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Figure 1: Results generated by our algorithm using drawn, painterly, and texture-based styles at 1k resolution. We use the
high stylization setting of our algorithm for the texture-based styles, and default settings for the other styles. We encourage
using the electronic version of the document to zoom in and observe the details.

Abstract

The dominant style transfer framework is based on sep-
arately defining ‘style loss’ and ‘content loss’, then find-
ing an image that trades off between minimizing both. The
challenge of operating in this regime is that formulations
proposed so far for the ‘content loss’ and ‘style loss’ are
fundamentally at odds, and generally impossible to simulta-
neously drive to zero. In this work we show that an explicit
content loss is unnecessary. We propose Neural Neighbor
Style Transfer (NNST)—a straightforward approach based
on nearest-neighbors that achieves higher quality styliza-
tion than prior work, without sacrificing content preserva-
tion.

1. Introduction
The style of an artist manifests both globally, through

composition and choice of subject matter, and locally,
through technique and choice of media. Like other style
transfer algorithms we focus on the latter, local, aspects of
style. One proxy for matching the technique and medium of
an artwork is to synthesize a new image using only patches
taken from the artwork. Selecting which patches to use,
and blending them into a natural looking output is a chal-
lenging problem in pixel space; however, like other recent
work [12, 25, 29, 3, 13, 23], we tackle these challenges in
the feature space of a pre-trained neural network. However,
our work fundamentally differs from the currently domi-

nant paradigm of Neural Style Transfer (NST) algorithms
[12, 18, 2, 25, 37, 34, 13, 23], in that our algorithm’s out-
put is not constrained to simultaneously satisfy a ‘content
loss’ and a ‘style loss’. Instead we explicitly construct a
’target feature tensor’ consisting entirely of spatially rear-
ranged features from the style image.

We are not the first to propose a style transfer algorithm
based on explicit feature matching [15, 33, 17, 10, 3, 25,
29, 13, 41]. But to the best of our knowledge we are the
first general purpose style transfer method to outperform the
NST state-of-the-art without using any content loss.

The first challenge is finding a good mapping between
features of the content image and style image. A common
failure mode of feature matching methods is all content fea-
tures mapping to a few style features. This leads to an out-
put with two major flaws. First, many details of the con-
tent image are replaced by flat regions or repetitive artifacts.
Second, because only a few features are used, the output
fails to mimic the distribution of style features. In this work,
we evaluate several potential solutions to this problem, in-
cluding: feature pre-processing, choice of distance metric,
and mapping features using nearest-neighbors (NN) or op-
timal transport (OT). We find that a good balance between
stylistic fidelity, content preservation, and computational ef-
ficiency can be achieved by: (1) pre-processing the mean of
the content features, (2) measuring similarity between neu-
ral activations using cosine distance instead of `2, and (3)
using nearest-neighbors. Notably, none of these design de-
cisions add additional constraints to the final optimization
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Figure 2: Overview of our method, see Section 3.2 for details.

of the output image.

Once the content features have all been replaced by style
features, we must confront the second challenge, synthesiz-
ing an aesthetically pleasing image based on these features.
Prior work in style transfer [13] notes that the outputs of
methods using explicit feature correspondences often pro-
duce ‘washed out’ or desaturated results. Similar observa-
tions have been made in other patch-based synthesis work
[21, 17, 10]. We identify two regimes of neural feature
matching with complementary properties for style transfer,
the second of which addresses this issue.

In the hypercolumn matching regime (HM) features are
matched jointly at all layers using hypercolumns [35, 14].
Outputs of this approach capture many aspects of the style
image while maintaining good content preservation. How-
ever, these outputs suffer from the washed out quality noted
in prior work. In particular they are desaturated and do not
match the style image’s high frequencies.

In the second regime, which we call ‘feature splitting’
(FS) we take inspiration from recent work on painterly har-
monization [30], and relax the constraint that entire hyper-
columns be matched. Instead, features are matched sep-
arately for every layer. In contrast to [30] these matches
are recomputed every iteration relative to the current output
image, rather than the initial content image. This results in
a final output with sharp high-frequencies and vivid colors
that match the style image. However, because the matching
procedure of the second regime is more flexible, jumping
directly to it results in over-stylization. Our final method
achieves the best of both worlds by synthesizing the final
output using the second regime, but initializing with the out-
put of the first.

While we propose a specific algorithm that produces
higher-quality style transfer results than prior work, our pri-
mary motivation is demonstrating that an explicit ‘content
loss’ is unnecessary for high-quality style transfer, even be-
tween images with very different semantics and layout. We
believe that our lack of a content loss, along with the sharper
and more vivid results obtained in the FS regime relative to
HM regime, provides valuable evidence that removing con-
straints is an important tool for improving image synthesis.

2. Related Work

Example-based style transfer, non-photorealistic render-
ing guided by a single piece of artwork, is a widely studied
image synthesis task. Approaches like our own, in which
image synthesis is guided by explicit matches between spa-
tially localized content and style features, can be traced to
[15] and related work on texture synthesis [7, 8, 42] from
the late 1990s and early 2000s. Recent patch-based style
transfer algorithms have focused on producing extremely
high quality outputs when additional human guidance is
available, either in the form of edge annotations [32, 31],
or specially created style images [9, 1]. These methods are
unified by their use of hand-crafted feature representations
and use of nearest neighbors to find content-style correspon-
dences.

Recent years have marked a significant departure from
this line of work, building off techniques introduced by
Gatys et al. in ‘A Neural Algorithm of Artistic Style’ [12].
This work had two major impacts. The first is leverag-
ing features extracted by a convolutional neural network
pretrained for image classification (typically VGG16 [39]).
The second is directly optimizing the output’s pixels using
gradient descent to simultaneously minimize a ‘style loss’
(typically based on matching statistics derived from features
of the target artwork), and a ‘content loss’ (typically based
on minimizing deviation from the content image’s features).
Many works [12, 2, 25, 37, 34, 13, 23] have proposed alter-
nate style loss formulations, and [23] proposes a relaxed
content loss invariant to translations and rotoreflections in
feature space.

In the example-based framework, where each style im-
age can be arbitrary and is assumed to be previously un-
seen, these approaches produce the highest quality output.
However, these methods face a fundamental challenge. In
general it is impossible to match the statistics of the style
features (satisfying the style loss) without modifying the
content features (satisfying the content loss). Even if the
content loss is invariant to rotoreflections [23], matching
the second order statistics captured by the simplest original
style loss [12, 28] generally requires an affine transforma-
tion (of which rotoreflections are a subset, and therefore do
not provide enough invariance).
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Content DIA [29] Ours Style

Figure 3: Deep Image Analogies (DIA) [29], another
content loss free method, is designed specifically for
style/content pairs with well-matched semantic, and works
best when the layout and pose of the two inputs is similar.
Our method, along with other generic style transfer meth-
ods, is intended to work well even for completely unrelated
content/style pairs. We demonstrate our method’s greater
robustness, applying it to two failure cases from their paper.

Motivated by this tension, our proposed algorithm re-
turns to the framework of guiding image synthesis with ex-
plicitly matched content and style features, although like
other NST algorithms we leverage pretrained VGG16 for
feature extraction.

We are not the first to revisit this framework using neural
features. CNNMRF [25] replaces the style loss of [12] with
minimizing each patch of content feature’s distance from
its nearest neighbor patch of style features under the cosine
distance. In [13] Gu et al. constrain the matches found by
nearest neighbors to only use each style vector at most k
times. However, both of these works regularize their out-
puts using the content loss proposed in [12], leading to the
fundamental tension outlined above.

We are aware of two similar style transfer works that also
explicitly construct a set of target features and do not use a
content loss. Liao et al. [29] propose a coarse-to-fine algo-
rithm for finding feature correspondences between the con-
tent and style image. Their algorithm produces excellent
results on style-content pairs with matching semantics and
similar poses, but does not work for more disparate style-
content pairs (see Figure 3). In [3] Chen et al. take a similar
approach to [25], but average overlapping feature patches
from the style image. This preserves content well, but at the
cost of fidelity to the target style (see Figure 4).

Texler et al. [41] also propose a method using explicit
neural feature matching, but to guide an upsampling proce-
dure using patch-based synthesis. Their goal is to increase
the resolution of a NST output (such as our own) to 4k res-
olution and beyond, and their method is complementary to
ours.

Other recent work has used optimal transport to find
mappings from content features to ‘stylized’ features. In

Content Chen [3] Ours Style

Figure 4: In [3] Chen et al. also propose a content loss free
style transfer method. However, a key difference relative
to our method is that they average feature vectors when
construction their ‘target feature tensor’. This helps them
preserve content well, but results in failure to capture dis-
tinctive elements of the style. We compare our results with
theirs on two pairs of inputs taken from their paper.

[26, 36] the authors find the optimal transport map for the
content features under the assumption that the true distri-
bution of content and style features is Gaussian. This is
efficient, but limits their stylization to being an affine map
applied to the content features. In [23], Kolkin et al. formu-
late their style loss based on an efficiently computed lower
bound on the earth-movers distance. However, like other
methods descended from [12], their style loss is fundamen-
tally at odds with the content loss.
Feed-Forward Style Transfer A common scenario, which
we do not address in this work, is when the styles of inter-
est are known beforehand, and a neural network can be pre-
trained to produce stylizations of the predetermined type(s)
[19, 46, 20, 38, 24]. These methods are very fast (perform-
ing inference with the forward pass of a CNN), and can pro-
duce high quality results. However, they require enough
training data, and must be retrained for any new style.

Another line of feed-forward methods is ‘universal style
transfer’ [16, 27, 4, 45, 5, 40]. These are parametric meth-
ods which, based on statistics of the style features, derive
closed form modifications of the content features, then de-
code the result into an image with a feed-forward network.
These methods are able to offer speed and generalization to
unseen styles, but at the cost of stylization quality.

3. Neural Neighbor Style Transfer
3.1. Feature Extraction

We first describe our feature extractor Φ(x), where x is
an RGB image. Throughout the paper, except in Figure 1,
we resize x to be 512 pixels on the long side. Φ(x) ex-
tracts the hyper-columns [35, 14] formed from the activa-
tions produced for all convolutional layers of pre-trained
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Figure 5: visualization of the method’s content/style tradeoff caused by varying α. Because our final output is synthesized
entirely based on features from the style image, there is non-trivial stylization even when α = 0

VGG16 [39] when x is passed in. We use bilinear inter-
polation on activations from all layers to give them spatial
resolution equal to one quarter of the original image. For an
image with height H, and width W, this yields an image rep-
resentation Φ(x) ∈ RH

4 ×
W
4 ×4224. Generally we consider

style to be rotation invariant, and to reflect this we extract
features from the style image rotated at 0◦, 90◦, 180◦ and
270◦ in all experiments.

3.2. Image Synthesis from Hypercolumns (HM)

The core of our algorithm is a simple procedure out-
lined in Figure 2. We extract features from the style image
and content image (1) and shift content features to match
their mean with that of the style features (2). Then we use
nearest-neighbors matching (3) to replace each content style
feature (hypercolumn) with the closest style feature. If the
content image is of size Hc × Wc, and the style image is
of size Hs ×Ws, this yields a new target representation for
our stylized output T ∈ R

Hc
4 ×

Wc
4 ×4224 where the feature

vector Ti ∈ R4224 at each spatial location is taken from the
style image, or a rotated copy of the style image. Finally we
optimize the pixels of our output image x (4) to minimize
the cosine distance loss:

min
x

− 1

P

P−1∑
i=0

cos (Φi(x), Ti) (1)

where P = WcHc/16, the number spatial locations in Φ(x)
and T .

We minimize Equation 1 via 200 updates of x using
Adam [22] with parameters η = 2e−3, β1 = 0.9, and
β2 = 0.999. To allow the average color of large regions
to quickly change within 200 updates, we parameterize x as
a Laplacian pyramid with 8 levels.

We run this procedure at eighth, quarter, half, and full
resolution. The upsampled output of the previous scale
serves as initialization for the next. We initialize the coars-
est scale with a downsampled version of the content image.

Control of stylization level We use this multi-scale pro-
cedure to control the stylization level of our final output in
the following manner. Let Os be the output of our algo-
rithm at scale s. Let Cs+1, Ss+1 be the content and style
images at finer scale s + 1. Let O↑s be Os upsampled to be
the same resolution as Cs+1. Instead of constructing T by
finding matches between Φ(Cs+1) and Φ(Ss+1), we instead
find matches between Φ(αO↑s +(1−α)Cs+1) and Φ(Ss+1).
The parameter α controls stylization level, with α = 0 cor-
responding to the lowest stylization level, and α = 1 the
highest. We demonstrate the effect of varying α in Figure 5.
By default, we set α = 0.25, as this generally produces a
visually pleasing balance between stylization and content
preservation.

3.3. Feature Splitting (FS) regime

We find that replacing entire hypercolumns of content
features with entire hypercolumns of style features produces
results that are desaturated and fail to capture the high-
frequencies of the style image (see Figure 6). We believe
that this effect is due to incompatible hypercolumns, which
were not adjacent in the original style image, being placed
next to each other in T . Because these features have over-
lapping receptive fields, the output is optimized to produce
the average of several features from different regions of the
style in one region of the output. This manifests visually as
a ’washed out’ quality. We find this problem can be solved
by making the feature matching less constrained, a similar
observation to one made in the field of image compositing
[30]. Matches are computed for each layer of VGG sepa-
rately, resulting in the T consisting of novel hypercolumns
where features at different layers are mixed and matched
from different locations/rotations of the style image. Un-
like [30] we do not compute matches only once, we recom-
pute them after every update to the output image. Updating
the output procedes as in Section 3.2, except features are
matched relative to the current output, rather than the initial
content. Adding this step results in vivid outputs with better
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Content FS Only HM Only Ours Style

Figure 6: Ablation demonstrating the complementary roles
of hypercolumn matching (HM), and feature splitting (FS).
Outputs using FS only are over-stylized, while images pro-
duced by HM only are desaturated and lack the distinctive
high frequencies of the style image. Initializing FS with
HM (Ours) produces the best results.

stylized high frequencies (see Figure 6).

3.4. Design Decisions

When mapping from content features to style fea-
tures, there are several important decisions: (1) what pre-
processing to use, (2) what metric used to compare features
with, and (3) the matching algorithm to use. It is worth
reiterating that while these design decisions must be made
carefully, they do not add additional constraints to the final
optimization of the output image.

Qualitatively we find the best generic settings to be: (1)
matching the means of the content and style features, (2)
comparing them using cosine distance, and (3) mapping be-
tween them using nearest neighbors. In the following sec-
tions we discuss these choices.

3.4.1 Ablation: Feature Pre-Processing

Our primary goal in pre-processing the features is to prevent
nearest-neighbors from overusing the same style features.
We approach this as a question of how to align the distri-
butions of content features and style features. This immedi-
ately leads to three simple options. First, we can do nothing.
Second, we can align µ (replace the content features’ mean
with the style features’ mean). Third, we can match µ and
also match Σ using the WCT as suggested elsewhere in the
style transfer literature [4].

We find that some pre-processing is vital, and that match-
ing the µ only produces the best results overall. See Figure
7 for details.

Content N/A Match µ,Σ Ours Style

Figure 7: Without any pre-processing (N/A), a small subset
of of style features is overused, resulting in homogeneous
outputs with lower stylization quality and content preserva-
tion. Matching µ and Σ works reasonably, but is more com-
putationally expensive (increasing the runtime of our algo-
rithm by around 20%), and often introduces artifacts (e.g.
adding blue splotches to the sky behind the cow, and polka
dots inside the man’s face). We find that matching µ only
(Ours) produces images that utilize many features from the
style image without overly distorting content.

3.4.2 Ablation: Optimal Transport

Other works [26, 36, 23] have used methods inspired by
optimal transport (OT) to map content features to style fea-
tures. This approach elegantly solves the problem of en-
suring that the distribution of features in the output im-
age matches the distribution of features in the style image.
However, computing an OT plan (even approximately) is
far more expensive than finding nearest neighbors. During
HM we only computer feature matches once per scale, so it
is expensive but feasible to replace nearest neighbors with
the sinkhorn algorithm [6], a close approximation of OT.
However, even using the approximate sinkhorn algorithm is
impractical during FS, and would increase the runtime of
our method to over an hour. While using OT during the
HM phase often increases the output’s visual diversity, the
effect is not dramatic enough to justify the increased com-
putational cost (See Figure 8).

3.4.3 Ablation: Ground Metric

Both Nearest-Neighbors and Optimal Transport rely on
choosing a good metric to compare features. Like other
other style transfer works [13, 25, 23], we find that the co-
sine distance seems better suited to comparing the activa-
tions of pre-trained neural networks than the `2 distance.
Using the cosine distance leads to dramatically better con-
tent preservation and stylization quality (See Figure 9).
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Content HM w/ OT Ours Style
≈ 65 Secs. ≈ 35 Secs.

Figure 8: Replacing nearest neighbors (NN) with OT during
the HM stage is feasible, but significantly increases runtime
and produces similar results. Replacing NN with OT during
the FS stage is infeasible, and would increase runtime to
over an hour (See Section 3.4.2)

Content `2 Cosine (Ours) Style

Figure 9: Ablation demonstrating the importance of com-
paring neural activations using the cosine distance rather
than `2.

4. Evaluation

4.1. User Study

Evaluating and comparing style transfer algorithms
quantitatively is challenging. One reason for this is that
we have yet to develop automatic metrics for robust content
recognition, let alone judgment of stylistic similarity, that
can truly compete with humans. Another challenge is that
there is an inherent tension in style transfer between content
preservation and stylization. Inspired by the evaluation pro-
posed proposed in [30, 43, 23, 44], we conducted a human
study using Amazon Mechanical Turk (AMT), evaluating
content preservation and stylization quality separately.

As a measure of stylization quality, users are asked the
question “Which of image A or image B better matches the
style of the reference”, where A and B are the outputs two

different algorithms produced for the same content/style
pair, and the reference is the input style image. Users are
forced to choose between ’A’, ’B’. For each algorithm we
report a style preference rate between 0 and 1, which is
the fraction of times an algorithm won such comparisons.
For each algorithm this score includes comparisons with
all other algorithms/hyperparameter combinations (but ex-
clude comparisons to the same algorithm with different set-
tings). This study is conducted over over 90 input pairs,
each of which is shown to on average 3.9 AMT workers.
This leads to the style preference rate being averaged over
at least 3500 responses for each algorithm/hyperparameter
combination.

In addition we can isolate head-to-head preference rates
between our algorithm and others for default settings. Our
output is judged to better match the style 72%, 67%, 69%,
and 62% of the time relative to CNNMRF [23], Gatys [11],
Reshuffle [13], and STROTSS[23] respectively. Each of
these isolated head-to-head rates is based on slightly under
360 responses.

Content preservation is measured in absolute terms.
AMT workers are shown an algorithm’s output, along with
the input content image, and asked to rate their agree-
ment with ”I perceive the same content in both images.”,
the options ranging from ”Strongly Disagree” to ”Strongly
Agree” on a 7 point scale (4 being ”Neutral”). We find that
in general AMT workers tend to feel neutral about this state-
ment for all algorithms tested. Each content preservation
score is computed over 90 input pairs, shown to on average
4.7 unique AMT workers. This leads to a content preser-
vation score averaged over slightly under 450 responses for
each algorithm/hyperparameter combination.

We perform these studies using the set of 90 con-
tent/style pairs proposed in [23]; 30 pairs with semantically
paired style and content, 30 with semantically different style
and content, and 30 where the content is a face and the
style is a texture. We compare our algorithm with leading
optimization-based style transfer methods [25, 13, 12, 23].
For these methods we use the procedure described in [23],
when possible obtaining results for each algorithm when the
default hyperparameter controlling stylization level is dou-
bled and halved. To obtain our high, default, and low styl-
ization results we set α to be 0.75, 0.25, and 0.00 respec-
tively. Qualitative examples from this study are shown in
Figure 10, and quantitative results are summarized in Fig-
ure 11.

4.2. Limitations and Failure Cases

Qualitatively our method reliably produces images com-
posed of small details from the style. However, the style
features we can robustly capture tend to have small spatial
extent. Values of α > 0.5 can capture aspects of the style
image with larger spatial extent. However, this often dis-
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Gatys[11] CNNMRF[25] Reshuffle[13] STROTSS[23] Ours Style Content
wrong colors content colors desaturated wrong contrast faithful colors

sharp less sharp blurry less sharp sharp
inconsistent repetitive faithful low-res repetitive faithful texture

24 Seconds 83 Seconds *50 Seconds* 70 Seconds 56 Seconds
Figure 10: Qualitative comparison between outputs used in AMT study (default hyperparameters). Below each algorithm’s
column is the runtime when producing a 512×512 pixel output on our hardware. *We project the speed of Reshuffle [13]
using the relative speed to Gatys reported in [23], as running Reshuffle required a different machine running Windows*
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Figure 11: On the left we give an example of our method and STROTSS [23] trading off between stylization and content
preservation. While STROTSS is able to achieve a wider range of visual effects, their high stylization setting often destroys
content preservation by cloning large sections of the style image, and their low stylization setting fails to alter the high
frequencies of the content image. If higher stylization levels are desired for our method, users can either increase α from
0.75 to 1.00 (Figure 5) or use FS only (Figure 6). On the right we plot the average ratings each algorithm (with varying
hyperparameter settings when possible) achieved in our two AMT studies, one evaluating content preservation, the other
fidelity to the style image. Fully saturated points indicate default hyperparameter settings for each method, and different
settings of the same method are connected by lines

torts the content an unacceptable amount, and works best
when the style is a homogeneous texture, or highly abstract
(e.g. a cubist or abstract expressionist style).

A second limitation is that our method sometimes intro-
duces a slight palette shift relative to the style image. This
can manifest as outputs that are slightly over-saturated; or
as slight hue shifts for drawn styles, where the color of the
’paper’ and ’ink’ will be a subtly different than in the style.

The main failure mode of our method is when jarring
color shifts are introduced within a homogeneous region of
the content during the FS regime. While our AMT study
indicates this does not occur frequently enough to dramati-
cally impact our content preservation relative to other meth-
ods, it is a problem when it occurs. This is an unfortunate
side-effect of using no content loss. We can re-introduce a
content loss into our framework easily, and in many cases
this resolves the color-shifting problem. However this can
also introduce content features to the output that are incon-
sistent with the style (See Figure 12).

5. Conclusion
In this work we demonstrate that the layout and percep-

tual semantics of a content image can be recreated by rear-
ranging features extracted from a very different style image,
without the need for any additional ‘content loss’. We pro-
pose Neural Neighbor Style Transfer (NNST), a straight-
forward procedure for appropriately rearranging the style
features, and then using them to synthesize an aesthetically
pleasing image that faithfully capture small details of the
target style.

We show that nearest neighbors, despite its simplicity,
is an effective tool for mapping from the features of one
image to another. However we suspect significant improve-

Content Ours w/ `content Style

Figure 12: Because our method lacks a content loss
(`content), jarring color shifts occasionally occur within ho-
mogeneous objects. These can typically be corrected by
adding a content loss to our optimization (top row), how-
ever adding a content loss can result distinctive aspects of
the style being ignored, for example introducing shading to
a black and white style (bottom row).

ments could be made by incorporating more sophisticated
techniques that have been leveraged in other style transfer
work. One example is optimal transport [26, 36, 23]. While
it did not benefit our proposed method, it is a more princi-
pled tool for matching distributions of features than nearest
neighbors. Another example is graphical models [2, 25],
which have been previously used to model long range spa-
tial dependencies between style features.

A further area for improvement is our algorithm’s re-
liance on gradient descent, which dramatically limits its ef-
ficiency. Using our ’target feature tensor’ as the input to a
neural network, rather than as the optimization targets for
gradient descent, seems like a viable and important path to
explore. However, we leave this to future work.
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Jamriška, Alexander Sorkine-Hornung, and Daniel Sỳkora.
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