Computational and Statistical Learning theory

Due: February 16th Email solutions to : karthik *at* ttic *dot* edu

- 1. Give an explicit algorithm for efficient proper PAC learning conjunctions of literals. Analyze the runtime and sample complexity of the algorithm.
- 2. For any family of hypothesis classes $\mathcal{H}_n \subseteq \{\pm 1\}^{\mathcal{X}_n}$, where $\mathcal{X}_n = \{0, 1\}^n$, define the following decision problem:

 $\mathsf{AGREEMENT}_{\mathcal{H}} = \{ (S,k) \mid S \subseteq (\mathcal{X}_n \times \{\pm 1\})^n, k \in \mathbb{Z}, \exists_{h \in \mathcal{H}_n} \left| \{ (x,y) \in S \mid h(x) = y \} \right| \ge k \}$

Prove that if H_n is efficiently agnostically properly PAC learnable, and every $h \in H_n$ is computable in time poly(n), then $AGREEMENT_{\mathcal{H}} \in \mathbf{RP}$.

3. Prove that for the class \mathcal{H}_n of half-spaces (linear predictors) over $\{0,1\}^n$, the problem AGREEMENT_{\mathcal{H}} is NP-hard.

Hint: Consider the decision problem HITTINGSET:

$$\text{HITTINGSET} = \left\{ (C,k) \mid C \subseteq 2^{[n]}, \exists_{R,|R|=k} \forall_{A \in C} A \cap R \neq \emptyset \right\}$$

That is, the input is a collection C of subset of the integers 1..n, and an integer k, and the problem is to decide whether there exists a set of cardinality at most k that "hits" (has non-empty intersection) with all sets in C. The problem HITTINGSET is a classic NP-hard problem, and you may base your proof on this fact.

First, show that a restricted version of HITTINGSET where all sets in C are required to be the same size is also NP-hard (e.g. show a simple reduction from HITTINGSET). Then, consider the following mapping from inputs (C, k), where all sets in C are of cardinality exactly t, to a labeled sample in \mathbb{R}^{sn} (for convenience, we will index vectors in \mathbb{R}^{sn} as $v_{i,j}$ where $1 \le i \le s$ and $1 \le j \le n$, and denote $e_{i,j}$ the vector of all-zeros except a single one at (i, j)):

- Positive points at $\sum_{i=1}^{s} e_{i,j}$ for each j = 1..n.
- Negative points at $\sum_{i \in A} e_{i,j}$ for each i = 1..s and each $A \in C$.

Use the above mapping to construct a reduction from the restricted version of HITTINGSET to AGREEMENT_{\mathcal{H}}.

Challenge Problems

- For a family of hypothesis classes H_n with VCdim(H_n) ≤ poly(n), we already know that if we have a polynomial-time algorithm that given a sample, returns a hypothesis from H_n consistent with the sample (if one exists), then H_n is efficiently properly PAC learnable. Is solving the decision problem enough? Prove or disprove the following: if VCdim(H_n) ≤ poly(n) and CONSISTENT_H ∈ **RP**, then H_n is efficiently PAC learnable.
- 2. Prove that for any polynomial p(n), there exists a family H_n of hypothesis, such that H_n is (not necessarily efficiently) PAC learnable with poly(log n, 1/ε, log 1/δ) examples, but that any polynomial-time learning algorithm for H_n needs at least p(n) examples in order to get error less then 0.1 with probability at least 1/2. Either use counting arguments, or use some acceptable cryptographic assumption and prove the existence of such a class, with all h ∈ H_n computable in time poly(n).
- 3. Based on the result that it is hard to efficiently learn intersections of n^{ϵ} halfspaces over \mathbb{R}^n , prove that it is hard to efficiently *agonstically* learn halfspaces.