
Computational and Statistical Learning theory
Assignment 4

Due: March 2nd
Email solutions to : karthik at ttic dot edu

Notations/Definitions
Recall the definition of sample based Rademacher complexity :

R̂S(F) := Eε∼{±1}n

[
1

m
sup
f∈F

m∑
i=1

εif(xi)

]

Definition 1. Given a sample S = {x1, . . . , xm}, and any α > 0, a set V ⊂ Rm is said to be an
α-cover (in `p) of function class F on sample S if

∀f ∈ F ,∃v ∈ V s.t.

(
1

m

m∑
i=1

|f(xi)− vi|p
)1/p

≤ α

Specifically for p =∞
(

1
m

∑m
i=1 |f(xi)− vi|p

)1/p is replaced by maxi∈[m] |f(xi)− vi|.
Also define

Np(F , α, S) := min{|V | : V is an α-cover of (in `p) ofF on sample S}

and
Np(F , α, n) := sup

x1,...,xm

Np(F , α, {x1, . . . , xm})

Definition 2. A function F is said to α-shatter a sample S = {x1, . . . , xm} if there exists a
sequence of thresholds, s1, . . . , sm ∈ R such that

∀ε ∈ {±1}m, ∃f ∈ F s.t. ∀i ∈ [m], εi(f(xi)− si) ≥ α/2
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Problems
1. VC Lemma for Real-valued Function classes :

We shall prove that for any function class F (assume functions in F are bounded by 1)
and scale α > 0, the `∞ covering number at scale α can be bounded using fat shattering
dimension at that scale by proving a statement analogous to VC lemma. We shall proceed
by first extending the statement to finite (specifically {0, . . . , k}) valued function classes and
then using this to prove the final bound of form

N∞(F , α, n) ≤
fatα∑
i=1

(
n

i

)(
1

α

)i
(a) Let Fk ⊂ {0, . . . , k}X be a function class with fat2(Fk) = d, show that

N∞(Fk, 1/2,m) ≤
d∑
i=1

(
m

i

)
ki

Show the above statement using induction on n + d (very similar to first problem on
Assignment 2). Hint : In Assignment 2 problem 1 where we used H+

S and H−S use
instead, for all i ∈ {0, . . . , k}, Fi = {f ∈ F : f(x′) = i} (note that this is a simple
multilable extension and for k = 1, F0,F1 are identical toH+,H−). Use the notion of
2-shattering instead of shattering for the VC case and use 1/2-cover instead of growth
function.

(b) Using the idea of α-discretizing the output of function class F we shall conclude the
required statement. Do the following :

i. Create a {0, . . . , k}-valued class G where k is of order 1/α. Show that covering
G at scale 1/2 implies we can cover F at scale α and hence conclude that we can
bound N∞(F , α,m) in terms of covering number at scale 1/2 for G.

ii. Show that fat2(G) ≤ fatα(F)
iii. Combine with the bound on N∞(G, 1/2,m) from previous sub-problem and con-

clude that

N∞(F , α, n) ≤
fatα∑
i=1

(
n

i

)(
1

α

)i
2. Dudley Vs Pollards’ Bounds :

In class we saw that Rademacher complexity can be bounded in terms of covering numbers
using Pollard’s bound, Dudley integral bound and the slightly modified version of Dudley
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integral bound as follows :

R̂S(F) ≤ inf
α≥0

{
α +

√
N1(F , α,m)

m

}
≤ inf

α≥0

{
α +

√
N2(F , α,m)

m

}
(Pollard)

R̂S(F) ≤ inf
α≥0

{
4α + 12

∫ 1

α

√
N2(F , τ,m)

m
dτ

}
(Refined Dudley)

In this problem using some examples we shall compare these bounds.

(a) Class with finite VC subgraph-dimension :
Assume that the VC subgraph-dimension of function class F is bounded by D. In this
case result in problem 1 can be used to bound the covering number of F in terms of D.
Use this bound on covering number and compare Pollard’s bound with refined Dudley
integral bound by writing down the bounds implied by each one.

(b) Linear class with bounded norm : Linear classes in high dimensional spaces is probably
one of the most important and most used function class in machine learning. Consider
the specific example where

X = {x : ‖x‖2 ≤ 1} and F = {x 7→ w>x : ‖w‖2 ≤ 1}

In class we saw that for any ε > 0, fatε(F) ≤ 4
ε2

. Using this with the result in problem
1 we have that :

N2(F , α,m) ≤ N∞(F , α,m) ≤
(en
ε

) 4
ε2

Use the above bound on the covering number and write down the bound on Rademacher
complexity implied by Pollard’s bound. Write down the bound on Rademacher com-
plexity implied by the refined version of the Dudley integral bound.

3. Data Dependent Bound :
Recall the Rademacher complexity bound we proved in class for functions F bounded by 1.
For any δ > 0 with probability at least 1− δ,

sup
f∈F

(
E [f(x)]− ÊS[f(x)]

)
≤ 2ES∼Dm

[
R̂S(F)

]
+

√
log(1/δ)

m

Note that we don’t know the distribution D. One way we used the above bound was by
providing upper bounds on R̂S(F) for any sample of size m and using this instead of
ES∼Dm

[
R̂S(F)

]
. But ideally we would like to get tight bounds when the distribution we

are faced with is nicer. The aim of this problem is to do this.

Prove that, for any δ > 0 with probability at least 1− δ, over draw of sample S ∼ Dm,

sup
f∈F

(
E [f(x)]− ÊS[f(x)]

)
≤ 2R̂S(F) +K

√
log(2/δ)

m
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(provide explicit value of constant K above). Notice that in the above bound the expected
Rademacher complexity is replaced by sample based one which can be calculated from the
training sample.

Hint : Use McDiarmid’s inequality on the expected Rademacher complexity.

4. Learnability and Fat-shattering Dimension Recall the setting of stochastic optimization
problem where objective function is mapping r : H × Z 7→ R. Sample S = {z1, . . . , zm}
drawn iid from unknown distribution D is provided to the learner and the aim of the learner
is to output ĥ ∈ H based on sample that has low expected objective E [r(h, z)].

(a) Consider the stochastic optimization problem with r bounded by a, i.e. |r(h, z)| < a <
∞ for all h ∈ H and z ∈ Z . If function class F := {z 7→ r(h, z)|h ∈ H} has finite
fatα for all α > 0, then show that the problem is learnable.

(b) Conclude that for a supervised learning problem with bounded hypothesis class H (ie.
∀x ∈ X , |h(x)| < a), and loss φ : Ŷ × Y 7→ R that is L-Lipschtiz (in first argument),
ifH has finite fatα for all α > 0, then the problem is learnable.

(c) Show a stochastic optimization problem that is learnable even though it has infinite
fatα for all α ≤ 0.1 (or any other cosntant of your choice). Explicitly write down the
hypothesis class, and the learning rule which learns the class, argue that the problem is
learnable, and explain why the fatα is infinite.

Hint : You can make the learning rule that is successful to even be ERM.

(d) Prove that for a supervised learning problem with the absolute loss φ(ŷ, y) = |ŷ − y|,
if the fatα is infinite for some α > 0, then the problem is not learnable.

Hint: as with the binary case, for every m, construct a distribution which is concen-
trated on a set of points that can be fat-shattered.

Challenge Problems
1. We saw that for any distribution D, the expected Rademacher complexity provided an upper

bound on the maximum deviation between mean and average uniformly over function class,
specifically we saw that

ES∼Dm
[
sup
f∈F

(
E [f(x)]− Ê [f(x)]

)]
≤ 2ES∼Dm

[
R̂S(F)

]
Prove the (almost) converse that

1

2
ES∼Dm

[
R̂S(F)

]
≤ ES∼Dm

[
sup
f∈F

(
E [f(x)]− Ê [f(x)]

)]
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This basically establishes that Rademacher complexity tightly bounds the uniform maximal
deviation for every distribution.

2. The worst case Rademacher complexity is defined as

R̂m(F) = sup
S={x1,...,xm}

R̂S(F)

(ie. supremum over samples of size m).

(a) Prove that for any function class F and any τ > R̂m(F), we have that

fatτ (F) ≤
4mR̂m(F)2

τ 2

Hint : First start by proving the statement for larger sample of size m′ = d m
fatτ
efatτ by

taking fatτ samples and repeating them appropriate number of times. You will need to
start with a shattered set and you will need to use Kintchine’s inequality which states
that for any n,

Eε∼Unif{±1}n

[∣∣∣∣∣
n∑
i=1

εi

∣∣∣∣∣
]
≥
√
n

2

(b) Combine the above with the refined version of Dudley integral bound to prove that

inf
α≥0

{
4α + 12

∫ 1

α

√
N2(F , τ,m)

m
dτ

}
≤ R̂m(F) O(log3/2m)

This shows that the refined dudley integral bound is tight to within log factors of the
Rademacher complexity. Thus we have established that in the worst case all the com-
plexity measures for function class like Rademacher complexity, covering numbers and
fat shattering dimension all tightly govern the rate of uniform maximal deviation for
the function class (all to within log factor).

3. Bounded Difference Inequality, Stability and Generalization :
Recall that a function G : Xm 7→ R is said to satisfy the bounded difference inequality if for
all i ∈ [m] and all x1, . . . , xm, x′i ∈ X ,

|G(x1, . . . , xi, . . . , xm)−G(x1, . . . , xi−1, x′i, xi+1, . . . , xm)| ≤ c

for some c ≥ 0. In this case the McDiarmid’s inequality gave us that for any δ > 0, with
probability at least 1− δ,

G(x1, . . . , xm) ≤ E [G(x1, . . . , xm)] +

√
(mc)2 log(1/δ)

m

The bounded difference property turns out to be quiet useful to analyze learning algorithms
directly (instead of looking at the uniform deviation over function class).

5



A proper learning algorithm is A :
⋃∞
m=1Xm 7→ F is said to be a uniformly β stable is for

all i ∈ [m], and any x1, . . . , xm, x′i ∈ X ,

sup
x
|A(x1, . . . , xi, . . . , xm)(x)− A(x1, . . . , xi−1, x′i, xi+1, . . . , xm)(x)| ≤ β

Assuming functions in F are bounded by 1 we shall prove that the learning algorithm gen-
eralizes well (expected loss is close to empirical loss of the algorithm). Specifically we shall
prove that for any δ > 0, with probability at least 1− δ,

R(A(S)) ≤ R̂(A(S)) + β + 2(mβ + 1)

√
2 log(1/δ)

m

where R(A(S)) = Ex [A(S)(x)] and R̂(A(S)) = 1
m

∑m
i=1A(S)(xi).

(a) First show that ES
[
R(A(S))− R̂(A(S))

]
≤ β.

Hint : Use renaming of variables to first show that for any i ∈ [m],

ES [R(A(S))] = ES,x′i [A(x1, . . . , xi−1, x
′
i, xi+1, . . . , xm)(xi)]

(b) Show that the functionG(S) = R(A(S))−R̂(A(S)) satisfies bounded difference prop-
erty with c ≤ 2β + 2

m
. Conclude the required statement using McDiarmid’s inequality.

(c) Consider the stochastic convex optimization problem where sample z = (x, y) where
y is real valued and x’s are from the unit ball in some Hilbert space and hypothesis is
weight vectors w from the same Hilbert space with objective

r(w, (x, y)) = |〈w, x〉 − y|+ λ‖w‖2

Show that the ERM algorithm is stable for this problem and thus provide a bound for
this algorithm.

4. L1 Neural Network :
A k-layer 1-norm neural network is given by function class Fk which is in turn defined
recursively as follows.

F1 =

{
x 7→

d∑
j=1

w1
jxj

∣∣∣∣∣ ‖w1‖1 ≤ B1

}

and further for each 2 ≤ i ≤ k,

Fi =

{
x 7→

di∑
j=1

w1
jσ(fj(x))

∣∣∣∣∣ ∀j ∈ [di], fj ∈ Fi−1, ‖wi‖1 ≤ B1

}
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where di is the number of nodes in the ith layer of the network. Function σ : R 7→ [−1, 1]
is called the squash function and is generally a smooth monotonic non-decreasing function
(typical example is the tanh function). Assume that input space X = [0, 1]d and that σ is
L-Lipschitz. Prove that

R̂S(Fk) ≤

(
k∏
i=1

2Bi

)
Lk−1

√
2T log d

Notice that the above bound the di’s don’t appear in the bound indicating the number of
nodes in intermediate layers don’t affect the upper bound on Rademacher complexity.

Hint : prove bound on Rademacher complexity of Fi recursively in terms of rademacher
complexity of Fi−1.
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