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e What is learnable?

* With how many samples?



Statistical No Free Lunch

Theorem: For any domain X of size | X'| and any learning rule 4, there exists a

source distribution D with P, , p[f(x) = y] = 1 forsome f: X - {£1},

X
such that form < %,

1
Es..pm|Lp(A(S))] = 2

(and sow.p.> 1/7, Lp(A(S)) = 1/8)

Conclusion: For an infinite domain X, for any learning rule A and any sample
size m, there exists a source distribution and f as above such that

1
Es-.pm[Lp(A(S))] = 2



Statistical No Free Lunch—
Stronger Statement

* Forafinite domain X, Y = {£1}, and f: X - Y, denote Uy the source
distribution s.t.:

e x is uniform over X
* y = f(x) with probability one

* Consider a uniform distribution over f: X - U
(i.e. for each x set f(x) = +1 w.p. 1/2, independent of all other values)

* Theorem: For any learning rule 4 and any sample size m,

1 m . .k
2 21 = Brbsup L, (40)] = 27 21X



Statistical No Free Lunch: Proof

* Define:
“S is consistent with 7 if V(. 5 yesf (X)) = y;
“S is self-consistent” if it is consistent with some f (i.e. if x; = x; then y; = y;)

* For any learning rule A, and any self-consistent sample S: [ |{x | x appears in S}

Ef lLuf(A(S)) | S cons with f] = E; [lyllzx[[A(S)(x) +* f(x)]] | S cons with f]

1 1 ’
_ m( z 14900 # FEOI] + ) BAAS) () # f W) =37 zT;cl

x appearsins X¢S 1 /2

* And so:
ErEg oy | Lu, (A(9))| = EfEgelf—cons s |Lu, (A(S)) | f cons with S|
m

) 1
= Egolf—cons sEf lLu (A()) | f cons with S] =St

QED



Learning

* No Free Lunch:

* Without assuming anything on f, can’t do any better
than memorization

* Forarandom f, all learning rules essentially the same

* If we assume f € H, with  known, or just want
to compete with h € H, we can learn with

O(VCdim(}[)) samples



VC Learning Guarantees

* Theorem: For any hypothesis class H:

vedim(#) + log 1/

v om  Lp(R) < Ls(R) + 0 —

 Conclusion: If VCdim(H) < oo then H is agnostically PAC learnable using
ERM;, with sample complexity

m(e, 6) < 0<

VCdim(H) + log(l/(S))
2

l.e., forany D, w.p. > 1 — & over § ~ D™(E9), LD(ERM}[(S)) < hiélgf[l@(h) + €



VC Dimension

e C ={xq,..., %X} is shattered by H if we can get all 2™
behaviors:

vy1;---;ym€i1’ ahEH S.t. Vih(Xi) — yi

* The VC-dimension of H is the largest number of points that
can be shattered by H



VC-Dimension: Examples

Circlesin R?: H = {hc,r(x) = [[le —c|l < r]] | c ER?,1 € ]R}

* Can shatter 3 points

Circles and their complement
* Can shatter 4 points

Circles around origin: H = {hc,r(x) = [[IIxII < r]] | r € IR}
* Can shatter only 1 point

Axis aligned ellipses:

3 = g ria) 11 () = “(x[ll[—l]cz[l])2 s (x[21[—2]cz[2])2 g 1” e Rl e R

* Can shatter 4 points

General ellipses

* Can shatter 5 points

Upper bounds?



VC dim of Homogenous Half Spaces

Hy =1{|[w,¢(x)) =0]] | we R}, $: X - R4

e Can shatter the d points: e4, ...,e4. Use w = (¥4, V2, ., V4)-

e Claim: can’t shatter any set of d+1 points
* Forany d+1 points x4, ..., X441, there must be some linear dependency:

Zaixi =0

i
e Let] = {i|al~ > O},] — {]|a] < 0}
* At least one coefficient is non-zero. By negating all coefficients if necessary, can
assume without loss of generality that J is non-empty.

* Consider labeling where y; = +1fori € [ and y; = —1forj € J (and arbitrary label
for points not in either one).

* The linear predictor w that attains this labeling satisfies:

0< z a;(w,x;) = (W,z ax;) = — (W,z ajxj) = —z aj{w,x;) <0

i€l i€l jEJ jEl

* Conclusion: VCdim(}[¢) =d



Half Space Representations

 Theorem: for a hypothesis class 7€, if there exists ¢: X’ = RP s.t.
H < Hy,
i.e. s.t. every hypothesis h € H can we written as
h(x) = sign({wy,, ¢ (x))) for some w, € RP, then VCdim(H) < D.

 Example: non-homogenous half-spaces over R4, use D = d + 1 with

¢ (x) = [p(x), 1].



Half Space Representation: Circles

har() = [[(x[1] — a[1D? + (x[2] — a[2])? < r?]]
= [[x[1]? — 2a[1]x[1] + a[1]? + x[2] — a[2]x[2] + a[2] < r2]]

= sign((—=x[1]2 — x[2]?) + 2a[1]x[1] + 2a[2]x[2] + (% — a[1]? - a[2]?))

— Sign(<Wa,rr ¢(x)>)
¢(x) = (—x[1]* — x[2 ]2 x[1],x([2], 1)
W = (1,2a[1], 2a[2],7? — a[1]* — a[2]?)

* Conclusion: VCdim < 4
* Why not tight?

 If we allow w[1] < 0, we get circles and their complement, and a tight bound
on its VCdim



Half Space Representation

* Axis-aligned ellipses (and their complement):

o(x) = (x[11%,  x[2]>, «x[1], x[2], 1)

* Conic cuts (including all ellipses):

o) = (x[1]%,  «x[2]?,  x[1]x[2],  x[1], x[2], 1)

 Degree-k polynomials over R?:
¢(x) = (x[1]%, x[1]1 [2 Lx[1]* 2 x[2]?, .., x[1] ke [2] %7, x [ 2],
x[l]k 1 [1](k 2)x[] x[2 k- 1
x[1]%72, ..
x[1]?, [ 1x[2], x[2]?,
*[1], x[2], 1) € RK+DK/2

d+k—

1
* Degree-k polynomials over R%: ¢p(x) € IR( k ) =D = O(d")



VCdim always = #params?
X =R H = {hg,v(x) = sign(sin(vx + 9)) | v,0 € IR}

* Claim: VCdim(H) =
* Proof: consider the infinite set of points {xi = 10“}
labeling y4, V>, ... is attained by 6 = 0 and:

=1

. An
i=1,2,... Y



Probably Approximately Correct (PAC)

* Definition: A hypothesis class H is agnostically PAC-Learnable if there
exists a learning rule A such that Ve, 6 > 0, 3m(e, 6), VD, Vg~Dm(e,5),
< i
LD(A(S)) < hléljf[ Lp(h) + €

* Sample complexity of a learning rule:
my 3-(€,6) = minms.t. VD, VgNDm(E,(g),LD (A(S)) < hlélgi_:[ Lp(h) + €

* Sample complexity for learning a hypothesis class:
mqr(€,6) = mAin My 4 (€,6)

* What hypothesis classes are learnable?
* What controls the sample complexity?



Probably Approximately Correct (PAC)

Definition: A hypothesis class H is agnostically PAC-Learnable if there
exists a learning rule A such that Ve, 6 > 0, 3m(e, 6), VD, Vg~Dm(e,5),
< i
LD(A(S)) < hléljf[ Lp(h) + €

Sample complexity of a learning rule:
my 3-(€,6) = minms.t. VD, VgNDm(E,(g),LD (A(S)) < hlélgi_:[ Lp(h) + €

Sample complexity for learning a hypothesis class:
mqr(€,6) = mAin My 4 (€,6)

log|#|+logt/s
€2 )
VCdim(%)+log1/5)

€2

Finite classes are PAC-learnable, with mggy 4 (€,8) = O (

VC classes are PAC-learnable, with mggy 20(€,6) = O (

Can a class with infinite VC-dimension be learnable?



VC Dimension: Converse

Suppose VCdim(H) = D. Might it be possible to learn with w(D) samples?
There exists D points X' = {x{, x5, ..., Xp} that are shattered by H

Restricting attention only of X', H does not constrain us at all, and we can
apply the No Free Lunch Theorem on X".
l.e., we consider distributions D, where x is uniform on X*, and y = h(x)
w.p. 1, for h € H (recall this allows any labeling on X)
Conclusion: for any learning rule A, there exists a distribution D;, and h € H
with Ly, (h) = 0, s.t. withm < D /2 samples, w.p. = 1/7, LDh(A(S)) > 1/8.

myc(Y/g.0/7) = VCdim(30)/2



Fundamental Theorem of
Statistical Learning Theory

e If VCdim(H) < oo then H is agnostic-PAC learnable with sample complexity

q <VCdim(7—[) + log(1/6)

VCdim(H) + log(1/5)>
)

> < my(€,6) < myrgru(€,6) < 0 ( 2

* If H is PAC-learnable using any learning rule, even in the realizable case, i.e. even if
only when 3¢5, L(h) = 0, then it must have finite VC-dimension.

* In the realizable case, the sample complexity is

0 <VCdim(}[) + log(1/6)

VCdim(H)log1/e + 10g(1/6)>
€

€

VCdim(#H) log 1/6+10g(1/8))

Note: in homework, you will only show my; gy (€,8) < 0 ( <



Implications of
Fundamental Theorem

e Exact characterization of what is learnable

* Tight understanding of sample complexity
e #tsamples < VC-dimension =~ #parameters

* Once we can’t explain everything (fit every possible behavior), we start
learning

* One learning rule to rule them all: ERM

Question: I-'Ilar‘vard, 1984 Answer: Moscow, 1971

—_—




Implications of
Fundamental Theorem

e Exact characterization of what is learnable

* Tight understanding of sample complexity
e #tsamples < VC-dimension =~ #parameters

* Once we can’t explain everything (fit every possible behavior), we start
learning

* One learning rule to rule them all: ERM

But:

 What about computation? Can we implement ERM?
e Valiant’s actual question: what is efficiently PAC learnable?

e Other forms of prior knowledge beyond “captured by H™"



Non-Uniform Bias

Up until now: “flat” prior on H —every h € H equally likely

Instead: “Prior” p(h) encodes bias
p:H - [0,1] (orp:Y* - [0,1]), Ypp(h) <1

Expert says higher p(h) more likely (e.g. relying on “better” features)

Bias toward simpler predictors; p(h) encodes “simplicity”

Bias toward “shorter” explanations; p(h) encodes “description length”

Occam’s Razor: “A short explanation is

preferred over a longer one”
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Bias to Shorter Description
p:Y”* - [0,1] Yrp(h) <

* Based on length of (prefix-ambiguous) description d(h)
o d:H - {0,1}%, d(h) is never a prefix of d(h") for any h, h’

* Kraft Inequality: Z% =Yp(h) <1

e Based onc: U = Y* (e.g. python codefunction it implements)
* Set of prefix-ambiguous “legal programs” U c {0,1}

e p(h) = 27 ol (can think of: d(h) = arg min|a]| )
\—y—/ c(o)=h

Kolmogorov Complexity

* Minimum Description Length learning rule:

MDL,(S) = arng?ha)xop(h) = argLSr(r’llan |d(h)| = S ‘\



MDL and Non-Uniform Concentration

* Recall: for any h, P <|L5(h) — L(h)| = /10;1;/6) <4

° Set5h=p(h)5

P ( 3p|Ls(h) — L(h)| = /%) <Ynbp=2pp(W)6 <6

Y

\/log 2/((W)8) _ \/log 1/p(h)+log 2/8

Zm 2m

e Conclusion: w.p. = 1 — §, for all h concurrently,

L(h) < Lg(h) + \/_logp(hz),: log2/6

L J

Minimized by MDL
* If L(h*) = 0 for some h*, we necessarily also have L¢(h*) = 0 and so:
Ls (MDL,(5)) =0, p (MDL,(S)) = p(h")
e Conclusion:

—logp(h*) +log2/6
L (MDLp(S)) < J ——



MDL and Universal Learning

Theorem: For any prior p(h), Y, p(h) < 1 (e.g. p(h) = 27140V
for a prefix-ambiguous d(h)), and any source distribution D, if
there exists h* with L(h*) = 0, thenw.p. =1 — § over S ~ D™:

—logp(h*) +1log2/6  ||d(h*)[+]log2/é6

L(MDL,($)) <

\ 2m \ 2m
Sample complexity: m = 0 (ld(;*)l)

Can learn any countable class!

« Class of all computable functions, with p(h) = 2 Al

* Class enumerable with n: H — N with p(h) = 2~ n(h)
But VCdim(all computable functions)=co |

Why no contradiction to Fundamental Theorem?



