Computational and Statistical Learning Theory TTIC 31120

Prof. Nati Srebro

Lecture 8: Boosting Compression Schemes

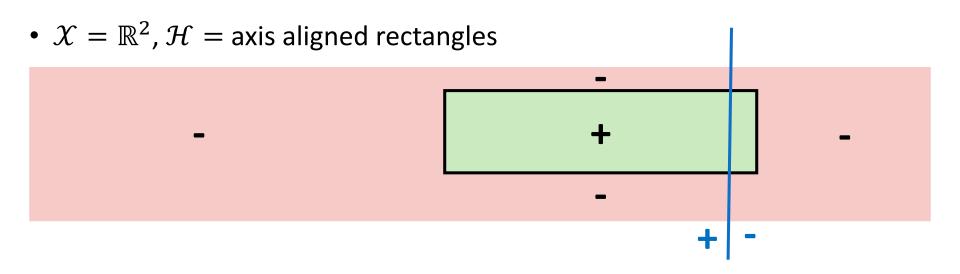
"Weak" vs "Strong" Learning

- Recall definition of (realizable) PAC learning of \mathcal{H} using rule $A(\cdot)$: For any \mathcal{D} s.t. $\inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h) = 0$, and **any** $\epsilon, \delta > 0$, using $m(\epsilon, \delta)$ sample, $\forall_{S \sim \mathcal{D}}^{\delta} m(\epsilon, \delta) \quad L_{\mathcal{D}}(A(S)) < \epsilon$
- $A(\cdot)$ is a **weak learner** for \mathcal{H} if:

There exists $\epsilon < 1/2$, $\delta < 1$, m, s.t. for any \mathcal{D} with $\inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h) = 0$, $\forall_{S \sim \mathcal{D}}^{\delta} L_{\mathcal{D}}(A(S)) < \epsilon$ (e.g. $\epsilon = 0.49$ and $1 - \delta = 0.01$)

- If \mathcal{H} is weakly learnable, is it also strongly learnable?
 - Yes: \mathcal{H} is weakly learnable \rightarrow VCdim $(\mathcal{H}) < \infty \rightarrow \mathcal{H}$ is (strongly) learnable
- If we have access to an (efficient) weak learner A(·), can we use it to build an (efficient) strong learner?

Example: Weak Learning with a Weak Class



- Decision stumps: $\mathcal{B} = \{ [[s \cdot x[i] < \theta]] | i = 1,2, s = \pm 1, \theta \in \mathbb{R} \}$
- Claim: For any \mathcal{D} , if $\exists_{h_{\bullet} \in \mathcal{H}} L_{\mathcal{D}}(h_{\bullet}) = 0 \Rightarrow \exists_{h \in \mathcal{B}} L_{\mathcal{D}}(h) \leq \frac{3}{7} < 0.429$
- Since VCdim(\mathcal{B})=3, with $m = m_{VC}(D = 3, \epsilon = 0.001, \delta = 0.9)$:

w.p.
$$\geq 0.1$$
 over $S \sim \mathcal{D}^m$: $L_{\mathcal{D}}(ERM_{\mathcal{B}}(S)) < 0.43$

• Conclusion:

 $ERM_{\mathcal{B}}(\cdot)$ is a weak learner for \mathcal{H} with $\epsilon = 0.43 < 0.5$ and $\delta = 0.9 < 1$

The Boosting Problem

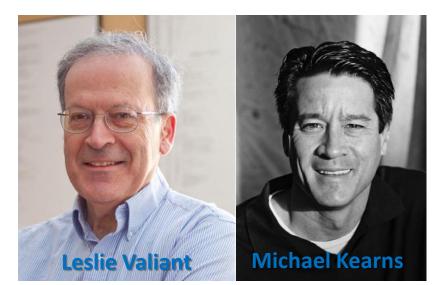
- Boosting the Confidence: If the learning algorithm works only with some very small fixed probability $1 - \delta_0$ (e.g. $1 - \delta_0 = 0.01$), can we construct a new algorithm that works with arbitrarily high probability $1 - \delta$ (for any $\delta > 0$)?
- Boosting the error:

If the learning algorithm only returns a predictor that is guaranteed to be slightly better then chance, i.e. has error $\epsilon_0 = \frac{1}{2} - \gamma < \frac{1}{2}$ (for some fixed $\gamma > 0$), can we construct a new algorithm that achieves arbitrarily low error ϵ ?

Boosting the Error

If a learning algorithm only returns a predictor that is guaranteed to be slightly better then chance, i.e. has error $\epsilon_0 = \frac{1}{2} - \gamma < \frac{1}{2}$ (for some $\gamma > 0$), can we construct a new algorithm that achieves arbitrarily low error ϵ ?

- Posed (as a theoretical question) by Valiant and Kearns, Harvard 1988
- Solved by MIT student Robert Schapire, 1990
- AdaBoost Algorithm by Schapire and Yoav Fruend, AT&T 1995



AdaBoost

- Input: Training set $S = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\}$
- Weak Learner A, which will be applied to distributions D over S
 - If thinking of A(S') as accepting a sample S': each $(x, y) \in S'$ is set to (x_i, y_i) w.p. D_i (independently and with replacements)
 - Can often think of A as operating on a weighted sample, with weights D_i
- Output: hypothesis h

Initialize
$$D^{(1)} = \left(\frac{1}{m}, \frac{1}{m}, \dots, \frac{1}{m}\right)$$

For t=1, ..., T:
 $h_t = A(D^{(t)})$
 $\epsilon_t = L_{D^{(t)}}(h_t) = \frac{1}{m}\sum_i D_i^{(t)} \cdot \left[\left[h_t(x_i) \neq y_i \right] \right]$
 $\alpha_t = \frac{1}{2} \log \left(\frac{1}{\epsilon_t} - 1\right)$
 $D_i^{(t+1)} = \frac{D_i^{(t)} \exp(-\alpha_t y_i h_t(x_i))}{\sum_j D_i^{(t)} \exp(-\alpha_t y_j h_t(x_j))}$
Output: $\overline{h}_T(x) = sign(\sum_{t=1}^T \alpha_t h_t(x))$

AdaBoost: Weight Update

$$D_{i}^{(t+1)} = \frac{D_{i}^{(t)} \exp(-\alpha_{t} y_{i} h_{t}(x_{i}))}{Z_{t}} = \frac{1}{Z_{t}} \cdot \begin{cases} D_{i}^{(t)} \cdot \sqrt{\frac{1-\epsilon_{t}}{\epsilon_{t}}} & \text{if } h_{t}(x_{i}) \neq y_{i} \\ D_{i}^{(t)} \cdot \sqrt{\frac{\epsilon_{t}}{1-\epsilon_{t}}} & \text{if } h_{t}(x_{i}) = y_{i} \end{cases}$$
• $Z_{t} = \sum_{h_{t}(x_{i})\neq y_{i}} D_{i}^{(t)} \cdot \sqrt{\frac{1-\epsilon_{t}}{\epsilon_{t}}} + \sum_{h_{t}(x_{i})=y_{i}} D_{i}^{(t)} \cdot \sqrt{\frac{\epsilon_{t}}{1-\epsilon_{t}}} \\ = \epsilon_{t} \sqrt{\frac{1-\epsilon_{t}}{\epsilon_{t}}} + (1-\epsilon_{t}) \cdot \sqrt{\frac{1-\epsilon_{t}}{\epsilon_{t}}} = 2\sqrt{\epsilon_{t}(1-\epsilon_{t})} \end{cases}$

AdaBoost: Weight Update

$$D_{i}^{(t+1)} = \frac{D_{i}^{(t)} \exp(-\alpha_{t} y_{i} h_{t}(x_{i}))}{Z_{t}} = \begin{cases} \frac{D_{i}^{(t)}}{2\epsilon_{t}} & \text{if } h_{t}(x_{i}) \neq y_{i} \\ \frac{D_{i}^{(t)}}{2(1-\epsilon_{t})} & \text{if } h_{t}(x_{i}) = y_{i} \end{cases}$$

•
$$Z_t = \sum_{h_t(x_i) \neq y_i} D_i^{(t)} \cdot \sqrt{\frac{1-\epsilon_t}{\epsilon_t}} + \sum_{h_t(x_i) = y_i} D_i^{(t)} \cdot \sqrt{\frac{\epsilon_t}{1-\epsilon_t}}$$

= $\epsilon_t \sqrt{\frac{1-\epsilon_t}{\epsilon_t}} + (1-\epsilon_t) \cdot \sqrt{\frac{1-\epsilon_t}{\epsilon_t}} = 2\sqrt{\epsilon_t(1-\epsilon_t)}$

•
$$L_{D^{(t+1)}}(h_t) = \sum_{h_t(x_i) \neq y_i} D_i^{(t+1)} = \sum_{h_t(x_i) \neq y_i} D_i^{(t)} \cdot \frac{1}{2\epsilon_t} = \epsilon_t \cdot \frac{1}{2\epsilon_t} = \frac{1}{2}$$

AdaBoost as Learning a Linear Classifier

• Recall: $\overline{h}_T(x) = sign(\sum_{t=1}^T \alpha_t h_t(x))$

w[h] =

- Let B = { all hypothesis outputed by A }
 - "Base Class", e.g. decision stumps

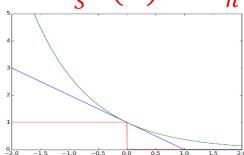
$$\overline{h}_T \in \left\{ h_w(x) = sign(\langle w, \phi(x) \rangle) \mid w \in \mathbb{R}^{\mathcal{B}} \right\}$$

 $\phi(x)[h] = h(x)$

Class of halfspaces $\mathcal{L}(\mathcal{B})$

$$L_S^{\exp}(w) = \frac{1}{m} \sum \ell^{\exp}(h_w(x_i); y_i) \qquad \qquad \ell^{\exp}(z, y) = e^{-yz}$$

- Each step of AdaBoost: Coordinate descent on $L_S^{exp}(w)$
 - Choose coordinate h of $\phi(x)$ s.t. $\frac{\partial}{\partial w[h]} L_S^{\exp}(w)$ is high
 - Update $w[h] = \arg \min L_S^{\exp}(w)$ s.t. $\forall_{h' \neq h} w[h']$ is unchanged



Coordinate Descent on $L_S^{\exp}(w)$

•
$$\frac{\partial}{\partial w[h]} L_{S}^{exp}(w) = \frac{\partial}{\partial w[h]} \frac{1}{m} \sum e^{-y_{i}h_{W}(x_{i})}$$
$$= \frac{1}{m} \sum e^{-y_{i}h_{W}(x_{i})} \left(-y_{i} \frac{\partial h_{W}(x_{i})}{\partial w[h]}\right) = \frac{1}{m} \sum e^{-y_{i}h_{W}(x_{i})} (-y_{i}h(x_{i}))$$
$$= \frac{1}{m} \sum \frac{e^{-y_{i}\sum_{t=1}^{T-1} \alpha_{t}h_{t}(x_{i})}{\prod_{t=1}^{T-1} e^{-y_{i}\alpha_{t}h_{t}(x_{i})}} \left(-y_{i}h(x_{i})\right) \propto 1 - 2L_{D}(T)(h)$$

• Minimize $L_{D^{(T)}}(h) \rightarrow \text{Maximize } \frac{\partial}{\partial w[h]} L_S^{\exp}(w)$

• Updating
$$w[h]$$
: set $w^{(t)}[h_t] = w^{(t-1)}[h_t] + \alpha$
 $\alpha = \arg \min L_S^{\exp}(w^{(t)})$
 $\Rightarrow 0 = \frac{\partial}{\partial \alpha} L_S^{\exp}(w^{(t)}) = \frac{\partial}{\partial w[h_t]} L_S^{\exp}(w^{(t)}) \propto 1 - 2L_{D^{(t+1)}}(h_t)$
 $\Rightarrow \text{choose } \alpha \text{ s.t. } L_{D^{(t+1)}}(h_t) = \frac{1}{2}$

AdaBoost: Minimizing $L_S(h)$

- Theorem: If $\forall_t \epsilon_t \leq \frac{1}{2} \gamma$, then $L_S^{01}(\overline{h}_T) \leq L_S^{\exp}(\overline{h}_T) \leq e^{-2\gamma^2 T}$ $D_i^{T+1} = \frac{1}{m} \prod_{t=1}^T \frac{e^{-y_i \alpha_t h_t(x_i)}}{z_t}$ $\sum_i D_i^{T+1} = 1$ Proof: $L_S^{\exp}(\overline{h}_T) = \frac{1}{m} \sum_i e^{-y_i \sum_{t=1}^T \alpha_t h_t(x_i)} = \frac{1}{m} \sum_i \left(D_i^{(T+1)} m \prod_{t=1}^T z_t \right) = \prod_{t=1}^T z_t$ $= \prod_{t=1}^T \left(2\sqrt{\epsilon_t (1-\epsilon_t)} \right) \leq \left((1-2\gamma)(1+2\gamma) \right)^{T/2} = (1-4\gamma^2)^{T/2} \leq e^{-2\gamma^2 T}$
- If $A(\cdot)$ is a weak learner with $\delta_0, \epsilon_0 = \frac{1}{2} \gamma$, and if $L_D(h) = 0$: $\Rightarrow L_S(h) = 0 \Rightarrow L_{D^{(t)}}(h) = 0 \Rightarrow$ w.p. $1 - \delta, L_{D^{(t)}}(h) \le \frac{1}{2} - \gamma$ \Rightarrow w.p. $1 - \delta T$, $L_S(h_S) \le e^{-2\gamma^2 T}$

• To get any $\epsilon > 0$, run AdaBoost for $T = \frac{\log(\frac{1}{\epsilon})}{2\gamma^2}$ rounds

- Setting $\epsilon = \frac{1}{2m}$, after $T = \frac{\log(2m)}{2\gamma^2}$ rounds: $L_S(h_S) = 0$!
- What about $L_{\mathcal{D}}(h)$?

Sparse Linear Classifiers

- Recall: $h_s(x) = sign(\sum_{t=1}^T w_t h_t(x))$
- Let $\mathcal{B} = \{ all hypothesis outputed by A \}$
 - "Base Class", e.g. decision stumps

$$h_T \in \{h_w(x) = sign(\langle w, \phi(x) \rangle) \mid w \in \mathbb{R}^{\mathcal{B}}, ||w||_0 \le T\}$$

Class of sparse halfspaces $\mathcal{L}(\mathcal{B}, T)$

- We already saw: $VCdim(\mathcal{L}(\mathcal{B}, T)) \leq O(T \log |\mathcal{B}|)$
- Even if \mathcal{B} is infinite (e.g. in the case of decision stumps): $\operatorname{VCdim}(\mathcal{L}(\mathcal{B},T)) \leq \tilde{O}(T \cdot \operatorname{VCdim}(\mathcal{B}))$
- Sample complexity: $m = \tilde{O}\left(\frac{\log(m)}{\gamma^2} \cdot \frac{\operatorname{VCdim}(\mathcal{B})}{\epsilon}\right) = \tilde{O}\left(\frac{\operatorname{VCdim}(\mathcal{B})}{\gamma^2\epsilon}\right)$
- But if weak learner is improper and $VCdim(\mathcal{B}) = \infty$?

Compression Bounds

- Focus on realizable case, and learning rules s.t. $L_S(A(S)) = 0$
- Suppose A(S) only dependent on first r < m examples, $A((x_1, y_1), ..., (x_m, y_m)) = \tilde{A}((x_1, y_1), ..., (x_r, y_r)):$ $L_{S[r+1:m]} \left(\tilde{A}(S[1:r]) \right) = 0 \implies \forall_{S \sim D}^{\delta} L_D(A(S)) \le \frac{\log(1/\delta)}{m-r}$
- In fact, same holds for any predetermined i₁, ..., i_r, if A(S) only depends on (x_{i₁}y_{i₁}), ..., (x_{i_r}, y_{i_r})
- Now consider $A(S) = \tilde{A}(S_{I(S)})$ with $I: (\mathcal{X} \times \mathcal{Y})^m \to \{1, ...m\}^r$. That is, can represent A(S) using r training points, but need to choose which ones.
- Taking a union bound over m^r choices of indices:

$$L_{\mathcal{D}}(A(S)) \leq \frac{r\log m + \log(1/\delta)}{m-r}$$

Compression Schemes

- A(S) is "*r*-compressing" if $A(S) = \tilde{A}(S_{I(S)})$ for some $I: (\mathcal{X} \times \mathcal{Y})^m \to \{1, ..., m\}^r$
- Axis Aligned Rectangles
 - *I*(*S*) = { leftmost positive, rightmost positive, top positive, bottom positive}
 - *r* = 4
- Halfspaces in \mathbb{R}^d
 - A bit trickier, but can be done with r = d + 1 (for non-homogenous)

•
$$A(\cdot)$$
 is r-compressing and $L_S(A(S)) = 0 \Rightarrow$ for $m > 2r, \forall_{S \sim D^m}^{\delta}$
 $L_D(A(S)) \le 2 \frac{r \log m + \log(1/\delta)}{m}$

- By VC lower bound: $FINDCONS_{\mathcal{H}}$ is r-compressing $\rightarrow VCdim(\mathcal{H}) \leq O(r)$
- In fact: $VCdim(\mathcal{H}) \leq r$
- Conjecture: every \mathcal{H} has a $VCdim(\mathcal{H})$ -compressing $FINDCONS_{\mathcal{H}}$

Back to Boosting...

- A(S) is an $(\epsilon_0 = \frac{1}{2} \gamma, \delta_0)$ weak learner that uses m_0 samples.
- Boost the confidence to get a $(\frac{1}{2} \frac{\gamma}{2}, \delta')$ learner that uses $m_1(\delta') = O\left(m_0 \cdot \frac{\log^1/\delta'}{\log^1/\delta_0} + \frac{\log^1/\delta' - \log\log^1/\delta_0}{\gamma^2}\right)$ samples
- Run AdaBoost on *m* samples for $T = \frac{2 \log m}{\gamma^2}$ iterations, each time using $m_1\left(\frac{\delta}{T}\right)$ samples for the weak learner to get $L_S(\overline{h}_T) = 0$ $\overline{h}_T = \sum_{t=1}^T \alpha_t h_t$ $h_t = A(sample of size m_1)$
- $(h_1, ..., h_T)$ has a compression scheme with $r = T \cdot m_1$ points
- What about α_t ???

Partial Compression

- Instead of r training points specifying A(S) exactly, suppose they only specify a limited set of hypothesis in which A(S) lies.
 - $I: (\mathcal{X} \times \mathcal{Y})^m \to \{1..m\}^r$
 - $F: (\mathcal{X} \times \mathcal{Y})^r \to \text{hypothesis classes, each with VCdim}(F(S)) \leq D$
 - $A(S) \in F(I(S))$
- Theorem: If A(S) has a compression scheme as above and $L_S(A(S)) = 0$, then for $m \ge 2r + D$, $\forall_{S \sim D}^{\delta} m$ $L_D(A(S)) \le O\left(\frac{(D+r)\log m + \log^2/\delta}{m}\right)$

Proof outline: take union bound over choice of indices I(S), of the VC-based uniform convergence bounds, each time using just the points outside I(S).

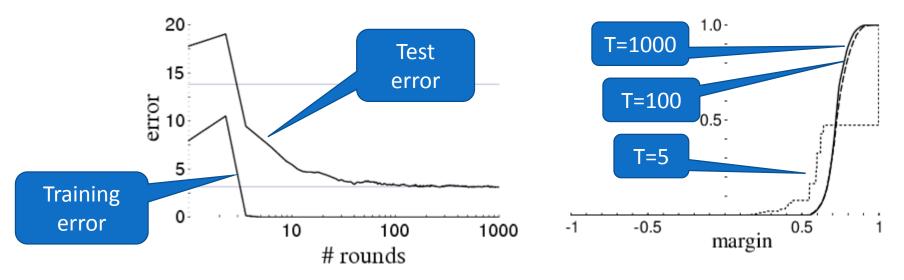
Back to Boosting...

- A(S) is an $(\epsilon_0 = \frac{1}{2} \gamma, \delta_0)$ weak learner that uses m_0 samples.
- Boost the confidence to get a $(\frac{1}{2} \frac{\gamma}{2}, \delta')$ learner that uses $m_1(\delta') = O\left(m_0 \cdot \frac{\log^1/{\delta'}}{\log^1/{\delta_0}} + \frac{\log^1/{\delta'} - \log\log^1/{\delta_0}}{\gamma^2}\right)$ samples
- Run AdaBoost on *m* samples for $T = \frac{2 \log m}{\gamma^2}$ iterations, each time using $m_1\left(\frac{\delta}{T}\right)$ samples for the weak learner to get $L_S(\overline{h}_T) = 0$ $\overline{h}_T = \sum_{t=1}^T \alpha_t h_t \in \mathcal{L}(\{h_1, \dots, h_T\}) = F(I(S))$ • Conclusion:

$$L_{\mathcal{D}}(\bar{h}_{T}) \leq O\left(\frac{(T+Tm_{1})\log m + \log\frac{1}{\delta}}{m}\right) = O\left(\frac{m_{0} \cdot \log^{2} m \cdot \log\frac{1}{\delta}}{m}\right)$$
$$\Rightarrow m(\epsilon, \delta) = O\left(\frac{m_{0}\log^{2}\frac{1}{\epsilon}\log^{1}/\delta}{\epsilon} \cdot \frac{1}{\gamma^{2}\log\frac{1}{\delta_{0}}}\right)$$

AdaBoost In Practice

- Complexity control is in terms of sparsity (#iterations) T
- Realizable case (MDL): use first T s.t. $L_S(\overline{h}_T) = 0$
- More realistically (SRM): Use validation/cross-validation to select T



• Even after $L_S(\overline{h}_T) = 0$, AdaBoost keeps improving the ℓ_1 margin

Interpretations of AdaBoost

- "Boosting" weak learning to get arbitrary small error
 - Theory is for realizable case
 - Shows efficient weak and strong learning equivalent
- Ensemble method for combining many simpler predictors
 - E.g. combining decision stumps or decision trees
 - Other ensemble methods: bagging, averaging, gating networks
- Method for learning using *sparse* linear predictors with large (infinite?) dimensional feature space
 - Sparsity controls complexity
 - Number of iterations controls sparsity
- Coordinate-wise optimization of $L_S^{\exp}(w)$
 - We'll get back to this when we talk about real-valued loss
- Learning (in high dimensions) with large ℓ_1 margin
 - Learning guarantee in terms of ℓ_1 margin
 - We'll get back to this when we talk about ℓ_1 margin

Just one more thing...

Back to Hardness of Agnostic Learning

$$\mathcal{H} = \{x \mapsto \left[[\langle w, x \rangle > 0] \right] \mid w \in \mathbb{R}^n \}$$
$$\mathcal{H}_{k(n)} = \{h_1 \wedge h_2 \wedge \dots \wedge h_k \mid h_i \in \mathcal{H} \}$$

• Lemma:
$$\exists_{h \in \mathcal{H}_k} L_{\mathcal{D}}(h) = 0 \Rightarrow \exists_{h \in \mathcal{H}} L_{\mathcal{D}}(h) < \frac{1}{2} - \frac{1}{2k^2}$$

$$\mathcal{H}$$
 is efficiently agnostically learnable
 \Downarrow
Efficient weak learner for $\mathcal{H}_{k(n)}$ with $\gamma = \frac{1}{2k^2}$
 \Downarrow

 $\mathcal{H}_{k(n)}$ is efficiently learnable (in realizable case) for, e.g. k(n) = n

• Conclusion: assuming $\tilde{O}(n^{1.5}) - uSVP \notin RP$, halfspaces are not efficiently agnostically learnable (even improperly)