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“Weak” vs “Strong” Learning
• Recall definition of (realizable) PAC learning of ℋ using rule 𝐴(⋅):

For any 𝒟 s.t. inf
ℎ∈ℋ

𝐿𝒟 ℎ = 0, and any 𝜖, 𝛿 > 0, using 𝑚(𝜖, 𝛿) sample, 

∀
𝑆∼𝒟𝑚(𝜖,𝛿)
𝛿 𝐿𝒟 𝐴 𝑆 < 𝜖

• 𝐴(⋅) is a weak learner for ℋ if:

There exists 𝜖 <  1 2, 𝛿 < 1, 𝑚, s.t. for any 𝒟 with inf
ℎ∈ℋ

𝐿𝒟 ℎ = 0,

∀𝑆∼𝒟𝑚
𝛿 𝐿𝒟 𝐴 𝑆 < 𝜖

(e.g. 𝜖 = 0.49 and 1 − 𝛿 = 0.01)

• If ℋ is weakly learnable, is it also strongly learnable?
• Yes: ℋ is weakly learnable  VCdim(ℋ)<∞ℋ is (strongly) learnable

• If we have access to an (efficient) weak learner 𝐴(⋅), can we use it to 
build an (efficient) strong learner?



Example: Weak Learning with a Weak Class

• 𝒳 = ℝ2, ℋ = axis aligned rectangles

• Decision stumps: ℬ = 𝑠 ⋅ 𝑥 𝑖 < 𝜃 | 𝑖 = 1,2, 𝑠 = ±1, 𝜃 ∈ ℝ

• Claim: For any 𝒟, if ∃ℎ∎∈ℋ𝐿𝒟 ℎ∎ = 0  ∃ℎ∈ℬ𝐿𝒟 ℎ ≤
3

7
< 0.429

• Since VCdim(ℬ)=3, with 𝑚 = 𝑚𝑉𝐶 𝐷 = 3, 𝜖 = 0.001, 𝛿 = 0.9 :

w.p. ≥ 0.1 over 𝑆 ∼ 𝒟𝑚:    𝐿𝒟 𝐸𝑅𝑀ℬ 𝑆 < 0.43

• Conclusion:
𝐸𝑅𝑀ℬ(⋅) is a weak learner for ℋ with 𝜖 = 0.43 < 0.5 and 𝛿 = 0.9 < 1

+ -

-

-

-

+ -



The Boosting Problem

• Boosting the Confidence:
If the learning algorithm works only with some very 
small fixed probability 1 − 𝛿0 (e.g. 1 − 𝛿0 = 0.01), 
can we construct a new algorithm that works with 
arbitrarily high probability 1 − 𝛿 (for any 𝛿 > 0) ?

• Boosting the error:
If the learning algorithm only returns a predictor 
that is guaranteed to be slightly better then chance, 

i.e. has error 𝜖0 =
1

2
− 𝛾 <

1

2
(for some fixed 𝛾 > 0), 

can we construct a new algorithm that achieves 
arbitrarily low error 𝜖? 



Boosting the Error

If a learning algorithm only returns a predictor that is guaranteed to be 

slightly better then chance, i.e. has error 𝜖0 =
1

2
− 𝛾 <

1

2
(for some 𝛾 > 0), 

can we construct a new algorithm that achieves arbitrarily low error 𝜖? 

• Posed (as a theoretical question) by Valiant and Kearns, Harvard 1988

• Solved by MIT student Robert Schapire, 1990

• AdaBoost Algorithm by Schapire and Yoav Fruend, AT&T 1995

Leslie Valiant Michael Kearns Rob Schapire Yoav Fruend



AdaBoost
• Input: Training set 𝑆 = { 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , 𝑥𝑚, 𝑦𝑚 }

• Weak Learner 𝐴, which will be applied to distributions 𝐷 over S
• If thinking of 𝐴(𝑆′) as accepting a sample 𝑆′:

each 𝑥, 𝑦 ∈ 𝑆′ is set to (𝑥𝑖 , 𝑦𝑖) w.p. 𝐷𝑖 (independently and with replacements)

• Can often think of 𝐴 as operating on a weighted sample, with weights 𝐷𝑖

• Output: hypothesis ℎ

Initialize 𝐷 1 =
1

𝑚
,

1

𝑚
, … ,

1

𝑚

For t=1, …, T:

ℎ𝑡 = 𝐴(𝐷 𝑡 )

𝜖𝑡 = 𝐿𝐷 𝑡 ℎ𝑡 =
1

𝑚
 𝑖 𝐷𝑖

𝑡
⋅ ℎ𝑡 𝑥𝑖 ≠ 𝑦𝑖

𝛼𝑡 =
1

2
log

1

𝜖𝑡
− 1

𝐷𝑖
𝑡+1

=
𝐷𝑖

𝑡
exp −𝛼𝑡𝑦𝑖ℎ𝑡 𝑥𝑖

 𝑗 𝐷𝑖
𝑡

exp −𝛼𝑡𝑦𝑗ℎ𝑡 𝑥𝑗

Output: ℎ𝑇 𝑥 = 𝑠𝑖𝑔𝑛  𝑡=1
𝑇 𝛼𝑡ℎ𝑡 𝑥



AdaBoost: Weight Update

𝐷𝑖
𝑡+1

=
𝐷𝑖

𝑡
exp −𝛼𝑡𝑦𝑖ℎ𝑡 𝑥𝑖

𝑍𝑡
=

1

𝑍𝑡
⋅

𝐷𝑖
𝑡

⋅
1 − 𝜖𝑡

𝜖𝑡
if ℎ𝑡 𝑥𝑖 ≠ 𝑦𝑖

𝐷𝑖
𝑡

⋅
𝜖𝑡

1 − 𝜖𝑡
if ℎ𝑡 𝑥𝑖 = 𝑦𝑖

• 𝑍𝑡 =  ℎ𝑡 𝑥𝑖 ≠𝑦𝑖
𝐷𝑖

𝑡
⋅

1−𝜖𝑡

𝜖𝑡
+  ℎ𝑡 𝑥𝑖 =𝑦𝑖

𝐷𝑖
𝑡

⋅
𝜖𝑡

1−𝜖𝑡

= 𝜖𝑡
1−𝜖𝑡

𝜖𝑡
+ 1 − 𝜖𝑡 ⋅

1−𝜖𝑡

𝜖𝑡
= 𝟐 𝝐𝒕 𝟏 − 𝝐𝒕



AdaBoost: Weight Update

𝐷𝑖
𝑡+1

=
𝐷𝑖

𝑡
exp −𝛼𝑡𝑦𝑖ℎ𝑡 𝑥𝑖

𝑍𝑡
=

1

𝑍𝑡
⋅

𝐷𝑖
𝑡

⋅
1 − 𝜖𝑡

𝜖𝑡
if ℎ𝑡 𝑥𝑖 ≠ 𝑦𝑖

𝐷𝑖
𝑡

⋅
𝜖𝑡

1 − 𝜖𝑡
if ℎ𝑡 𝑥𝑖 = 𝑦𝑖

• 𝑍𝑡 =  ℎ𝑡 𝑥𝑖 ≠𝑦𝑖
𝐷𝑖

𝑡
⋅

1−𝜖𝑡

𝜖𝑡
+  ℎ𝑡 𝑥𝑖 =𝑦𝑖

𝐷𝑖
𝑡

⋅
𝜖𝑡

1−𝜖𝑡

= 𝜖𝑡
1−𝜖𝑡

𝜖𝑡
+ 1 − 𝜖𝑡 ⋅

1−𝜖𝑡

𝜖𝑡
= 𝟐 𝝐𝒕 𝟏 − 𝝐𝒕

• 𝑳𝑫 𝒕+𝟏 𝒉𝒕 =  ℎ𝑡 𝑥𝑖 ≠𝑦𝑖
𝐷𝑖

𝑡+1
=  ℎ𝑡 𝑥𝑖 ≠𝑦𝑖

𝐷𝑖
𝑡

⋅
1

2𝜖𝑡
= 𝜖𝑡 ⋅

1

2𝜖𝑡
=

𝟏

𝟐

=

𝐷𝑖
𝑡

2𝜖𝑡
if ℎ𝑡 𝑥𝑖 ≠ 𝑦𝑖

𝐷𝑖
𝑡

2 1 − 𝜖𝑡
if ℎ𝑡 𝑥𝑖 = 𝑦𝑖



AdaBoost as Learning a Linear Classifier
• Recall: ℎ𝑇 𝑥 = 𝑠𝑖𝑔𝑛  𝑡=1

𝑇 𝛼𝑡ℎ𝑡 𝑥

• Let ℬ = 𝑎𝑙𝑙 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 𝑜𝑢𝑡𝑝𝑢𝑡𝑒𝑑 𝑏𝑦 𝐴

• “Base Class”, e.g. decision stumps

ℎ𝑇 ∈ ℎ𝑤 𝑥 = 𝑠𝑖𝑔𝑛 𝑤, 𝜙 𝑥 | 𝑤 ∈ ℝℬ

𝐿𝑆
exp

𝑤 =
1

𝑚
 ℓexp(ℎ𝑤 𝑥𝑖 ; 𝑦𝑖) ℓexp 𝑧, 𝑦 = 𝑒−𝑦𝑧

• Each step of AdaBoost: Coordinate descent on 𝐿𝑆
exp

(𝑤)

• Choose coordinate ℎ of 𝜙(𝑥) s.t. 
𝜕

𝜕𝑤 ℎ
𝐿𝑆

exp
w is high

• Update 𝑤 ℎ = arg min 𝐿𝑆
exp

(𝑤) s.t. ∀ℎ′≠ℎ𝑤[ℎ′] is unchanged

Class of halfspaces ℒ ℬ

𝜙 𝑥 ℎ = ℎ(𝑥)

𝑤 ℎ =  

ℎ𝑡=ℎ

𝛼𝑡



Coordinate Descent on 𝐿𝑆
exp

𝑤

•
𝝏

𝝏𝒘 𝒉
𝑳𝑺

𝒆𝒙𝒑
𝒘 =

𝜕

𝜕𝑤 ℎ

1

𝑚
 𝑒−𝑦𝑖ℎ𝑤 𝑥𝑖

=
1

𝑚
 𝑒−𝑦𝑖ℎ𝑤 𝑥𝑖 −𝑦𝑖

𝜕ℎ𝑤 𝑥𝑖

𝜕𝑤 ℎ
=

1

𝑚
 𝑒−𝑦𝑖ℎ𝑤 𝑥𝑖 −𝑦𝑖ℎ(𝑥𝑖)

=
1

𝑚
 𝑒−𝑦𝑖  𝑡=1

𝑇−1 𝛼𝑡ℎ𝑡 𝑥𝑖 −𝑦𝑖ℎ 𝑥𝑖 ∝ 𝟏 − 𝟐𝑳𝑫 𝑻 𝒉

• Minimize 𝐿𝐷 𝑇 ℎ Maximize 
𝜕

𝜕𝑤 ℎ
𝐿𝑆

exp
𝑤

• Updating 𝑤[ℎ]:  set 𝑤 𝑡 ℎ𝑡 = 𝑤 𝑡−1 ℎ𝑡 + 𝛼

𝛼 = argmin 𝐿𝑆
exp

𝑤 𝑡

 0 =
𝜕

𝜕𝛼
𝐿𝑆

exp
𝑤 𝑡 =

𝜕

𝜕𝑤 ℎ𝑡
𝐿𝑆

exp
𝑤 𝑡 ∝ 1 − 2𝐿𝐷 𝑡+1 ℎ𝑡

 choose 𝛼 s.t. 𝐿𝐷 𝑡+1 ℎ𝑡 =
1

2

 𝑡=1
𝑇−1 𝑒−𝑦𝑖𝛼𝑡ℎ𝑡 𝑥𝑖 ∝ 𝐷𝑖

𝑇



AdaBoost: Minimizing 𝐿𝑆(ℎ)

• Theorem: If ∀𝑡 𝜖𝑡 ≤
1

2
− 𝛾, then 𝐿𝑆

01 ℎ𝑇 ≤ 𝐿𝑆
exp

ℎ𝑇 ≤ 𝑒−2𝛾2𝑇

Proof: 𝐿𝑆
exp

ℎ𝑇 =
1

𝑚
 𝑖 𝑒

−𝑦𝑖  𝑡=1
𝑇 𝛼𝑡ℎ𝑡 𝑥𝑖 =

1

𝑚
 𝑖 𝐷𝑖

𝑇+1
𝑚  𝑡=1

𝑇 𝑧𝑡 =  𝑡=1
𝑇 𝑧𝑡

=  𝑡−1
𝑇 2 𝜖𝑡 1 − 𝜖𝑡 ≤ 1 − 2𝛾 1 + 2𝛾

 𝑇
2 = 1 − 4𝛾2  𝑇

2 ≤ 𝑒−2𝛾2𝑇

• If 𝐴(⋅) is a weak learner with 𝛿0, 𝜖0 =
1

2
− 𝛾, and if 𝐿𝒟 ℎ = 0:

 𝐿𝑆 ℎ = 0 L𝐷 𝑡 ℎ = 0 w.p. 1 − 𝛿, 𝐿𝐷 𝑡 ℎ ≤
1

2
− 𝛾

 w.p. 1 − 𝛿𝑇,  𝐿𝑆 ℎ𝑠 ≤ 𝑒−2𝛾2𝑇

• To get any 𝜖 > 0, run AdaBoost for 𝑇 =
log

1

𝜖

2𝛾2 rounds

• Setting 𝜖 =
1

2𝑚
, after 𝑇 =

log 2𝑚

2𝛾2 rounds: 𝐿𝑆 ℎ𝑠 = 0 !

• What about 𝐿𝒟 ℎ ?

𝐷𝑖
𝑇+1 =

1

𝑚
 𝑡=1

𝑇 𝑒−𝑦𝑖𝛼𝑡ℎ𝑡 𝑥𝑖

𝑧𝑡

 𝑖 𝐷𝑖
𝑇+1 = 1



Sparse Linear Classifiers

• Recall: ℎ𝑠 𝑥 = 𝑠𝑖𝑔𝑛  𝑡=1
𝑇 𝑤𝑡ℎ𝑡 𝑥

• Let ℬ = 𝑎𝑙𝑙 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 𝑜𝑢𝑡𝑝𝑢𝑡𝑒𝑑 𝑏𝑦 𝐴

• “Base Class”, e.g. decision stumps

ℎ𝑇 ∈ ℎ𝑤 𝑥 = 𝑠𝑖𝑔𝑛 𝑤, 𝜙 𝑥 | 𝑤 ∈ ℝℬ , 𝑤 0 ≤ 𝑇

• We already saw: VCdim(ℒ ℬ, 𝑇 ) ≤ 𝑂 𝑇 log ℬ

• Even if ℬ is infinite (e.g. in the case of decision stumps):
VCdim ℒ ℬ, 𝑇 ≤  𝑂 𝑇 ⋅ VCdim ℬ

• Sample complexity: 𝑚 =  𝑂
log 𝑚

𝛾2 ⋅
VCdim ℬ

𝜖
=  𝑂

VCdim ℬ

𝛾2𝜖

• But if weak learner is improper and VCdim ℬ = ∞?

Class of sparse halfspaces ℒ ℬ, 𝑇



Compression Bounds

• Focus on realizable case, and learning rules s.t. 𝐿𝑆 𝐴 𝑆 = 0

• Suppose 𝐴(𝑆) only dependent on first 𝑟 < 𝑚 examples, 
𝐴 𝑥1, 𝑦1 , … , 𝑥𝑚, 𝑦𝑚 =  𝐴 𝑥1, 𝑦1 , … , 𝑥𝑟 , 𝑦𝑟 :

𝐿𝑆 𝑟+1:𝑚
 𝐴 𝑆[1: 𝑟] = 0 ⇒ ∀𝑆∼𝒟𝑚

𝛿 𝐿𝒟 𝐴 𝑆 ≤
log  1 𝛿

𝑚 − 𝑟

• In fact, same holds for any predetermined 𝑖1, … , 𝑖𝑟, if 𝐴(𝑆) only depends 
on 𝑥𝑖1𝑦𝑖1 , … , 𝑥𝑖𝑟 , 𝑦𝑖𝑟

• Now consider 𝐴 𝑆 =  𝐴 𝑆𝐼 𝑆 with 𝐼: 𝒳 × 𝒴 𝑚 → 1. . 𝑚 𝑟.  That is, can 
represent 𝐴(𝑆) using 𝑟 training points, but need to choose which ones.

• Taking a union bound over 𝑚𝑟 choices of indices:

𝐿𝒟 𝐴 𝑆 ≤
𝑟 log 𝑚 + log  1 𝛿

𝑚 − 𝑟



Manfred
Warmuth

Compression Schemes
• 𝐴 𝑆 is “𝑟-compressing” if 𝐴 𝑆 =  𝐴 𝑆𝐼 𝑆 for some 𝐼: 𝒳 × 𝒴 𝑚 → 1. . 𝑚 𝑟

• Axis Aligned Rectangles

• 𝐼(𝑆) = { leftmost positive, rightmost positive, top positive, bottom positive}

• 𝑟 = 4

• Halfspaces in ℝ𝑑

• A bit trickier, but can be done with 𝑟 = 𝑑 + 1 (for non-homogenous)

• 𝐴 ⋅ is r-compressing and 𝐿𝑆 𝐴 𝑆 = 0 for 𝑚 > 2𝑟, ∀𝑆∼𝒟𝑚
𝛿

𝐿𝒟 𝐴 𝑆 ≤ 2
𝑟 log𝑚 + log  1 𝛿

𝑚

• By VC lower bound: 𝐹𝐼𝑁𝐷𝐶𝑂𝑁𝑆ℋ is 𝑟-compressing  𝑉𝐶𝑑𝑖𝑚 ℋ ≤ 𝑂(𝑟)

• In fact: 𝑉𝐶𝑑𝑖𝑚 ℋ ≤ 𝑟

• Conjecture: every ℋ has a 𝑉𝐶𝑑𝑖𝑚 ℋ -compressing  𝐹𝐼𝑁𝐷𝐶𝑂𝑁𝑆ℋ



Back to Boosting…

• 𝐴(𝑆) is an (𝜖0 =
1

2
− 𝛾, 𝛿0) weak learner that uses 𝑚0 samples.

• Boost the confidence to get a (
1

2
−

𝛾

2
, 𝛿′) learner that uses 

𝑚1 𝛿′ = 𝑂 𝑚0 ⋅
log  1 𝛿′

log  1 𝛿0

+
log  1 𝛿′−log log  1 𝛿0

𝛾2 samples

• Run AdaBoost on 𝑚 samples for 𝑇 =
2 log 𝑚

𝛾2 iterations, each time 

using 𝑚1
𝛿

𝑇
samples for the weak learner to get 𝐿𝑆 ℎ𝑇 = 0

ℎ𝑇 =  

𝑡=1

𝑇

𝛼𝑡ℎ𝑡

• (ℎ1, … , ℎ𝑇) has a compression scheme with 𝑟 = 𝑇 ⋅ 𝑚1 points

• What about 𝛼𝑡???

ℎ𝑡 = 𝐴(𝑠𝑎𝑚𝑝𝑙𝑒 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑚1)



Partial Compression

• Instead of 𝑟 training points specifying 𝐴(𝑆) exactly, suppose they only 
specify a limited set of hypothesis in which 𝐴(𝑆) lies. 

• 𝐼: 𝒳 × 𝒴 𝑚 → 1. . 𝑚 𝑟

• 𝐹: 𝒳 × 𝒴 𝑟 → hypothesis classes, each with VCdim 𝐹 𝑆 ≤ 𝐷

• 𝐴 𝑆 ∈ 𝐹 𝐼 𝑆

• Theorem: If 𝐴(𝑆) has a compression scheme as above and 𝐿𝑆 𝐴 𝑆 = 0, 

then for 𝑚 ≥ 2𝑟 + 𝐷, ∀𝑆∼𝒟𝑚
𝛿

𝐿𝒟 𝐴 𝑆 ≤ 𝑂
𝐷 + 𝑟 log 𝑚 + log  2 𝛿

𝑚
Proof outline: take union bound over choice of indices 𝐼(𝑆), of the VC-based uniform 
convergence bounds, each time using just the points outside 𝐼(𝑆).



Back to Boosting…
• 𝐴(𝑆) is an (𝜖0 =

1

2
− 𝛾, 𝛿0) weak learner that uses 𝑚0 samples.

• Boost the confidence to get a (
1

2
−

𝛾

2
, 𝛿′) learner that uses

𝑚1 𝛿′ = 𝑂 𝑚0 ⋅
log  1 𝛿′

log  1 𝛿0

+
log  1 𝛿′−log log  1 𝛿0

𝛾2 samples

• Run AdaBoost on 𝑚 samples for 𝑇 =
2 log 𝑚

𝛾2 iterations, each time 

using 𝑚1
𝛿

𝑇
samples for the weak learner to get 𝐿𝑆 ℎ𝑇 = 0

ℎ𝑇 =  

𝑡=1

𝑇

𝛼𝑡ℎ𝑡 ∈ ℒ ℎ1, … , ℎ𝑇 = 𝐹(𝐼 𝑆 )

• Conclusion:

𝐿𝒟 ℎ𝑇 ≤ 𝑂
𝑇 + 𝑇𝑚1 log 𝑚 + log

1
𝛿

𝑚
= 𝑂

𝑚0 ⋅ log2 𝑚 ⋅ log
1
𝛿

𝑚

𝑚 𝜖, 𝛿 = 𝑂
𝑚0 log2  1 𝜖 log  1 𝛿

𝜖
⋅

1

𝛾2 log
1

𝛿0

For fixed 𝜖0, 𝛿0



AdaBoost In Practice

• Complexity control is in terms of sparsity (#iterations) 𝑇

• Realizable case (MDL): use first 𝑇 s.t. 𝐿𝑆 ℎ𝑇 = 0

• More realistically (SRM): Use validation/cross-validation to select 𝑇

• Even after 𝐿𝑆 ℎ𝑇 = 0, AdaBoost keeps improving the ℓ1 margin

Training 
error

Test 
error

T=5

T=1000

T=100



Interpretations of AdaBoost
• “Boosting” weak learning to get arbitrary small error

• Theory is for realizable case
• Shows efficient weak and strong learning equivalent

• Ensemble method for combining many simpler predictors
• E.g. combining decision stumps or decision trees
• Other ensemble methods: bagging, averaging, gating networks

• Method for learning using sparse linear predictors with 
large (infinite?) dimensional feature space
• Sparsity controls complexity
• Number of iterations controls sparsity

• Coordinate-wise optimization of 𝐿𝑆
exp

𝑤
• We’ll get back to this when we talk about real-valued loss

• Learning (in high dimensions) with large ℓ1 margin
• Learning guarantee in terms of ℓ1 margin
• We’ll get back to this when we talk about ℓ1 margin



Just one more thing…



Back to Hardness of Agnostic Learning

ℋ = {𝑥 ↦ 𝑤, 𝑥 > 0 | 𝑤 ∈ ℝ𝑛}
ℋ𝑘 𝑛 = ℎ1 ∧ ℎ2 ∧ ⋯ ∧ ℎ𝑘 | ℎ𝑖 ∈ ℋ

• Lemma: ∃ℎ∈ℋ𝑘
𝐿𝒟 ℎ = 0 ⇒ ∃ℎ∈ℋ𝐿𝒟 ℎ <

1

2
−

1

2𝑘2

ℋ is efficiently agnostically learnable
⇓

Efficient weak learner for ℋ𝑘 𝑛 with 𝛾 =
1

2𝑘2

⇓

ℋ𝑘 𝑛 is efficiently learnable (in realizable case) for, e.g. 𝑘 𝑛 = 𝑛

• Conclusion: assuming  𝑂 𝑛1.5 − 𝑢𝑆𝑉𝑃 ∉ 𝑅𝑃, halfspaces are not 
efficiently agnostically learnable (even improperly)


