
Computational and Statistical Learning theory
Assignment 4

Due: March 16th
Email solutions to : karthik at ttic dot edu

Definitions/Notation
Throughout we assume that the set W is a closed convex subset of a Banach space B equipped
with norm ‖ · ‖. Let ‖ · ‖∗ be the dual norm.

Definition 1. A function F : W 7→ R is said to be σ-strongly convex w.r.t. norm ‖ · ‖ onW if for
any w,w′ ∈ W ,

F (w) ≥ F (w′) + 〈∇F (w′), w − w′〉 − σ

2
‖w − w′‖2

Definition 2. Given a strictly convex function F :W 7→ R, the Bregman Divergence of the function
is given by

∆F (w,w′) := F (w)− F (w′)− 〈∇F (w), w − w′〉

Definition 3. Given a convex function F :W 7→ R, its dual F ∗ is defined as

F ∗(x) = sup
w∈W
{〈x,w〉 − F (w)}

You might find the following property of Bregman divergences useful :

∇F ∗ = (∇F )−1

For any convex function ` on W we shall use the notation ∂`(w) to represent the set of sub-
gradients of ` at point w or in other words the set

∂`(w) = {λ : ∀w′ ∈ W , `(w′)− `(w) ≥ 〈λ,w′ − w〉}

Any convex function ` has at least one sub-gradeint at all points and if the function is differentiable
at a point say w there is exactly one sub-gradient at that point given by gradient∇`(w).
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Problems
1. Lower Bound for Perceptron :

For any γ > 0, let d ≥ 1
γ2

and X = {x ∈ Rd : ‖x‖ ≤ 1} and Y = {±1}. Show that for any
online learning algorithm, there exists a sequence of instances (x1, y1), . . . , (xm, ym) which
is separable by a margin of γ by some linear separator with `2 norm bounded by 1, such
that the online algorithm makes at least b 1

γ2
c mistakes on this sample. This shows that the

perceptron bound is tight.

Hint : Pick appropriate m (depending on γ) and provide instances adversarially so that the
algorithm makes a mistake on every round. However show that the selected instances are
separable by a linear separator of norm 1 with a margin of at least γ.

2. Mirror Descent Guarantee (optional):
Let W be a convex closed subset of some Banach space equipped with norm ‖ · ‖. Let
F :W 7→ R+ be some non-negative σ-strongly convex function onW . Further assume that
B2 = supw∈W F (w). Consider the mirror descent update given by

wt+1 ← argmin
w∈W

〈ηλt −∇F (wt), w〉+ F (w)

where λt ∈ ∂`t(wt). The above update can equivalently be given by the two step update

w′t+1 ← ∇F ∗ (∇F (wt)− ηλt) and wt+1 ← argmin
w∈W

∆F (w,w′t+1)

We would like to prove that by selecting η appropriately, for any sequence `1, . . . , `m of
L-Lipschitz convex functions chosen by the adversary, the regret of the mirror descent algo-
rithm using F is bounded as :

1

m

m∑
t=1

`t(wt)− inf
w∈W

1

m

T∑
t=1

`t(w) ≤
√

8L2B2

σ m

We shall prove the above statement by taking the following steps :

(a) For any w,w′, w′′ ∈ W prove that

〈∇F (w′)−∇F (w′′), w′′ − w〉 = ∆F (w,w′)−∆F (w,w′′)−∆F (w′′, w′)

(b) Prove that for any η > 0, any w ∈ W and any t ∈ [m],

η〈λt, wt − w〉 ≤ ∆F (w,wt)−∆F (w,wt+1) +
η2

2σ
‖λt‖2∗

Hint: You will have to use mirror descent update rule, the equation you proved in step 1
and the inequality that 〈w, λ〉 ≤ ‖w‖‖λ‖∗ along with the fact that for any two numbers
a, b ∈ R, ab ≤ a2

2
+ b2

2
. Also notice that the definitions of strong convexity of F and

Bregman divergence directly imply that for any w,w′ ∈ W ,

∆F (w′, w) ≥ σ

2
‖w − w′‖2
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(c) Use this (along with convexity and Lipschitz property of `t’s) to prove that for appro-
priately chosen η,

1

m

m∑
t=1

`t(wt)− inf
w∈W

1

m

T∑
t=1

`t(w) ≤
√

8L2B2

σ m

Hint : There is a telescoping sum involved.

Challenge Problems
1. Regularized ERM :

For the same set up as the Mirror Descent question in problem 2, that is W is a convex
closed subset of some Banach space. F :W 7→ R+ is some non-negative σ-strongly convex
function onW and B2 = supw∈W F (w). Prove that for appropriate choice of regularization
parameter β, the learning rule given by F -regularized ERM :

w̃ = argmin
w∈W

1

m

m∑
i=1

`i(w) + βF (w)

enjoys the following bound on risk for the statistical convex optimization problem :

R(w̃) ≤ inf
w∈W

R(w) +

√
8L2B2

σm
.

2. `1 Regularized Learning Lower Bound :
For any γ > 0, for appropriately chosen d and X = {x ∈ Rd : ‖x‖∞ ≤ 1} and Y =
{±1}. Show that for any online learning algorithm, there exists a sequence of instances
(x1, y1), . . . , (xm, ym) which is separable by a margin of γ by some linear separator with `1
norm bounded by 1, such that the number of mistakes made by the online algorithm say M
is lower bounded as

M ≥ Ω

(
max

{
log d,

1

γ2

})

Research Problems
1. `1 Regularization Lower Bound :

Given X = {x ∈ Rd : ‖x‖∞ ≤ 1} and Y = {±1}, the best upper bound on number of
mistakes M we know (using Winnow algorithm) when there exists a linear separator with `1
norm bounded by 1 which separates the examples with margin γ is

M ≤ O

(
log d

γ2

)
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Challenge problem 2 only gives lower bound that is best of 1
γ2

and log d. Can you show a
lower bound of form

M ≥ Ω

(
log d

γ2

)
or show the tightest possible lower and upper bounds?

2. Regularization and Statistical Learning :
Consider any stochastic convex optimization problem where objective r : W × Z 7→ R
is convex and L-lipschitz in its first argument for all z ∈ Z. The learner is provided with
sample S = {z1, . . . zm} drawn iid from some unknown distribution D and is expected to
pick some w̃ ∈ W .based on this sample. Recall that the problem is defined to be learnable
if the learner can pick a learning algorithm that returns w̃ that satisfies,

ES
[
R(w̃)− inf

w∈W
R(w)

]
→ 0

Prove or disprove the following statement :

The problem is learnable if and only if there exists a regularizer function F : W 7→ R such
that F -regularized ERM rule given by

w̃ = argmin
w∈W

1

m

m∑
i=1

r(w, zi) + βF (w)

with appropriate β (depending on m) provides for a successful learning rule.

The motivation for this question is that all the cases of stochastic convex optimization prob-
lems we know that are statistically learnable are learnable because of uniform convergence
(in which case β = 0 and F can be arbitrary) or when the problem is learnable online in
which case we can argue that there always exists a regularizer that has nice properties which
can be used for learning. Is there any other type of problem?
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