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We study the equivalence between the notions of efficient improper learning and efficient refu-
tation in the distribution specific setting. We generalize the approach of Kothari and Livni [1]
to distribution specific PAC-learning, and obtain a result of Vadhan [2] as corollary; albeit with
weaker, but nevertheless polynomial bound on running time.

1 Introduction

Sample complexity is the information theoretical threshold on the number of samples required to
learn. There is a vast body of literature showing that VC-dimension is the correct measure of sample
complexity for learning, and Rademacher complexity is the correct measure if we are looking at fine-
grained distribution (and even, data) dependent sample complexity. However, the number of samples
required to ‘efficiently’ learn can be significantly different from sample complexity, depending on the
notion of efficiency involved. An extreme (and incredibly surprising) instructive example of this is a
result of Ran Raz [3] that shows that learning parity under uniform distribution requires exponential
samples if allowed less than n2/25 bits of space, while if allowed more than n2 bits, can be done in
linear number of samples by simple Gaussian elimination.

In this note, we relate distribution-dependent time efficiency of learning algorithms to ‘refutation-
complexity’ of a class of hypothesis. This is an extension of the work of [1], and in flavor similar to [2].
Here, we do not make any effort to optimize time efficiency, and leave it at some polynomial running
time to make our exposition simpler.

2 Preliminaries

Let C ⊆ {f : {±1}n 7→ {±1}} be a class of boolean concepts and D be a distribution over {±1}n
for some n ∈ N. In the rest of the note, we fix C, D and the underlying parameter n. Whenever we
say efficient algorithms, refer to (potentially randomized) algorithms running in time poly(n). The
hypothesis that we consider are (potentially randomized) functions h : {±1}n 7→ {±1}. We refer by U
the uniform distribution on {±1}. An important theme is the notion of extension of D to incorporate
labels of data-points distributed according to D, that we define next.

Definition 1 Let D′ be an arbitrary distribution supported {±1}n × {±1}. We say that D′ is an
extension of D iff its marginal on first n coordinates is D.

Definition 2 Given an extension D′ of D and a hypothesis h : {±1}n 7→ {±1}, its error on D′ is given
by errD′(h) := E(x,y)∼D′

[
1h(x) 6=y

]
and its correlation by corD′(h) := E(x,y)∼D′ [h(x) · y] = 1−2·errD′(h).

The optimal error and correlation are denoted by err∗D′ = infc∈C errD′(c) and cor∗D′ = supc∈C corD′(c).

Next, we define the notions of distribution-specific agnostic learning and refutability.

Definition 3 We say that C is ε-agnostically learnable if there is an efficient algorithm L with access
to poly(n) i.i.d labelled samples from each extension D′ of D, outputs with probability at least 3/4, a
hypothesis h such that errD′(h) ≤ err∗D′ + ε.
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Definition 4 We say that C is δ-refutable if there is an efficient algorithm R that with access to
poly(n) i.i.d labelled samples from each extension D′ of D, outputs either STRUCTURE or NOISE
with following guarantees:

• If cor∗D′ ≥ δ, then Pr [STRUCTURE] ≥ 2/3; and

• If D′ = D × U , (which implies, cor∗D′ = 0), then Pr [NOISE] ≥ 2/3.

Notice that the definition of refutability is computational analogue of Rademacher Complexity, which
exactly characterizes sample complexity of agnostic learning. Our definition can be also contrasted
with that of refuting random-CSPs, where the clauses come from some distribution, but the ‘labels’
are fixed. For instance, there is a known algorithm to efficiently refute random-3SAT formulas, given
more than n3/2 clauses. Our refutation is more general, in a sense that we allow adversarial labelings,
that are allowed to not satisfy all the ‘constraints’. Finally, our definition can also be contrasted with
the notion of property testing, where NOISE is defined as cor∗D′ = 0, which is a subset of NOISE that
we consider. It has been known that this property-testing analogue of distinguisher, at least for even
weaker definitions of noise, can be harder than improper learning for some concept classes [6].

3 Main Result

Our result is the following theorem:

Theorem 3.1 There is a ε′ = 1/poly(n) depending only on C and D such that C is ε-agnostically
learnable on D iff C is (2ε+ ε′)-refutable.

The theorem follows from the following two lemmata by appropriately setting the parameter ζ ′. Their
proofs are present in Sections 3.1 and 3.2 respectively.

Lemma 3.2 If C is ε-agnostically learnable on D, then C is (2ε+ ζ ′)-refutable on D for any choice of
ζ ′ > 1/poly(n).

Lemma 3.3 If C is δ-refutable on D, then C is (δ/2− ζ ′)-agnostically learnable on D for some small
enough ζ ′ = 1/ poly(n).

3.1 From Learning to Refutation — Proof of Lemma 3.2

Fix an extension D′ of D. Our goal is to come up with a 2ε + ζ ′-refutation algorithm R for C on D′
using ε-agnostic learning algorithm L. We let ζ := ζ ′/2. Let m be the number of samples required to
agnostically learn using L. If m < 6/ζ2, we set m = 6/ζ2.

The refutation algorithm R works as follows. First, it requests m i.i.d samples from D′. It runs L on
these samples and obtains a hypothesis h. It then requests m fresh i.i.d samples {(xi, yi) : i ∈ [m]}
and computes the empirical correlation c = 1

m ·
∑m

i=1 h(xi) · yi. If the computed empirical correlation
c ≥ ζ, it outputs STRUCTURE; and NOISE otherwise. Claims 3.4 and 3.5 now complete the proof of
the lemma 3.2.

Claim 3.4 If D′ = D × U , then c < ζ with probability at least 2/3.

Proof: Notice that for the latter half of the algorithm, h is a fixed hypothesis. Thus, since each yi
is a uniform random variable in {±1}, h(xi) · yi is also a uniform random variable in {±1}. Notice
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that if we flip the value of h(xi) · yi for any i, the value of c changes by at most 2/m. Thus, blindly
applying McDiarmid’s inequality and using the fact that m ≥ 6/ζ2, we obtain

Pr [c ≥ ζ] ≤ exp

(
−2 · ζ2

m · (2/m)2

)
= exp(−ζ2m/2) < 1/3.

Claim 3.5 If cor∗D′ ≥ 2ε+ ζ ′, then c ≥ ζ with probability at least 2/3.

Proof: We know that err∗D′ = (1− cor∗D′)/2 ≤ 1/2− ε− ζ. Thus, with probability at least 3/4, we get
a hypothesis h from L such that errD′(h) ≤ err∗D′ + ε ≤ 1/2− ζ. From bounded-range Chernoff bound
and using the fact that m ≥ 6/ζ2, we obtain

Pr [c < ζ] ≤ exp

(
−2 · (ζm)2

m · 4

)
= exp(−ζ2m/2) < 1/12.

The claim now follows by taking union bound over both the above-mentioned bad events.

3.2 From Refutation to Learning — Proof of Lemma 3.3

We will come up with a weak-learning algorithm L′ and then using an off-the-shelf boosting algorithm,
we will obtain L with claimed properties. We begin by defining weak agnostic learning algorithm, that
can recover at least polynomial fraction of the edge over random guessing of the best hypothesis in C.

Definition 5 An efficient learning algorithm L′ is called α-weak agnostic learner if given access to
poly(n) i.i.d labelled samples from each extension D′ of D, outputs with probability at least 2/3 a
(potentially randomized) hypothesis h : {±1}n 7→ [−1, 1] such that errD′(h) ≤ 1/2−1/ poly(n) whenever
err∗D′ ≤ 1/2− α.

Theorem 3.6 (Agnostic Boosting [5]) There is an efficient algorithm, that given access to a α-
weak learner L′ outputs a hypothesis h such that errD′(h) ≤ err∗D′+α+ε for any choice of ε > 1/ poly(n).

Now we will present our (δ/2−2τ ′)-weak-learning algorithm L′ for predicting the label y∗∗ of challenge
example x∗∗ coming from an extension D′ of D. First, we will describe an algorithm to obtain a bunch
of hypothesis, which will then be tested on a fresh sample S and then we will pick the best hypothesis
and label x∗∗ accordingly. Let m = poly(n) be the number of samples requested by R, and we set
τ ′ = 1/m4. If err∗D′ > 1/2− δ/2 + 2τ ′, then we have nothing to show. Thus, we assume from now on
that err∗D′ ≤ 1/2− δ/2 + 2τ ′ and hence, cor∗D′ ≥ δ − 4τ ′. Notice that if we we look at only O(m3) i.i.d
examples from D′, then with high probability, it is information theoretically impossible to distinguish
D′ from a distribution D′′ with cor∗D′′ ≥ δ. Thus, we can assume from now on that cor∗D′ ≥ δ.

As a first step, we define a class of 2(m+2) hybrid functions obtained by running appropriately chosen
hybrids of the distributions D′ and D × U . 1 For each i ∈ {0, . . . ,m+ 1} and b ∈ {+1,−1}, we get
the function Wi,b : {±1}n 7→ {0, 1} labelling x∗ as follows. We draw i− 1 fresh i.i.d examples (xj , yj)
from D′. We let xi = x∗ . Finally, we draw m− i fresh unlabeled examples xj from D′ and label them
uniformly randomly from {±1}. We run R on {(x1, y1), . . . , (xi, b), . . . , (xm, ym)}, and let the output
be 1 if R outputs STRUCTURE and 0 otherwise. Now, for each i ∈ {0, . . . ,m+ 1}, we get our weak
learners hi(x

∗) = Wi,1(x
∗)−Wi,−1(x

∗). Notice that hi : {±1}n 7→ {−1, 0, 1}.

Now, using an idea very similar to the beautiful hybrid argument of Yao [7], we get the following
claim, whose proof is deferred to end of this section.

1The term ‘hybrid of a pair of distributions’ refers to a new distribution obtained by picking a few samples from the
first distribution and remaining from the second one. It is the cornerstone of Yao’s [7] hybrid argument which is used
extensively in cryptography and pseudorandomness.
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Claim 3.7 There is a i ∈ {0, . . . ,m+ 1} such that errD′(hi) ≤ 1/2− 1/3m.

Finally, we draw O(m) fresh i.i.d samples S from D′ and for each i ∈ {0, . . . ,m+ 1}, we obtain a
hypothesis hi classifying each example in S ∪ x∗∗. Notice that in this process we use O(m3) examples
of D′, and hence, our sneaky pretention that cor∗D′ ≥ δ is warranted whp. We then pick the hypothesis
hi∗ which empirically performs best on S. The learning algorithm L′ labels x∗∗ as hi∗(x

∗∗). From
the deviation bounds errD′(hi∗) ≤ 1/2 − 1/4m whp, as a random sample of size O(m) will faithfully
preserve error bounds whp. Thus, the following claim follows.

Claim 3.8 L′ is a δ/2− 2τ ′-weak agnostic learning algorithm.

Now invoking Theorem 3.6, Lemma 3.3 follows after setting ε = τ ′. The rest of the section is devoted
to prove Claim 3.7.

Proof of Claim 3.7. Let (x∗∗, y∗∗) = (x, y) be the challenge example. From the guarantees of our
refutation algorithm R, E [W0,b(x)] ≤ 1/3 and E [Wm+1,b(x)] ≥ 2/3 for each b ∈ {±1}. 2

Using Yao’s hybrid argument idea[7], we can write the difference of these expectations as:

1

3
≤ E [Wm+1,y(x)]−E [W0,y(x)] =

m∑
i=0

E [Wi+1,y(x)−Wi,y(x)]

Thus, there is i∗ ∈ {1, . . . ,m+ 1} such that E [Wi∗,y(x)−Wi∗−1,y(x)] ≥ 1/3m. But from definition of
the functions hi, we have:

Wi∗,y(x) =
y

2
hi∗(x) +

1

2
(Wi∗,1(x) +Wi∗,−1(x))

But from our construction of functions Wi,b(x), we know that:

E

[
1

2
Wi∗,1(x) +

1

2
Wi∗,−1(x)

]
= E [Wi∗−1,y(x)]

Combining the previous two equations, we obtain E [y · hi∗(x)] = corD′(hi∗) ≥ 2/3m. In other words,
errD′(hi∗) ≤ 1/2− 1/3m as claimed. �

4 Learning in Realizable Scenario

We improved the analysis of [1] in the near-realizable and realizable case; while resolving one of
their open questions. In [1], there was a slack in the relation between refutability and learning.
They showed that ε-agnostic learning implies 4ε-refutation; and δ-refutation implies (δ + ζ)-agnostic
learning for any ζ ≥ 1/ poly(n). Their result has an intrinsic limitation that it cannot be used to
show equivalence between learning and refutation in the realizable case. Indeed, to comment about
possibility of learning, they required a strong (1/2− ζ)-refutation algorithm, which might be hard to
obtain. Say, for instance, we can use Gaussian elimination to distinguish random assignments from
completely satisfiable set of equations; but it may not always be possible to distinguish random case
from the case where 0.6 fraction of equations are satisfiable. They left it as open question.

This problem, in realizable case, was also studied in distribution-independent setting by Salil Vadhan
[2], where he gave equivalence between PAC-learning and a slightly different notion of refutation. His

2This expectation, and all other future expectations in this proof will be over the challenge example (x, y), all other
draws form D′ and internal randomness of our algorithm.
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notion of refutation was to differentiate between NOISE and STRUCTURE for C, but under worst-case
distribution D of data. We also note that if we lift our distribution specific restriction and allow worst
case distributions, then we can use any boosting algorithm to lift weak PAC-learning to standard
PAC-learning, and in particular, we obtain the result of [2]. We remark with ‘regret’ 3 that [2] has
many interesting applications, for instance, generalization the work of Daniely and Shalev-Schwartz
on hardness of PAC-learning and agnostic learning half-spaces [4], as well as some other connections
to cryptographic hardness assumptions, that we did not find enough space to cover.

First, we formally define the problem of distribution-dependent (weak) PAC-learnability and then show
its equivalence to 1-refutability in Corollary 4.1.

Definition 6 We say that C is weakly PAC-learnable over D iff there is an efficient algorithm LPAC
that for each extension D′ such that err∗D′ = 0, outputs with probability 3/4 a hypothesis h such that
errD′(h) ≤ 1/2− 1/ poly(n).

Corollary 4.1 C is weakly PAC-learnable on D iff C is 1-refutable on D.

We note that we cannot improve our guarantee to match standard PAC-learning guarantee of error
1/3 because of a fundamental bottleneck in Theorem 3.6. We leave it as an open question to find a
correct notion of refutation so as to establish an equivalence between PAC-learning (where the error
probability is 1/3) and refutability in the distribution specific setting.

5 Conclusion

We showed a slight improvement over analysis of [1] to obtain equivalence between agnostic learning
and refutability, which can even be extended to weak PAC-learning and refutability. This partially
solves an open question posed in [1]. We also generalized the result of [2] to distribution specific
setting. Unfortunately, we could not find any analogue of proper-boosting 4 in the literature. Apart
from being interesting in its own right, it may have immediate applications to obtain analogous
equivalence between a notion of refutability and agnostic (or, even PAC) proper learning.
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