
Computational and Statistical Learning theory

Problem set 2

Due: January 31st
Email solutions to : karthik at ttic dot edu

Notation :
Input space : X Label space : Y = {±1} Sample : (x1, y1), . . . , (xn, yn) ∈ X ×Y

Hypothesis Class : H Risk : R(h) = E
[
1h(x)6=y

]
Empirical Risk : R̂(h) = 1

n

∑m
i=1 1h(xi)6=yi

1. Shatter Lemma :
Given a set S = {x1, . . . , xm} let Hx1,...,xm = {(h(x1), . . . , h(xm)) ∈ {±1}m : h ∈ H}.
Recall that we say that such a set is shattered by H if |Hx1,...,xm | = 2m, and that the VC
dimension of H is the size of he largest sample that can be shattered. Also recall that the
growth function of the hypothesis classH is given by:

ΠH(m) = sup
x1,...,xm

|Hx1,...,xm | .

That is, we can also define the VC dimension as the largest m for which ΠH(m) = 2m.

The aim of this exercise is to prove the “Shatter Lemma”: if H has VC dimension d, then
for any m,

ΠH(m) ≤
d∑
i=0

(
m

i

)
. (1)

In order to prove (1), we will actually prove the following statement: for any set S =
{x1, . . . , xm}:

|HS| ≤ |{B ⊂ S : B is shattered byH}| (2)

That is, the number of possible labeling of a S is bounded by the number of different subsets
of S that can be shattered.

We (i.e. you) will prove (2) by induction.

(a) Establish that (2) holds for S = ∅ (the empty set).
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(b) For any set S and any point x′ 6∈ S, assume (2) holds for S and for any hypothesis
class, and prove that (2) holds for S ′ = S ∪ {x′} and any hypothesis class. To this end,
for any hypothesis classH, writeH = H− ∪H+ where:

H+ = {h ∈ H : h(x′) = +1}
H− = {h ∈ H : h(x′) = −1}

i. Prove that |HS′| =
∣∣H+

S

∣∣+
∣∣H−S ∣∣.

ii. Prove that (2) holds for S and H by applying (2) to each of the two terms on the
right-hand-side above.

We can now conclude that (2) holds for any (finite) S and anyH.
(c) Use (2) to establish (1).
(d) For d ≤ n, prove that

∑d
i=0

(
m
i

)
≤ md. Optional: Prove the tighter bound:

∑d
i=0

(
m
i

)
≤(

em
d

)d
2. VC Dimension :

(a) Consider the hypothesis class H• of positve circles in R2. That is set of all hypothesis
that are positive inside some circle and negative outside. Calculate the VC dimension
of this class, and show that this is the exact value of the VC dimension.

(b) Consider the hypothesis class H◦ of both positive and negative circles in R2. That is
set of all hypothesis that are positive inside some circle and negative outside and all
hypothesis that are negative inside that circle and positive outside. Show how to shatter
4 points using this class and establish a lower bound of 4 on the VC dimension of the
class.

We now consider the VC dimension of the classHd of linear separators in Rd :

Hd =
{
x 7→ sign(w>x+ b)

∣∣w ∈ Rd, b ∈ R
}

(c) Consider the set of d + 1 points that include origin and the d bases ei (ie. 1 on ith
co-ordinate and 0 elsewhere). Show that the points can be shattered byHd.

(d) Prove that no set of d+ 2 points can be shattered byHd.
(Hint : Use Radon’s theorem which states that any set of d + 2 points in Rd can be
partitioned into two disjoint sets whose convex hulls intersect.)

From this we conclude that the VC dimension ofHd is exactly d+ 1.
(e) Prove that for anyH1 ⊆ H2, the VC dimension ofH1 is not larger than that ofH2.
(f) Use the above to prove that if for some hypothesis class H, there exists a feature map

φ : X 7→ Rd such that any hypothesis h ∈ H can be written as

h(x) = sign

(
d∑
i=1

wiφi(x) + b

)
for some w ∈ Rd and some b ∈ R, then VC dimension ofH is at most d+ 1.
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(g) Use this to obtain a tight upper bound on the VC-dimension of H◦ and conclude that
the VC-dimension of this class is indeed four. Note that the bound you can get on H•
is not tight.

3. Description-Length Based Structural Risk Minimization :
In this problem we will consider more carefully an analysis of a slightly cleaner MDL-based
SRM learning rule.

Recall that for any distribution p over hypotheses in H and any δ > 0, with probability at
least 1− δ over the sample S := (x1, y1), . . . , (xn, yn), for all h ∈ H:

R(h) ≤ ̂̂R(h) +

√
log 1

p(h)
+ log 1

δ

2n
(3)

With the above in mind, for a prior distribution p(·), define the following learning rule:

SRMp(S) = h̃ = argmin
h∈H

R̂(h) +

√
log 1

p(h)

2n

Prove that for any h? ∈ H, any ε > 0 and δ > 0, with probability at least 1− δ over sample
S of size :

m >
log 1

p(h?)
+ 4 log 1

δ

ε2

we will have R(SRMp(S)) ≤ R(h?) + ε.
(Hint: you may find the inequality

√
a+ b ≤

√
a+
√
b ≤
√

2a+ 2b useful)

4. VC versus MDL :
Using the SRM rule above, for any countable hypothesis classH, we can get arbitrary close
to the generalization error of any h ∈ H. But we saw that the VC-dimension correctly cap-
tures the complexity of a hypothesis classes, and that in some sense, no learning guarantee
is possible for classes with infinite VC dimension. We will now try to understand why there
is no contradiction here.

Let X be the interval (0, 1]. For any integer r > 0, consider the hypothesis class:

Hr = {all binary functions of φr(x) = dr · xe} .

Our hypothesis class will be an infinite union of such classes. To make things a bit simpler,
we consider only resolutions r that are integers power of two, that is:

H =
∞⋃
q=1

H2q .

(a) Show thatH has infinite VC-dimension.
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(b) Suggest either a binary description language for H or a distribution over it. It is OK if
multiple descriptions refer to the same function, or if you prefer assigning probability
to multiple functions that are actually the same one. But be sure that every hypothesis
inH has a description or positive probability mass.

(c) Show that the VC dimension ofH is in fact∞.

(d) We first establish that the ERM is not appropriate here. Consider a source distribution
which is uniform on X and for which:

y =

{
+1 if x < 0.3473
−1 otherwise

Show that for any sample, and any ε > 0, there exists a hypothesis h ∈ H with
R̂(h) = 0 but R(h) > 1− ε.

(e) The ERM is not appropriate, but SRMp is. Calculate an explicit number n0 (we are
looking for an actual number here, not an expression), such that for with probability at
least 0.99 over sample of size n > n0, we will have SRMp(S) < 0.1, where p is the
prior (description language) you suggested above.
(Don’t turn in) Think of a different description language or prior distribution for the
same class H that would require a much smaller training set size to achieve a gener-
alization error of 0.1 for the above source distribution. Then think of an example of a
source distribution for which the new description language or prior distribution would
require a much larger training set size then p to achieve low generalization error.

(f) For any prior distribution p, and any sample size m > 0, construct a source distribution
such that there exists h ∈ H with R(h) = 0, but with probability at least 0.2 over a
sample of sizem,R(SRMp(S)) > 0.2 (it is actually possible to getR(SRMp(S)) = 0.5
with probability close to one).

5. VC + MDL :
MDL bounds are applicable for countable classes and VC bounds to possible uncountable
classes with finite VC dimension. What about continuous classes with infinite VC dimen-
sions? As an example consider the class of all polynomial threshold functions. Can we get
learning guarantees for this class ?

Example : Consider input space X ⊆ R and the hypothesis class

Hpoly = {x 7→ sign(f(x) < 0) : f is a polynomial function}.

This function class is uncountable and has infinite VC dimension (Eg. any binary function
can be approximated by polynomial functions). However it is possible to get learning gau-
rantees, to do so we use the key observation that Hpoly =

⋃∞
d=0Hpolyd where Hpolyd is the

class of all polynomials of degree d. Note that by Problem 2(f) we have that VC dimension
ofHd is bounded by d+ 1.
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We (i.e. you) shall prove learning guarantees for general hypothesis classes that can be
written as countable union of classes with finite VC dimension. Consider:

H =
∞⋃
d=1

Hd

whereHd is a hypothesis class with VC dimension d.

(a) Prove a generalization error bound of the following form: For any δ > 0, with proba-
bility at least 1− δ over sample of size m, for all h ∈ H:

R(h) ≤ R̂(h) + ε(m, δ, d(h))

where:
d(h) = min d s.t. h ∈ Hd

and for any δ and d, ε(m, δ, h)
m→∞→ 0. Be sure to specific ε(m, δ, h) explicitly.

(b) Write down a learning rule SRMH that guarantees that for any ε, δ and h ∈ H, there
exist m(h) such that for any source distribution, with probability at least 1 − δ over a
sample of size m, R(SRMH(S)) < R(h) + ε.

Challenge Problems :

1. VC dimension of decision trees :

(a) Prove a learning guarantee for decision trees of size k (i.e. having at most k leaves)
over an input space of n binary variables, where each decision is over a single binary
variable.

(b) For the input space X = Rd, provide an upper bound (that is as tight as possible) on
the VC dimension of the class of stumps

H = {x 7→ sign (axi − b) : i ∈ [d], b ∈ R, a ∈ ±1}

(c) For the input space X = Rd, provide an upper bound (that is as tight as possible) on
the VC dimension of the class of decision trees of size k where each decision is based
on a stump fromH.

2. Refine PAC-Bayes

(a) Prove the refined PAC-Bayes bound: for any δ > 0 and prior p, with probability at
least 1 − δ over the sample of size m, for any sample dependent distribution q over
hypothesis,

KL
(
R(q)||R̂(q)

)
≤

KL (q‖p) + log 2m+ log 1
δ

m− 1

where recall that R(q) = Eh∼q [R(h)] and R̂(q) = Eh∼q
[
R̂(h)

]
are the risk and empir-

ical risk of the randomized predictor defined by q.
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(b) Show that close to R̂(q) = 0 the above bound behaves as 1/m and far away from
R̂(q) = 0 it behaves as 1/

√
m, matching our realizable and non-realizable bounds.

Research Problems :

1. Show how a VC-based learning guarantee can be obtained from the PAC-Bayes bound. That
is, for any class with VC dimension d, describe a prior p and a learning rule that returns a
distribution (randomized hypothesis) q, for which the PAC-Bayes bound guarantees R(q) ≤
infh∈HR(h) + Õ

(√
d/ε
)

.

2. Show that any hypothesis class with VC-dimension d has a compression scheme of size d.
There is a 600 dollar prize on this problem.
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