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“Weak” vs “Strong” Learning

* Recall definition of (realizable) PAC learning of H using rule A(-):
For any D s.t. hléljf[ Lp(h) = 0,and any €,6 > 0, using m(e,8) sample,
vg~2)m(€'8) LD (A(S)) < E

* A(+) is a weak learner for H if:

There exists € < 1/,, 6 < 1, m, s.t. for any D with hlg}f[ Lp(h) =0,
Vo _pm Lp(A(S)) <e

(e.g.€ =0.49and1 -6 = 0.01)

* If H is weakly learnable, is it also strongly learnable?
* Yes: H is weakly learnable = VCdim(H')<co =» H is (strongly) learnable

* If we have access to an (efficient) weak learner A(-), can we use it to
build an (efficient) strong learner?



Example: Weak Learning with a Weak Class

X = R?, H = axis aligned rectangles

+ -

Decision stumps: B = { [[S cx|i] < 9]] |i=12, s=%1, 6 € [R}
Claim: Forany D, if 3, _csLp(hg) =0 = Jpeplp(h) < % < 0.429
Since VCdim(B)=3, withm = my (D = 3,¢ = 0.001,6 = 0.9):

w.p. > 0.1 over S ~D™: Ly(ERM3(S)) < 0.43

Conclusion:
ERMz(-) is a weak learner for H withe =043 < 0.5and6 =09 <1



The Boosting Problem

* Boosting the Confidence:
If the learning algorithm works only with some very
small fixed probability 1 — §, (e.g. 1 — 6o = 0.01),
can we construct a new algorithm that works with
arbitrarily high probability 1 — 6 (forany 6 > 0) ?

* Boosting the error:
If the learning algorithm only returns a predictor

that is guaranteed to be slightly better then chance,

l.e. has error €y = % -y < % (for some fixed y > 0),

can we construct a new algorithm that achieves
arbitrarily low error €?



Boosting the Error

If a learning algorithm only returns a predictor that is guaranteed to be
: : 1 1
slightly better then chance, i.e. has error ¢y = STV <3 (forsomey > 0),

can we construct a new algorithm that achieves arbitrarily low error €°?

* Posed (as a theoretical question) by Valiant and Kearns, Harvard 1988

* Solved by MIT student Robert Schapire, 1990
e AdaBoost Algorithm by Schapire and Yoav Fruend, AT&T 1995




AdaBoost

* Input: Training set S = {(xy, 1), (X2, ¥2), oo, (X, Vi) }

* Weak Learner A, which will be applied to distributions D over S

* If thinking of A(S") as accepting a sample S’
each (x,y) € S"is set to (x;,y;) w.p. D; (independently and with replacements)

* Can often think of A as operating on a weighted sample, with weights D;

e QOutput: hypothesis h

Initialize DM = (i,l, ...,l)
m m m
Fort=1, ..., T:
he = A(DD)
_ _ 1 (t)
€t = LD(t) (ht) — ;Zl Di ) [[ht(xl) + yl]]
1 1
ay = Elog (e_t — 1)
(t+1) _ DY exp(-aryihe(x)
b; a )
Y D; exp(—atyjht(xj))
Output: hr(x) = sign(Ti=; ash(x))




Di(t+ 1) _

AdaBoost: Weight Update

)
— E ]
. DY | ifhe(x) # ¥,
D;"” exp(—acyihe(x;)) 1 t
Z =7
t €t .
Dl-(t) . Tet if hy(x;) = y;
\
() ,1 € ), [_€
¢ Zt — th(xl)iyLD t + th(xl) yLD 1—t
/1 “r(1-¢,)- =2/€,(1—¢€)



AdaBoost: Weight Update

( D.(t)
L lfh Xi ¥+ i
pE+1D) _Di(t) eXp(_atYiht(xi)) _ 2€¢ elxi) # ¥
T Z DY
‘ —L—— ifh(x) = ;
\2(1_Et)

, © /1 2 ® . [«
Zt - th(xl)ile + th(xl) yLD 1—€

= /1 “r(1-€)- =21 —€)
(t+1) _ 0, 1 _ 1 _1
’ LD(H'l) (ht) o th(x )¢J’LD th(xl)ile 2_et — € Z_Et 2



AdaBoost as Learning a Linear Classifier

e Recall: hp(x) = sign(XT_, a h, (%))
* Let B = { all hypothesis outputed by A }
* “Base Class”, e.g. decision stumps

hr €{h,(x) = Sign(gw,gb(x))) | w e RB } |
Class of halfspaces L(B)

LeP (W) = — %P (hy, (x,); y:) % (2,y) = e V*

* Each step of AdaBoost: Coordinate descent on LEXP (w)

d exp .
aw[h]LS (w) is high

* Update w|h] = arg min LE.Xp(W) s.t. V,r.,w[h'] is unchanged

\-.
Y

* Choose coordinate h of ¢p(x) s.t.

,
N
\




Coordinate Descent on LEXp (w)

0 exp __ 0 1, —yihy(x)
awin] Ls (W)_aw[h]mze

1 —V: ; dhy (x;) -
= 3 Ze D (=3 GalE) = S B0 (—yhx)

_ %Zle—% iy “tht(xi)(—y-h(xl-)) x1—2L,m(h)
T 1e ylatht(xl) o D(T)

* Minimize L, (r)(h) =» Maximize = eXp( )

« Updating w[h]: setw®[h,] = wlEV[h,] + «a
a = argmin Ly T (w®)

>0 =2 12P(w) =

%P
aw[ht Ls (W(t)) <1~ ZLD(t"'l) (hy)

=> choose a s.t. L+ (he) = E



AdaBoost: Minimizing Ls(h)

* Theorem: If vt €r < 1 — v, then Lgl(ﬁT) < LEXP(ET) < e—ZyZT

—yiathe(x;)
DT+1 8 Zl D;T+1

Proof: L p(hT) ——Z e yth 1“tht(xl D(T+1) . 1Zt 1721 2

=T, (2/e(T =€) < (1 -2 + 2y)) —ay?)e < 2T

If A(:) is a weak learner with &y, €y = % —vy,andif Lp(h) = 0:
> Ls() = 0D Ly(h) = 0D wp. 1 -8, Lyw(h) <5 —v
> w.p.1- 6T, Le(h,) < e 2T

= rounds
2y

_ 1 log(2m) _ _
Setting € = —, after T = ~ rounds: Lg(h,) = 0!

To getany € > 0, run AdaBoost for T =

What about Ly (h) ?



Sparse Linear Classifiers

Recall: hg(x) = sign(XI_; wih, (%))
Let B = { all hypothesis outputed by A }
* “Base Class”, e.g. decision stumps

hr E\{ h,, (x) = sign({w, d(x))) | w € RE, |lw|l, < T}
Class of sparse halfspaces L(B, T)

We already saw: VCdim(L(B,T)) < O(T log|B|)

Even if B is infinite (e.g. in the case of decision stumps):
VCdim(L(B,T)) < O(T - VCdim(B))

. _ A (loglm) VCdim(B)) _ = (VCdim(B)
Sample complexity: m = 0( v . ) = 0( e

But if weak learner is improper and VCdim(B) = oo?

)



Compression Bounds

Focus on realizable case, and learning rules s.t. Lg(A(S)) = 0

Suppose A(S) only dependegt on first r < m examples,
A((x1»3’1); s (X, ym)) = A((x1»y1); Ty (er’r))i .
log (1/5)

~ i _ 6
Lspresm) (ASILTD) =0 = V8 _pm Lp(A(S)) < ——
In fact, same holds for any predetermined i, ..., i,-, if A(S) only depends
on (xilyil)’ " (xir’yir)

Now consider A(S) = /T(S,(S)) with I: (X X Y)™ - {1..m}". That s, can
represent A(S) using r training points, but need to choose which ones.

Taking a union bound over m" choices of indices:
rlogm + log (1/5)
m-—r

Lp(A(S)) <



Compression Schemes
A(S) is “r-compressing” if A(S) = /I(S,(S)) forsome I: (X X Y)™ - {1..m}"

Axis Aligned Rectangles
* I(S) = {leftmost positive, rightmost positive, top positive, bottom positive}
cr=4

Halfspaces in R%
* A bit trickier, but can be done with r = d + 1 (for non-homogenous)

A(-) is r-compressing and LS(A(S)) = 0 =» form > 2r, Vs pm

rlogm + log( /5)

m
By VC lower bound: FINDCONS;; is r-compressing = VCdim(H) < 0(r)

In fact: VCdim(H) < r
Conjecture: every H has a VCdim(H )-compressing FINDCON S,

Lp(A(S)) <2




Back to Boosting...

1

A(S)isan (e = >~V 0p) weak learner that uses my samples.

. 1
Boost the confidence to get a (E — %, d") learner that uses

logt/, logl/.,—loglogl/s
mq(6') =0 ' 1/(S + /o 2 L
log /60 %

) samples

21 . . .
Run AdaBoost on m samples for T = ;‘;;m iterations, each time
: 6 X
using m4 (;) samples for the weak learner to get LS(hT) =0

T

agh;
t=1
h, = A(sample of size m;)

(h4, ..., ht) has a compression scheme with r = T - my points
What about a;???

ET:



Partial Compression

* Instead of r training points specifying A(S) exactly, suppose they only
specify a limited set of hypothesis in which A(S) lies.

e (X xY)™ > {1..m}"
o F: (X X UY)" - hypothesis classes, each with VCdim(F(S)) <D
« A(S) e F(I1(S))

* Theorem: If A(S) has a compression scheme as above and LS(A(S)) =0,

then form = 2r + D, V5~Dm
(D + r)logm + log 2
Lp(A(S)) < 0 ( — /s

Proof outline: take union bound over choice of indices I(S), of the VC-based uniform
convergence bounds, each time using just the points outside I(S).




Back to Boosting...

A(S)isan (gg = % — v, 0p) weak learner tha

t uses my samples.

. 1
Boost the confidence to get a (E — g, d") learner that uses

logl logl/ ,—loglogl/s
m,(6) =0 ' 1/6, + L 2 L
log /50 14
logm
y2

Run AdaBoost on m samples for T = &

) samples

iterations, each time

using my o samples for the weak learner to get L ET =0
T S

T

ET = z ahy € L({hy, ..., h7})
t=1 =
Conclusion: ,
_ (T +Tmy)logm + logg
LD(hT) S 0 m —

e

= F(I(5))

or fixed €g, &y

myg - log? m - log =

2> m(e,5) =0 (m" log®'/clog'/s  _1 )

1
€ y* logz-

J



AdaBoost In Practice

* Complexity control is in terms of sparsity (#iterations) T

Realizable case (MDL): use first T s.t. LS(ET) =0

* More realistically (SRM): Use validation/cross-validation to select T

Training
error T T R M N S
marein
# rounds -

* Even after LS(ET) = (0, AdaBoost keeps improving the £; margin



Interpretations of AdaBoost

* “Boosting” weak learning to get arbitrary small error
* Theory is for realizable case
* Shows efficient weak and strong learning equivalent

* Ensemble method for combining many simpler predictors
e E.g. combining decision stumps or decision trees
* Other ensemble methods: bagging, averaging, gating networks

 Method for learning using sparse linear predictors with
large (infinite?) dimensional feature space

* Sparsity controls complexity
 Number of iterations controls sparsity

* Coordinate-wise optimization of LEXp (w)
 We’'ll get back to this when we talk about real-valued loss
* Learning (in high dimensions) with large £; margin

* Learning guarantee in terms of £1 margin
* We'll get back to this when we talk about £; margin



Just one more thing...



Back to Hardness of Agnostic Learning

H ={x v |[w,x)>0]] |we R"}
Him) ={hi Ahy A-Nhy | h; € H }
1 1

* Lemma: Iy, Lp(h) = 0= Fpeprlp(h) < > T 2R2

H is efficiently agnostically learnable
2

Efficient weak learner for H ;) withy = 2_11<2
U

H ) is efficiently learnable (in realizable case) for, e.g. k(n) = n

e Conclusion: assuming 0(n'®) — uSVP ¢ RP, halfspaces are not
efficiently agnostically learnable (even improperly)



