Computational and Statistical Learning theory
Assignment 4

Due: March 16th
Email solutions to : karthik at ttic dot edu

Definitions/Notation

Throughout we assume that the set VV is a closed convex subset of a Banach space B equipped
with norm || - ||. Let || - ||« be the dual norm.

Definition 1. A function F' : W — R is said to be o-strongly convex w.r.t. norm || - || on W if for
any w,w" € W,
Fw) = F(w) + (VE (@), w =) = 2w —uf|]

Definition 2. Given a strictly convex function F' : VW — R, the Bregman Divergence of the function
is given by
Ap(w,w') = F(w) — F(w') — (VF(w),w —w'")

Definition 3. Given a convex function F' : W — R, its dual F'* is defined as

F*(x) = sup {(a.w) ~ F(w)}

You might find the following property of Bregman divergences useful :
VF* = (VF)™

For any convex function ¢ on VW we shall use the notation 0¢(w) to represent the set of sub-
gradients of / at point w or in other words the set

H(w) ={N: V' e W, L(w') — l(w) > (N w' —w)}

Any convex function /¢ has at least one sub-gradeint at all points and if the function is differentiable
at a point say w there is exactly one sub-gradient at that point given by gradient V/(w).



Problems

1. Lower Bound for Perceptron :
For any v > 0, let d > 1 and X = {z € R?: ||z| <1} and Y = {£1}. Show that for any
online learning algorlthm there exists a sequence of instances (z1,41), - . ., (Tm, Ym) Which
is separable by a margin of v by some linear separator with /5 norm bounded by 1, such
that the online algorithm makes at least L%J mistakes on this sample. This shows that the
perceptron bound is tight.

Hint : Pick appropriate m (depending on ) and provide instances adversarially so that the
algorithm makes a mistake on every round. However show that the selected instances are
separable by a linear separator of norm 1 with a margin of at least .

2. Mirror Descent Guarantee (optional):
Let WV be a convex closed subset of some Banach space equipped with norm || - ||. Let
F : W — R* be some non-negative o-strongly convex function on V. Further assume that
B? = sup,cyy, F(w). Consider the mirror descent update given by

Wiy < argmin (NN, — VE (wy), w) + F(w)

weWw

where \; € 0/;(w;). The above update can equivalently be given by the two step update

wy,, < VF*(VF(w) —nX)  and  wpyq < argemwin Ap(w,wy, ;)

We would like to prove that by selecting n appropriately, for any sequence ¢4, ..., ¢, of
L-Lipschitz convex functions chosen by the adversary, the regret of the mirror descent algo-
rithm using £ is bounded as :

1 & 812 B2
— 12 — inf — li(w) <
m; t(wt u}ngZ ¢ - om

We shall prove the above statement by taking the following steps :

(a) For any w,w’, w"” € W prove that
(VF(w'") — VF(w"),w" —w) = Ap(w,w") — Ap(w,w") — Ap(w”, w')

(b) Prove that for any n > 0, any w € W and any t € [m)],

2
D wr = w) < Ap(w,wn) = Ap(w,wii) + o2

Hint: You will have to use mirror descent update rule, the equation you proved in step 1
and the inequality that (w, ) < ||w]||||A]|« along with the fact that for any two numbers
a,b e R, ab < % + % Also notice that the definitions of strong convexity of £’ and
Bregman divergence directly imply that for any w, w’ € W,

Ap(w',w) = —Hw w'||?



(c) Use this (along with convexity and Lipschitz property of ¢;’s) to prove that for appro-
priately chosen 7,

1 & 8[2B2
— 14 — inf — li(w) <
m; t(wt u}QWmZ t - om

Hint : There is a telescoping sum involved.

Challenge Problems

1. Regularized ERM :
For the same set up as the Mirror Descent question in problem 2, that is VV is a convex
closed subset of some Banach space. F' : W — R is some non-negative o-strongly convex
function on W and B? = sup,,¢,y F'(w). Prove that for appropriate choice of regularization
parameter /3, the learning rule given by F'-regularized ERM :

= rgmm—Zf )+ BF(w)

wew M

enjoys the following bound on risk for the statistical convex optimization problem :

L1282
R(@) < inf R(w)+ .

weWw am

2. {; Regularized Learning Lower Bound :
For any v > 0, for appropriately chosen d and X = {z € R? : ||z[|,, < 1} and Y =
{#£1}. Show that for any online learning algorithm, there exists a sequence of instances
(x1,91),- -, (Tm, Ym) which is separable by a margin of by some linear separator with ¢;
norm bounded by 1, such that the number of mistakes made by the online algorithm say M

1s lower bounded as )
M > Q (max {log d, —2})
fy

Research Problems

1. /; Regularization Lower Bound :
Given X = {z € R? : ||z||oc < 1} and ) = {=1}, the best upper bound on number of
mistakes M we know (using Winnow algorithm) when there exists a linear separator with ¢;
norm bounded by 1 which separates the examples with margin - is

|
MSO(ode)
7




Challenge problem 2 only gives lower bound that is best of 712 and log d. Can you show a

lower bound of form o d
e (129

f)/
or show the tightest possible lower and upper bounds?

. Regularization and Statistical Learning :

Consider any stochastic convex optimization problem where objective r : W X Z — R
is convex and L-lipschitz in its first argument for all z € Z. The learner is provided with
sample S = {z1,...2,} drawn iid from some unknown distribution D and is expected to
pick some w € VV.based on this sample. Recall that the problem is defined to be learnable
if the learner can pick a learning algorithm that returns w that satisfies,

Eg {R(@) ~ inf R(w)} =0

Prove or disprove the following statement :

The problem is learnable if and only if there exists a regularizer function F' : VW +— R such
that F'-regularized ERM rule given by

m

W = argmin 1 Zr(w, zi) + BF(w)

m
wew i—1

with appropriate 3 (depending on m) provides for a successful learning rule.

The motivation for this question is that all the cases of stochastic convex optimization prob-
lems we know that are statistically learnable are learnable because of uniform convergence
(in which case f = 0 and F' can be arbitrary) or when the problem is learnable online in
which case we can argue that there always exists a regularizer that has nice properties which
can be used for learning. Is there any other type of problem?



