1. Use Hough transform to detect near-vertical lines in
close proximity of the vertical edges of detected tie
plates.

. For each detected vertical line, compute the mean in-
tensity difference between its left image region and its
right image region. The intuition is that the tie surface
is uniformly texture, and so is the ballast surface on the
two sides of the tie, however the texture of the tie and
the ballast are very different.

3. Select the two lines with max distance computed in
step 2, corresponding to the left and right edges of the
tie (Figure 4).

Note that if tie plate is not detected in a frame, the search
area for the vertical lines becomes the whole image, in
which case tie detection may suffer from higher false posi-
tive rate. We then represent each detected tie as a rectangu-
lar bounding box. Although the polygon formed by the four
detected lines are not always rectangular, it can be closely
approximated by a rectangle.

2.4. Anchor Detection

Detecting anchors is a crucial step towards detecting an-
chor defects (shift, spread) and anchor pattern compliance
exceptions, which are potential causes of derailment.
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Figure 5. Anchor appearance has a high variability coming from
diversities in anchor type, size, shape, camera view point, occlu-
sion and light condition.
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Figure 6. Our model-switching mechanism to combine multiple
cascade classifiers. At each time point, we only return the de-
tection results d* from the classifier with the highest number of
detections among multiple cascade classifiers.

We implement a learning-based anchor detector based
on the Adaboost discriminative classifier. We observe that a
long track segment may include multiple subsegments, each
with a different type of anchor. Training only one single
cascade classifier for all subclasses of anchors would de-
crease its discriminative power, due to high in-class vari-
ability of anchors. As opposed to the standard Adaboost
algorithm [ 1] that used a single cascade classifier, we em-
ploy multiple cascade classifiers, somewhat similar to that
introduced in [12], as depicted in Figure 6. Specifically,
we train multiple binary classifiers, each corresponds to a
subclass of anchors. For detection, we employ a model-
switching mechanism as follows. We keep all classifiers
running simultaneously, but at any time point we only return
the detection results from one selected classifier - the one
with the highest number of detections in the last 50 frames.
For each frame, we apply a sliding window detection ap-
proach within a ROI, which is defined to be the horizontal
image stripe covering the region around the lower edge of
the rail, where anchors should be installed. The width of the
stripe equals the image width. (Figure 2)



(a)
Figure 7. Definition of anchor shift (a) and spread (b).

(b)
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Figure 8. Some examples of shifted anchors detected by our sys-
tem.
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2.5. Anchor Condition Assessment

After anchors are detected and located, the next step is to
assess their conditions. An anchor is considered shifted if it
is more than 1 inch away from its associated tie horizontally
(Figure 7 (a)). A spread occurs when the horizontal distance
between two anchors of the same tie is 4 inches more than
the tie width (Figure 7 (b)), i.e: D1+ D2=D - W >4
inches. Therefore a spread of an anchor pair is automati-
cally obtained by computing the shift values of each anchor
in the pair. Both shifts and spreads are considered track
defects, since they are strong evidence that the rail at that
location is running (unstable).

Pixel-Inch Calibration

Since shifts and spreads are defined in inches, while the
anchor-tie distance is computed in pixels, we have to be able
to reliably convert distances from pixels to inches in order
to accurately detect shifts and spreads. Due to wide angle
fisheye distortion, the pixel to inch mapping is not uniform
for all columns in the image. We take advantage of the fact
that the width of the tie plates are fixed at 7.5 inches. We an-
notate the bounding boxes for roughly 3, 000 tie plates for
each gauge-view cameras. Since we’re mainly interested
in the horizontal distance, we plot the tie plates’ width val-
ues in pixels with respect to the X coordinate of their loca-
tions. We quantize the X coordinates to 20 different bins.
The conversion curve is fitted by performing bin averaging
for each of the 20 bins and followed by linear interpola-
tion. The resulted curve allows us to map an arbitrary im-
age pixel to inches, given its column index. As illustrated in
Figure 9, the pixel-inch mapping function roughly approxi-
mates a quadratic function.
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Figure 9. Pixel-inch mapping function is constructed by fitting a
curve to a set of manually labeled data points.

Figure 10. Our exception visualization tool shows the consolidated
results: A black tie indicates a tie with complete boxed anchors (4
anchors), a red tie indicates a tie with incomplete boxed anchors
(1-3 anchors), and a white tie has 0 anchors.

3. Compliance-level Exception Detection
3.1. Rail Component Consolidation

To evaluate a rail segment’s compliance with the de-
signed pattern, we must account for the same physical com-
ponents being detected in multiple video frames in a given
view and also in different views. For a given frame, we
associate any detected anchors with the tie plate nearest to
them, and store the presence of the anchor along with the
tie to anchor distance as part of the tie plate data structure.
We then perform cross frame and cross view object match-
ing using the tie plate position data. Figure 10 illustrates
a schema of a rail segment of interest, in which the anchor
information of each physical tie in the rail segment is avail-
able and visualized. The schema is generated by the excep-
tion visualization tool that we built as part of our system.

Cross-frame Matching

Our cameras’ 24” field of view and video capture rate of
20 fps produce a frame to frame overlap of .63 when trav-
eling at 10 mph. With this degree of overlap objects will



typically be visible in two frames when traveling at speed,
and while the vehicle is still accelerating components can be
detected in many consecutive frames. We account for mul-
tiple detections of objects using a simple tracking scheme.
When an object is detected for the first time we calculate an
expected position for it in subsequent frames based on the
vehicle’s speed (obtained from DMI data), and the known
field of view of the cameras. In the next frame we compare
any new detected objects with the expected position from
the previous frame, and decide whether or not it is the same
object by thresholding the distance between the expected
and detected positions. Please note that we receive vehicle
speed measurements every second, and must interpolate be-
tween them to get a speed for an individual frame. When
we match a new tie plate detection to a previous detection,
we combine the information regarding anchors associated
with the tie plates from both frames.

Cross-view Matching

As we mentioned in Section 2.1, at any time point a tie
can be seen by as many as four camera views. When the
expected position of a tie plate moves out of the camera’s
field of view, we attempt to match the tie plate with tie plates
from other views that have also finished passing the field of
view. Pairs of tie plates are matched by comparing their
positions in frames where both tie plates were present. Tie
plates are matched iteratively in an attempt to build up a set
of detections in all four views representing one complete tie.
If a complete set of tie plate detections cannot be found, and
some tie plates’ expected position moves further outside the
field of view we assume tie plate detection failed for the
missing view(s) and report the largest set of tie plates found
as a complete tie with missing data. If anchors were found
at all four positions on the combined tie, we say the tie has
boxed anchors and can maintain a count of ties with boxed
anchors to evaluate compliance with railroad safety rules.
More details will follow in Section 3.2.

3.2. Compliance Exception Detection

Different rail types have different standard/required rail
anchor patterns, as shown in Figure 11. For any rail track
geographical location, we need to obtain the geo-reference
data which contain the required anchor pattern for that
specific geo-location, which is indexed by milepost and
footage, or GPS latitude and longitude. Based on such data,
for any given 100-foot track that is captured in the video,
we will know exactly what is its target anchor pattern by
matching the GPS data. To detect compliance exception,
we first count the total number of boxed ties for every 100-
foot rail track (denoted by C). A boxed tie is a tie with
all 4 anchors in normal (not shifted) condition. We then
compare the tie count with the required number (denoted by
R). If the count is smaller than 85% of the requirement, i.e.
(R—C)/R >= 15%, then a compliance-level exception is
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Figure 11. (a) Anchor pattern for jointed rail, (b) for continuously
welded rail (CWR), (c) for rail sections with high curvatures or at
railroad crossings.
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Figure 12. Flow chart of detecting compliance-level anchor excep-
tion.
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Note that we have to constantly check if we have covered
a 100-foot track. If yes, we compare the boxed tie count
with the required number, otherwise we read in the anchor
layout of the next tie. In our current implementation, once
an exception is detected, we slide the inspection window
by the whole 100-foot, otherwise, we slide it by 1 tie. A
confidence score will also be calculated for each exception
based on the confidence of anchor detection.

The complete algorithm for is illustrated in Figure 12.

4. Experimental Results

To evaluate the performance of our system, we install
our complete system (including hardware and software) on
a high-rail vehicle. We conduct a real online field test by



Component | Precision | Recall
Tie plate 99.3% 100%
Tie 88.2% 82.3%
Anchor 96.5% 96.7%

Table 1. Our system’s performance on rail component detection.

running the vehicle on real railroad tracks, covering differ-
ent track segments, different days, different times of day,
different weather conditions. The vehicle runs at average
speed of 10 mph. The test consists of inspecting three seg-
ments of one-mile track for presence/absence of tie plates,
ties, anchors, anchor shifts and spreads, and anchor pattern
exceptions.

For quantitative analysis, we have recorded track video
data during the online test. After the test, we manually an-
notated ground truth of tie plates, ties and anchors on those
collected videos. All the experimental results below are re-
ported based on directly comparing the system results with
the ground truth.

A detection is considered correct if the overlapping re-
gion between the detection bounding box and a ground truth
bounding box of the same component > 60% of the ground
truth bounding box.

4.1. Rail Component Detection

Tie Plate Detection

The low in-class variability of tie plates make tie plate
detection the most reliable part of our system. For our test,
we achieve very good performance in tie plate detection,
with 100% recall and about 99.3% precision. (Table 1)

Tie Detection

Tie detection is mostly needed for anchor condition as-
sessment: both shift and spread are defined by the distance
between an anchor and its associated tie. Our tie detector
is not as reliable as the tie plate detector, achieving 82.3%
recall and about 88.2% precision. (Table 1)

Anchor Detection As shown in Table 2, our anchor
detector using multiple cascade classifiers with model-
switching mechanism achieves better precision and recall
than using a single classifier. Both approaches outperform
the edge-based anchor detector presented in [0].

Anchor false positives are mainly caused by sharp shad-
ows or debris on the rail. False negatives (missed detec-
tions) are mainly caused by extreme lighting conditions (too
dark or too bright), or occlusions.

4.2. Anchor Condition Assessment

Once an anchor and its associated tie are detected, we
can easily calculate the distance between them in pixels.
We then convert this distance to inches using the Pixel-inch
mapping function, described in Section 2.5). We declare the
anchor as being normal or shifted based on this distance in
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Alg. Precision | Recall
Multiple classifiers 96.5% 96.7%
Single classifier 95.6% 93%
Edge-based approach [6] | 83.3% 91%

Table 2. Comparative evaluation of our anchor detector using
multiple cascade classifiers and model-switching with other ap-
proaches.

false negatives (bottom row).

inches. Although in general an anchor is considered shifted
if it is more than 7 = 1 inch away from the associated tie,
this number 7 may not be fixed. In fact, the choice of 7 re-
flects the acceptable threshold for the severity of the shifts,
and in practice the user should have the flexibility to decide
which threshold to use, based on their own judgment. For
this reason, we decide to report the shift detection perfor-
mance at different choices of 7. An ROC curve can easily
be generated by computing an ROC point for each value of
7. In Figure 14, we plot two ROC curves, with and without
pixel-inch calibration.

Shift Detection ROC w.r.t. Shift Threshold

T T T T T

—#=With calibration
—#-No calibration

b
05 06

Precision
Figure 14. Shift detection ROC with respect to the shift threshold
7, with and without pixel-inch calibration. The curves are plotted
with 7 from 0 to 2.5 inches.

0.7

We plot the ROC curve with 7 from O to 2.5 inches. The
ROC point with best F measure corresponds to 7 1.3
inches, with precision 0.47, recall 0.4, and F-measure 0.44.



The ROC curve shows that our shift detection still requires
further improvement. The shift detection performance was
mostly affected by the inaccuracy of the bounding boxes of
detected ties and anchors. In order to achieve a good shift
detector, it would require a high level of accuracy in both
tie and anchor bounding box localization.

We could not report the performance on spread detec-
tion, since we did not find any ground truth case of spread
in the track segments that we sampled for annotation.

4.3. Anchor Pattern Compliance Exception Detec-
tion

Detecting compliance exceptions for railroad tracks is
expected to achieve a high detection rate and low false pos-
itive rate. A compliance exception negatively affects the
rail safety at the sequence level, thus a failure to detect any
single one of those can potentially leads to grave conse-
quences. On the other hand, verifying a compliance excep-
tion requires a lot of time and resource for a railroad com-
pany, since it involves visually scanning a 100-foot track
segment. With a high false positive rate, it would be very
challenging for human inspectors to scan through all the re-
ported exceptions to find true ones. From our own inves-
tigation with railroad companies, the desired false positive
rate for compliance exception detection is 1 false positive
per 1 hour of inspection at 95% detection rate.

Since there are no true exception in the 3-mile track we
used in earlier tests, we performed this test on an 1-hour
video captured from a different rail track at a different time.
For this one-hour video, there are 3 genuine compliance ex-
ceptions. Our system detected all of them, achieving 100 %
detection rate, while generating 3 false positives per hour.
This is a very promising result compared to the desired per-
formance from railroad companies.

5. Conclusion

We described an automatic vision-based rail inspection
system, with main focus on anchors - an important rail
component type. Our system can perform in real time
at the vehicle speed of 10 mph, at frame rate 20 fps. It
robustly detects important rail components such ties, tie
plates, anchors with high accuracy and efficiency. The con-
dition of detected anchors are also evaluated to detect shifts
and spreads. Detected objects are then consolidated across
video frames and across camera views to map to physical
rail objects, by fusing the video data with GPS and DMI
information. After these rail components are detected and
consolidated, further data integration and analysis is fol-
lowed to detect anchor pattern non-compliances, or excep-
tions. Quantitative analysis performed on a large video
dataset captured on different track conditions demonstrates
that our system achieves very promising performance in
terms of anchor condition assessment, and compliance-level
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exception detection. To our knowledge, our system is the
first to address and solve these two problem in rail inspec-
tion. We also show that our system outperforms another ad-
vanced rail inspection system [6] in component detection.

The main challenges for us in the near future is to handle
cases of heavy local shadows, as well as light overexposure.
We also believe that our current tie detection approach can
be further improved. Although our experiments are focused
on anchors - a particular type of rail component, our next
plan is to extend our system to handle other rail component
types such as spikes and joint bar bolts.
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