

New Hardness Results for Routing on Disjoint Paths

Julia Chuzhoy¹, David H. K. Kim², Rachit Nimavat³

^{1,3}Toyota Technological Institute at Chicago, ²Computer Science Department, University of Chicago

NODE-DISJOINT PATHS (NDP) PROBLEM

- Input: Graph G, source-destination pairs $(s_1, t_1), ..., (s_k, t_k)$
- Output: Route as many pairs as possible via node-disjoint paths

n: Number of graph vertices

Terminals: Vertices participating in demand pairs

 $OPT_{NDP} = 2$ $OPT_{EDP} = 4$

Edge-Disjoint Paths Problem: Route as many demand pairs as possible via edge-disjoint paths

KNOWN RESULTS

- NP-Hard, even in planar graphs and grid graphs

 Goal: Route OPT/α demand pairs α —approximation
- · Where we stand?
 - General Case: $O(\sqrt{n})$ Approximation vs $pprox \Omega\left(\sqrt{\log n}\right)$ Hardness
 - Grid Graphs: $O(n^{1/4})$ Approximation vs APX Hardness
 - Planar Graphs: $O(n^{9/19})$ Approximation vs APX Hardness
- Similar situation, even in EDP (Grids
 → Walls)
- What if we allow congestion?
 Congestion 2 ⇒ polylog(k) Approximation for NDP/EDP

OUR RESULT

 $2^{\Omega(\sqrt{\log n})}$ - Hardness for NDP/EDP unless $NP \subseteq DTIME(n^{O(\log n)})$ for:

- planar graphs
- max vertex degree 3
- · all sources on the boundary of outer face

Here: Hardness for NDP for *grids with holes* with all sources on top row

ROADMAP

- Starting Point: 3SAT(5) instance φ
- [PCP Theorem] Unless P=NP, no efficient algorithm can distinguish between:
 - Yes-Instance: Some assignment satisfies all clauses
 - No-Instance: No assignment satisfies more than $(1-\epsilon)$ -fraction of clauses
- Build NDP instance of size N = n^{O(log n)} such that:
 - φ is YI => Can route C_{VI} demand pairs
 - φ is NI => No solution routes more than C_{NI} demand pairs
- The gap: $\frac{C_{YI}}{C_{NI}} = 2^{\Omega(\log n)} = 2^{\Omega(\sqrt{\log N})}$

IDEA

- Construction in stages.
- Stage 1: Gap = $\Omega(1)$, Size = O(poly n)
- $\Theta(\log n)$ stages. In every stage: Gap grows by $\Omega(1)$, Size grows by $O(n \cdot \text{current-gap})$
- End: Gap = $2^{\Omega(\log n)}$. Size = $n^{O(\log n)}$

LEVEL 1 INSTANCE: BIRD'S EYE VIEW

Composable Instance!

- · Can move the cut-out of Level 1 instance around
- · Can move sources along the top boundary

LEVEL 1: ANALYSIS

Yes Instance:

- x = True => Route all 'Extra' and 'True' pairs in B(x)
- x = False => Route all 'Extra' and 'False' pairs in B(x)
- Literal v = True in clause C => Route corresponding pairs in B(C)

No Instance:

- Can interpret routing in B^V as an assignment
- Too many pairs routed in B^C => Too many clauses satisfied!

LEVEL i + 1: MATRYOSHKA DOLL

- Nested construction
- Replace each demand pair of Level 1 instance by a fresh copy of Level i instance

Similar analysis

Variable Gadget

Gap grows by $\Omega(1)$, Size grows by $O(n \cdot \text{current-gap})$

CONCLUSIONS AND FOLLOW-UP WORK

- $2^{\Omega(\sqrt{\log n})}$ Hardness for NDP shown in *grids with holes*
- · Better hardness?
 - $2^{\Omega(\log^{1-\delta} n)}$ Hardness for NDP/EDP in grids/walls [ongoing work]
 - $n^{\Omega\left(\frac{1}{\log\log\log^2 n}\right)}$ Hardness for NDP/EDP in grids/walls (assuming rETH) [ongoing work]
 - Polynomial hardness in general graphs?
- · Better algorithms for grids?
 - * $O(n^{1/4})$ Approximation in grids vs $O(\sqrt{n})$ approximation in general graphs
 - $2^{O(\sqrt{\log n})}$ Approximation in grids if all sources lie on boundary
- Congestion Minimization?