Computational and Statistical Learning Theory TTIC 31120

Prof. Nati Srebro

Lecture 3: PAC Learning and VC Theory II

- What is learnable?
- With how many samples?

Statistical No Free Lunch

• Theorem: For any domain \mathcal{X} of size $|\mathcal{X}|$ and any learning rule A, there exists a source distribution \mathcal{D} with $\mathbb{P}_{x,y\sim\mathcal{D}}[f(x)=y]=1$ for some $f:\mathcal{X}\to\{\pm 1\}$, such that for $m<\frac{|\mathcal{X}|}{2}$, $\mathbb{E}_{S\sim\mathcal{D}^m}[L_{\mathcal{D}}(A(S))]\geq \frac{1}{4}$

(and so w.p.
$$\geq 1/7$$
, $L_{D}(A(S)) \geq 1/8$)

• Conclusion: For an infinite domain \mathcal{X} , for any learning rule A and any sample size m, there exists a source distribution and f as above such that

$$\mathbb{E}_{S\sim\mathcal{D}^m}\big[L_{\mathcal{D}}\big(A(S)\big)\big] \ge \frac{1}{4}$$

Statistical No Free Lunch— Stronger Statement

- For a finite domain $\mathcal{X}, \mathcal{Y} = \{\pm 1\}$, and $f: \mathcal{X} \to \mathcal{Y}$, denote \mathcal{U}_f the source distribution s.t.:
 - x is uniform over \mathcal{X}
 - y = f(x) with probability one
- Consider a uniform distribution over f: X → Y
 (i.e. for each x set f(x) = ±1 w.p. 1/2, independent of all other values)
- **Theorem**: For any learning rule A and any sample size m,

$$\frac{1}{2} - \frac{m}{2|\mathcal{X}|} \le \mathbb{E}_f \mathbb{E}_{S \sim \mathcal{U}_f^m} \left[L_{\mathcal{U}_f} (A(S)) \right] \le \frac{1}{2} + \frac{m}{2|\mathcal{X}|}$$

Statistical No Free Lunch: Proof

• Define:

"S is consistent with f" if $\forall_{(x_i,y_i)\in S} f(x_i) = y_i$ "S is self-consistent" if it is consistent with some f (i.e. if $x_i = x_i$ then $y_i = y_i$)

• And so:

$$\mathbb{E}_{f} \mathbb{E}_{S \sim \mathcal{U}_{f}^{m}} \left[L_{\mathcal{U}_{f}} (A(S)) \right] = \mathbb{E}_{f} \mathbb{E}_{\text{self-cons} S} \left[L_{\mathcal{U}_{f}} (A(S)) \mid f \text{ cons with } S \right]$$
$$= \mathbb{E}_{\text{self-cons} S} \mathbb{E}_{f} \left[L_{\mathcal{U}_{f}} (A(S)) \mid f \text{ cons with } S \right] = \frac{1}{2} \pm \frac{m}{2|\mathcal{X}|}$$

Learning

- No Free Lunch:
 - Without assuming anything on *f* , can't do any better than memorization
 - For a random f, all learning rules essentially the same
- If we assume $f \in \mathcal{H}$, with \mathcal{H} known, or just want to compete with $h \in \mathcal{H}$, we can learn with $O(\operatorname{VCdim}(\mathcal{H}))$ samples

VC Learning Guarantees

• Theorem: For any hypothesis class \mathcal{H} :

$$\forall_{S\sim\mathcal{D}^m}^{\delta}$$
, $L_{\mathcal{D}}(\hat{h}) \leq L_S(\hat{h}) + O\left(\sqrt{\frac{\operatorname{VCdim}(\mathcal{H}) + \log 1/\delta}{m}}\right)$

• Conclusion: If $VCdim(\mathcal{H}) < \infty$ then \mathcal{H} is **agnostically PAC learnable** using $ERM_{\mathcal{H}}$ with sample complexity

$$m(\epsilon, \delta) \le O\left(\frac{\operatorname{VCdim}(\mathcal{H}) + \log(1/\delta)}{\epsilon^2}\right)$$

I.e., for any \mathcal{D} , w.p. $\geq 1 - \delta$ over $S \sim \mathcal{D}^{m(\epsilon,\delta)}$, $L_{\mathcal{D}}(ERM_{\mathcal{H}}(S)) \leq \inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon$

VC Dimension

• $C = \{x_1, ..., x_m\}$ is **shattered** by \mathcal{H} if we can get all 2^m behaviors:

$$\forall_{y_1,\dots,y_m \in \pm 1}, \exists_{h \in H} \text{ s.t. } \forall_i h(x_i) = y_i$$

- The VC-dimension of ${\mathcal H}$ is the largest number of points that can be shattered by ${\mathcal H}$

VC-Dimension: Examples

- Circles in \mathbb{R}^2 : $\mathcal{H} = \left\{ h_{c,r}(x) = \left[\left[\|x c\| \le r \right] \right] \mid c \in \mathbb{R}^2, r \in \mathbb{R} \right\}$
 - Can shatter 3 points
- Circles and their complement
 - Can shatter 4 points
- Circles around origin: $\mathcal{H} = \{ h_{c,r}(x) = [[||x|| \le r]] \mid r \in \mathbb{R} \}$
 - Can shatter only 1 point
- Axis aligned ellipses:

$$\mathcal{H} = \left\{ h_{c,r[1],r[2]}(x) = \left[\left[\frac{(x[1] - c[1])^2}{r[1]^2} + \frac{(x[2] - c[2])^2}{r[2]^2} \le 1 \right] \right] \mid c \in \mathbb{R}^2, r[1], r[2] \in \mathbb{R} \right\}$$

- Can shatter 4 points
- General ellipses
 - Can shatter 5 points
- Upper bounds?

VC dim of Homogenous Half Spaces $\mathcal{H}_{\phi} = \{ [[\langle w, \phi(x) \rangle \ge 0]] \mid w \in \mathbb{R}^d \}, \qquad \phi: \mathcal{X} \to \mathbb{R}^d$

- Can shatter the d points: e_1, \dots, e_d . Use $w = (y_1, y_2, \dots, y_d)$.
- Claim: can't shatter any set of d+1 points
 - For any d+1 points x_1, \ldots, x_{d+1} , there must be some linear dependency:

$$\sum_{i} a_i x_i = 0$$

- Let $I = \{i | a_i > 0\}, J = \{j | a_j < 0\}$
- At least one coefficient is non-zero. By negating all coefficients if necessary, can assume without loss of generality that *J* is non-empty.
- Consider labeling where $y_i = +1$ for $i \in I$ and $y_j = -1$ for $j \in J$ (and arbitrary label for points not in either one).
- The linear predictor w that attains this labeling satisfies:

$$0 \leq \sum_{i \in I} a_i \langle w, x_i \rangle = \langle w, \sum_{i \in I} a_i x_i \rangle = - \langle w, \sum_{j \in J} a_j x_j \rangle = - \sum_{j \in I} a_j \langle w, x_j \rangle < 0$$

• Conclusion: VCdim
$$(\mathcal{H}_{\phi}) = d$$

Half Space Representations

• **Theorem**: for a hypothesis class \mathcal{H} , if there exists $\phi: \mathcal{X} \to \mathbb{R}^D$ s.t.

$$\mathcal{H} \subseteq \mathcal{H}_{\phi}$$
,

i.e. s.t. every hypothesis $h \in \mathcal{H}$ can we written as $h(x) = \operatorname{sign}(\langle w_h, \phi(x) \rangle)$ for some $w_h \in \mathbb{R}^D$, then $\operatorname{VCdim}(\mathcal{H}) \leq D$.

• **Example**: non-homogenous half-spaces over \mathbb{R}^d , use D = d + 1 with $\tilde{\phi}(x) = [\phi(x), 1]$.

Half Space Representation: Circles

- Conclusion: VCdim ≤ 4
- Why not tight?
- If we allow w[1] < 0, we get circles and their complement, and a tight bound on its VCdim

Half Space Representation

- Axis-aligned ellipses (and their complement): $\phi(x) = (x[1]^2, x[2]^2, x[1], x[2], 1)$
- Conic cuts (including all ellipses): $\phi(x) = (x[1]^2, x[2]^2, x[1]x[2], x[1], x[2], 1)$
- Degree-k polynomials over \mathbb{R}^2 : $\phi(x) = (x[1]^k, x[1]^{k-1}x[2]^1, x[1]^{k-2}x[2]^2, \dots, x[1]^1x[2]^{k-1}, x[2]^k, x[1]^{k-1}, x[1]^{(k-2)x[2]^1}, \dots, x[2]^{k-1}, x[1]^{k-2}, \dots, x[1]^{k-2}, \dots, x[1]^2, x[1]x[2], x[2]^2, x[1]^2, x[1]x[2], x[2]^2, x[1], x[2], 1) \in \mathbb{R}^{(k+1)k/2}$
- Degree-k polynomials over \mathbb{R}^d : $\phi(x) \in \mathbb{R}^{\binom{d+k-1}{k}} \rightarrow D = O(d^k)$

VCdim always = #params?

$$\mathcal{X} = \mathbb{R}$$
 $\mathcal{H} = \{h_{\theta,\nu}(x) = \operatorname{sign}(\operatorname{sin}(\nu x + \theta)) \mid \nu, \theta \in \mathbb{R}\}$

- Claim: $VCdim(\mathcal{H}) = \infty$
- Proof: consider the infinite set of points $\{x_i = 10^{-i}\}_{i=1,2,...}$. Any labeling $y_1, y_2, ...$ is attained by $\theta = 0$ and: $\nu = \pi \left(1 - \sum_{i=1}^{\infty} \frac{y_i}{2x_i}\right)$

Probably Approximately Correct (PAC)

- Definition: A hypothesis class \mathcal{H} is **agnostically PAC-Learnable** if there exists a learning rule A such that $\forall \epsilon, \delta > 0, \exists m(\epsilon, \delta), \forall \mathcal{D}, \forall_{S \sim \mathcal{D}}^{\delta} m(\epsilon, \delta), L_{\mathcal{D}}(A(S)) \leq \inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon$
- Sample complexity of a learning rule: $m_{A,\mathcal{H}}(\epsilon, \delta) = \min m \ s. t. \ \forall \mathcal{D}, \forall_{S \sim \mathcal{D}}^{\delta} m_{(\epsilon,\delta)}, L_{\mathcal{D}}(A(S)) \leq \inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon$
- Sample complexity for learning a hypothesis class: $m_{\mathcal{H}}(\epsilon, \delta) = \min_{A} m_{A, \mathcal{H}}(\epsilon, \delta)$
- What hypothesis classes are learnable?
- What controls the sample complexity?

Probably Approximately Correct (PAC)

- Definition: A hypothesis class \mathcal{H} is **agnostically PAC-Learnable** if there exists a learning rule A such that $\forall \epsilon, \delta > 0, \exists m(\epsilon, \delta), \forall \mathcal{D}, \forall_{S \sim \mathcal{D}}^{\delta} m(\epsilon, \delta), L_{\mathcal{D}}(A(S)) \leq \inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon$
- Sample complexity of a learning rule: $m_{A,\mathcal{H}}(\epsilon, \delta) = \min m \ s. t. \ \forall \mathcal{D}, \forall_{S \sim \mathcal{D}}^{\delta} m(\epsilon, \delta), L_{\mathcal{D}}(A(S)) \leq \inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon$
- Sample complexity for learning a hypothesis class: $m_{\mathcal{H}}(\epsilon, \delta) = \min_{A} m_{A,\mathcal{H}}(\epsilon, \delta)$
- Finite classes are PAC-learnable, with $m_{ERM,\mathcal{H}}(\epsilon,\delta) = O\left(\frac{\log|\mathcal{H}| + \log^{1}/\delta}{\epsilon^{2}}\right)$
- VC classes are PAC-learnable, with $m_{ERM,\mathcal{H}}(\epsilon, \delta) = O\left(\frac{\operatorname{VCdim}(\mathcal{H}) + \log^{1}/\delta}{\epsilon^{2}}\right)$
- Can a class with infinite VC-dimension be learnable?

VC Dimension: Converse

- Suppose VCdim(\mathcal{H}) = D. Might it be possible to learn with $\omega(D)$ samples?
- There exists D points $\mathcal{X}' = \{x_1, x_2, \dots, x_D\}$ that are shattered by \mathcal{H}
- Restricting attention only of \mathcal{X}' , \mathcal{H} does not constrain us at all, and we can apply the No Free Lunch Theorem on \mathcal{X}' .

I.e., we consider distributions \mathcal{D}_h where x is uniform on \mathcal{X}' , and y = h(x) w.p. 1, for $h \in \mathcal{H}$ (recall this allows any labeling on \mathcal{X}')

• Conclusion: for any learning rule A, there exists a distribution \mathcal{D}_h and $h \in \mathcal{H}$ with $L_{\mathcal{D}_h}(h) = 0$, s.t. with m < D/2 samples, w.p. $\geq 1/7$, $L_{\mathcal{D}_h}(A(S)) \geq 1/8$. $m_{\mathcal{H}}(1/8, 6/7) \geq VCdim(\mathcal{H})/2$

Fundamental Theorem of Statistical Learning Theory

• If $VCdim(\mathcal{H}) < \infty$ then \mathcal{H} is agnostic-PAC learnable with sample complexity

$$\Omega\left(\frac{\operatorname{VCdim}(\mathcal{H}) + \log(1/\delta)}{\epsilon^2}\right) \le m_{\mathcal{H}}(\epsilon, \delta) \le m_{\mathcal{H}, ERM}(\epsilon, \delta) \le O\left(\frac{\operatorname{VCdim}(\mathcal{H}) + \log(1/\delta)}{\epsilon^2}\right)$$

- If \mathcal{H} is PAC-learnable using any learning rule, even in the realizable case, i.e. even if only when $\exists_{h \in \mathcal{H}} L(h) = 0$, then it must have finite VC-dimension.
- In the realizable case, the sample complexity is

$$\Omega\left(\frac{\operatorname{VCdim}(\mathcal{H}) + \log(1/\delta)}{\epsilon}\right) \le m_{\mathcal{H}}(\epsilon, \delta) \le O\left(\frac{\operatorname{VCdim}(\mathcal{H})\log 1/\epsilon + \log(1/\delta)}{\epsilon}\right)$$

Note: in homework, you will only show $m_{\mathcal{H},ERM}(\epsilon,\delta) \leq O\left(\frac{\operatorname{VCdim}(\mathcal{H})\log 1/\epsilon + \log(1/\delta)}{\epsilon^2}\right)$

Implications of Fundamental Theorem

- Exact characterization of what is learnable
- Tight understanding of sample complexity
 - #samples ∝ VC-dimension ≈ #parameters
 - Once we can't explain everything (fit every possible behavior), we start learning
- One learning rule to rule them all: ERM

Question: Harvard, 1984

Answer: Moscow, 1971

Implications of Fundamental Theorem

- Exact characterization of what is learnable
- Tight understanding of sample complexity
 - #samples ∝ VC-dimension ≈ #parameters
 - Once we can't explain everything (fit every possible behavior), we start learning
- One learning rule to rule them all: ERM

But:

- What about computation? Can we implement ERM?
 - Valiant's actual question: what is *efficiently* PAC learnable?
- Other forms of prior knowledge beyond "captured by \mathcal{H} "

Non-Uniform Bias

- Up until now: "flat" prior on \mathcal{H} —every $h \in \mathcal{H}$ equally likely
- Instead: "Prior" p(h) encodes bias

$$p: \mathcal{H}
ightarrow [0,1]$$
 (or $p: \mathcal{Y}^{\mathcal{X}}
ightarrow [0,1]$), $\sum_h p(h) \leq 1$

- Expert says higher p(h) more likely (e.g. relying on "better" features)
- Bias toward simpler predictors; p(h) encodes "simplicity"
- Bias toward "shorter" explanations; p(h) encodes "description length"

Bias to Shorter Description $p: \mathcal{Y}^{\mathcal{X}} \rightarrow [0,1]$ $\sum_{h} p(h) \leq 1$

- Based on length of (prefix-ambiguous) description d(h)
 - $d: \mathcal{H} \to \{0,1\}^*$, d(h) is never a prefix of d(h') for any h, h'
 - $p(h) = 2^{-|d(h)|}$
 - Kraft Inequality: $\sum \frac{1}{2^{|d(h)|}} = \sum p(h) \le 1$
- Based on c: $U \to \mathcal{Y}^{\mathcal{X}}$ (e.g. python code \mapsto function it implements)
 - Set of prefix-ambiguous "legal programs" $U \subset \{0,1\}^*$
 - $p(h) = 2 \frac{\min_{c(\sigma)=h} |\sigma|}{r}$ (can think of: $d(h) = \arg_{c(\sigma)=h} \min |\sigma|$) Kolmogorov Complexity
- Andrei Kolmogorov (1903-1987)

olomono

• Minimum Description Length learning rule:

$$MDL_p(S) = \arg \max_{L_S(h)=0} p(h) = \arg \min_{L_S(h)=0} |d(h)|$$

MDL and Non-Uniform Concentration

• Recall: for any
$$h$$
, $P_S\left(|L_S(h) - L(h)| \ge \sqrt{\frac{\log 2/\delta}{2m}}\right) \le \delta$

• Set
$$\delta_h = p(h) \cdot \delta$$
:
 $P\left(\exists_h | L_S(h) - L(h)| \ge \sqrt{\frac{\log 2/\delta_h}{2m}}\right) \le \sum_h \delta_h = \sum_h p(h)\delta \le \delta$
 $\sqrt{\frac{\log 2/(p(h)\delta)}{2m}} = \sqrt{\frac{\log 1/p(h) + \log 2/\delta}{2m}}$

• Conclusion: w.p. $\geq 1 - \delta$, for all h concurrently,

$$L(h) \le L_S(h) + \sqrt{\frac{-\log p(h) + \log 2/\delta}{2m}}$$

Minimized by MDL

If
$$L(h^*) = 0$$
 for some h^* , we necessarily also have $L_S(h^*) = 0$ and so:
 $L_S(MDL_p(S)) = 0, \qquad p(MDL_p(S)) \ge p(h^*)$

• Conclusion:

$$L(MDL_p(S)) \le \sqrt{\frac{-\log p(h^*) + \log 2/\delta}{2m}}$$

MDL and Universal Learning

• Theorem: For any prior p(h), $\sum_{h} p(h) \le 1$ (e.g. $p(h) = 2^{-|d(h)|}$) for a prefix-ambiguous d(h)), and any source distribution \mathcal{D} , if there exists h^* with $L(h^*) = 0$, then w.p. $\ge 1 - \delta$ over $S \sim \mathcal{D}^m$:

$$L\left(MDL_p(S)\right) \le \sqrt{\frac{-\log p(h^*) + \log 2/\delta}{2m}} = \sqrt{\frac{|d(h^*)| + \log 2/\delta}{2m}}$$

- Sample complexity: $m = O\left(\frac{|d(h^*)|}{\epsilon^2}\right)$ (more careful analysis: $O\left(\frac{|d(h^*)|}{\epsilon}\right)$)
- Can learn any countable class!
 - Class of all computable functions, with $p(h) = 2^{-\min_{c(\sigma)=h} |\sigma|}$.
 - Class enumerable with $n: \mathcal{H} \to \mathbb{N}$ with $p(h) = 2^{-n(h)}$
- But VCdim(all computable functions)=∞ !
- Why no contradiction to Fundamental Theorem?