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What is “Machine Learning”?

“Learning” (in nature): Using past experience to make future 
decisions or guide future  actions

“Machine Learning” as an Engineering Paradigm: Use data 
and examples, instead of expert knowledge, to automatically 

create systems that perform complex tasks



Machine Learning Everywhere

• OCR (addresses, checks, books, forms, pen input, …)

• Spam Filtering

• Machine Translation

• Speech Recognition

• Vision:
• Face detection and face recognition
• Object detection (search by object, pedestrian detection, …)
• Pose estimation in Kineckt
• Driving assistance systems and self driving cars: pedestrian and 

hazard detection, staying in-lane, reading road signs, …

• Control: helicopters, robots, self-driving cars

• Search (which is the relevant page?)

• Advertising and ad placement

• Recommendation systems (what movie will you like?)

• Protein fold prediction (                                                       )



Generic Learning

Learning
Algorithm

Examples of faces Face recognizer

Sample emails Spam detector

Spanish and English texts Translation system

Recorded transliterated audio Speech recognizer

Protein sequences and folds Protein fold predictor

Parameterized 
model of a face

Examples of faces
“Correct” parameters 
(distribution of dist between eyes, 
importance of different parts, etc)

Examples of bicycles Bike detectors



The ability to learn grammars is hard-wired into 
the brain.  It is not possible to “learn” linguistic 

ability—rather, we are born with a brain 
apparatus specific to language representation.

There exists some “universal” learning 
algorithm that can learn anything: language, 

vision, speech, etc.  The brain is based on it, and 
we’re working on uncovering it. (Hint: the brain 

uses neural networks)

There is no “free lunch”: no learning is possible 
without some prior assumption about the 

structure of the problem (prior knowledge)

Noam Chomsky

Geoff Hinton

David 
Wolpert



Machine Learning

More Data, Less Expert Knowledge

Expert knowledge:
full specific knowledge none

Expert Systems
(no data at all)

Use data to fit 
specific model

no free lunch

more data 



Data

System for 
Performing Task 
(e.g. Predictor)

• 99% of faces have 
two eyes

• People with beards 
buy less nail polish

• …

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 2

∝ 𝑎𝑣𝑔 𝑟𝑎𝑑𝑖𝑢𝑠 3

NP  adj NP
NP  det N
det ‘the’

Does smoking contribute to 
lung cancer?
• Yes, with p-value = 10−72

How long ago did cats and 
dogs diverge?
• About 55 MY, with 95% 

confidence interval [51,60]

“Machine Learning”: Use data and examples, instead of expert 
knowledge, to automatically create systems that perform complex tasks

Behnam



This course: Computational and 
Statistical Learning Theory

• Assumes you are already familiar with machine learning, 
and with common learning methods (eg nearest neighbor, 
SVMs, feed-forward networks)

• Main Goals:
• Strengthen understanding of learning.  What effects how well we 

can learn, and the required resources (data, computation) for 
learning?  How should we think of and evaluate different learning 
approaches?

• Obtain formal and quantitative understanding of learning: 
Formalize learning, “no free lunch”, universal learning, 
computational limits on learning;  Understand learning guarantees 
and bounds and what they tell us.

• Understand relationship between learning and optimization, and 
explore modern optimization techniques in the context of learning.

• Secondary Goal:
• Learn techniques and develop skills for analyzing learning and 

proving learning guarantees.



Learning Predictors

• Domain 𝒳
• each 𝑥 ∈ 𝒳 is called an “instance”

• e.g. set of all possible email messages

• Label set 𝒴
• We will focus on binary classification 𝒴 = {±1}

• e.g. +1 means “SPAM”, -1 means “not SPAM”

• Predictor: ℎ:𝒳 → 𝒴 , i.e. ℎ ∈ 𝒴𝒳

• also called “classifier” or “hypothesis”

• e.g. ℎ 𝑥 =  
+1, 𝑥 contains the word "free"
−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Online Learning Process

• At each time 𝑡 = 1,2, …
• We receive an instance 𝑥𝑡 ∈ 𝒳 (receive an email)

• We predict a label  𝑦𝑡 = ℎ𝑡 𝑥𝑡 (predict if its spam)

• We see the correct label 𝑦𝑡 of 𝑥𝑡 (user tells us if it was really spam)

• We update the predictor ℎ𝑡+1 based on (𝑥𝑡, 𝑦𝑡)

• Learning rule: mapping 𝐴: 𝒳 × 𝒴 ∗ → 𝒴𝒳

• ℎ𝑡 = 𝐴 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , 𝑥𝑡−1, 𝑦𝑡−1

• Goal: make few mistakes  𝑦𝑡 ≠ 𝑦𝑡

• Is this possible?
• E.g. 𝒳 = 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠 , 𝒴 = {±1}

• Lets play a game: try to learn my labels for you…



No Free Lunch: Online Version

• For any finite 𝓧 with 𝒏 elements, and any learning rule 𝑨,
there exists a mapping 𝑓(𝑥) and a sequence 𝑥𝑡 , 𝑦𝑡 = 𝑓 𝑥𝑡 𝑡

on which

𝐴 makes at least 𝒏 mistakes
• 𝑥1, … , 𝑥𝑛 all different

• 𝑓 𝑥𝑡 = − 𝑦𝑡, 𝑡 = 1. . 𝑛

• For any infinite 𝓧, and any learning rule 𝐴, there exists a mapping 𝑓(𝑥) and 
a sequence 𝑥𝑡, 𝑦𝑡 = 𝑓 𝑥𝑡 𝑡

on which 𝐴 makes a mistake on every round

• If 𝒳 is small, we can limit ourselves to |𝒳| mistakes by memorizing ℎ 𝑥𝑡 , 
but “memorizing” doesn’t quite feel like “learning”….



Prior Knowledge

• Assume 𝑦𝑡 = 𝑓 𝑥𝑡 for some 𝑓 ∈ ℋ

• ℋ ⊆ 𝒴𝒳 is a “hypothesis class”
• Learner knows ℋ, but of course doesn’t know 𝑓

• ℋ represents our “Prior Knowledge” or “Expert Knowledge”

• We say the sequence 𝑥𝑡 , 𝑦𝑡 𝑡 is realizable by ℋ

E.g.:
ℋ = 𝑎𝑙𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑠𝑖𝑛𝑔𝑙𝑒 𝑤𝑜𝑟𝑑 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒

ℋ = ℎ𝑖 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑤𝑜𝑟𝑑 𝑖 , ℎ𝑖(𝑥) = word 𝑖 appears in 𝑥

• What if this assumption is wrong??
 Later…

𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 =  
+1, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 is 𝑡𝑟𝑢𝑒
−1, otherwise



Learning Finite Hypothesis Classes
• How can we learn problems realizable by a finite hypothesis class?

• The learning rule CONSISTENT: 
• use ℎ ∈ ℋ consistent with examples so far

• 𝐂𝐎𝐍𝐒𝐈𝐒𝐓𝐄𝐍𝐓ℋ 𝑆 = 𝑠𝑜𝑚𝑒 ℎ ∈ ℋ 𝑠. 𝑡. ∀ 𝑥,𝑦 ∈𝑆 ℎ 𝑥 = 𝑦

(strictly speaking: not a specific function—we will refer to any rule returning a 
consistent ℎ as “CONSISTENT”)

• Iterative implementation:
• Initialize 𝑉1 = ℋ

• For 𝑡 = 1,2, …

• Output some ℎ𝑡 ∈ 𝑉𝑡 (and predict  𝑦𝑡 = ℎ𝑡 𝑥𝑡 )

• Based on 𝑥𝑡, 𝑦𝑡 , update 𝑉𝑡+1 = ℎ ∈ 𝑉𝑡 ℎ 𝑥𝑡 = 𝑦𝑡

• Theorem:
If 𝑥𝑡 , 𝑦𝑡 𝑡 is realizable by ℋ, 𝐂𝐎𝐍𝐒𝐈𝐒𝐓𝐄𝐍𝐓ℋ will make < |ℋ| mistakes

• Proof:
If ℎ𝑡 𝑥𝑡 ≠ 𝑦𝑡, ℎ𝑡 is removed from 𝑉𝑡, hence 𝑉𝑡+1 ≤ 𝑉𝑡 − 1. Since true 𝑓 always 
remains in 𝑉𝑡, 𝑉𝑡 ≥ 1. Hence, #mistakes ≤ 𝑉1 − 1.



“Halving”
• The 𝐇𝐀𝐋𝐕𝐈𝐍𝐆ℋ learning rule:

• Initialize 𝑉1 = ℋ

• For 𝑡 = 1,2, …

• Output ℎ𝑡, where ℎ𝑡 𝑥 = MAJORITY( ℎ 𝑥 ∶ ℎ ∈ 𝑉𝑡 )

(predict  𝑦𝑡 = MAJORITY( ℎ 𝑥𝑡 ∶ ℎ ∈ 𝑉𝑡 ))

• Based on 𝑥𝑡, 𝑦𝑡 , update 𝑉𝑡+1 = ℎ ∈ 𝑉𝑡 ℎ 𝑥𝑡 = 𝑦𝑡

• Theorem:
If 𝑥𝑡 , 𝑦𝑡 𝑡 is realizable by ℋ, 𝐇𝐀𝐋𝐕𝐈𝐍𝐆ℋ will make < log2 |ℋ| mistakes

• Proof:
If ℎ𝑡 𝑥𝑡 ≠ 𝑦𝑡, then at least half of the functions ℎ ∈ 𝑉𝑡 are wrong and will be 
removed, hence 𝑉𝑡+1 ≤ 𝑉𝑡 /2. 
Since true 𝑓 always remains in 𝑉𝑡, 𝑉𝑡 ≥ 1. Hence, #mistakes ≤ log2 𝑉1 .

• Question: is 𝐇𝐀𝐋𝐕𝐈𝐍𝐆ℋ a specific function?



The Complexity of ℋ
• log2 |ℋ| measures the “complexity” of the hypothesis class

• More complex more mistakes more data until we learn

• More specific “expert knowledge”  smaller ℋ less mistakes, learn quicker

ℋ100 = word 𝑖 in 𝑥 | 𝑖 ∈ 𝑠𝑝𝑒𝑐𝑖𝑎𝑙 𝑙𝑖𝑠𝑡 𝑜𝑓 100 𝑤𝑜𝑟𝑑𝑠 log2 |100|

ℋ𝐷 = word 𝑖 in 𝑥 | 𝑖 ∈ 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝐷 log2 |𝐷|

𝐶𝑂𝑁𝐽3 = word 𝑖1, 𝑖2 OR 𝑖3 in 𝑥 | 𝑖1, 𝑖2, 𝑖3 ∈ 𝐷 log2
|𝐷|
3

≤ 3 log2 |𝐷|

k-term 3DNF over the literals 𝜙𝑖 𝑥 = [ word 𝑖 in 𝑥 ] ≤ log2 2 𝐷 3𝑘 = 𝑂(𝑘 log 𝐷 )

e.g. 𝜙𝑓𝑟𝑒𝑒 𝑥 ∧ 𝜙𝑠𝑝𝑒𝑐𝑖𝑎𝑙 𝑥 ∧ 𝜙𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑥 ∨ 𝜙𝑒𝑚𝑎𝑖𝑙 𝑥 ∧ 𝜙𝑒𝑥𝑝𝑖𝑟𝑒 𝑥 ∧ 𝜙𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡 𝑥

Decision trees with k nodes over 𝜙𝑖(𝑥) 𝑂 𝑘 log 𝑘 + 𝑘 log |𝐷|

Python programs with 𝑛 lines that take 𝑥 as input ≤ log2 128
80 𝑛 = 𝑂(𝑛)

ℋ = 𝑓
full knowledge

no mistakes

ℋ = 𝒴𝒳

no free lunch

ℋ𝐷ℋ100 𝐶𝑂𝑁𝐽
decision

trees

python
programs

3DNF



Why not use ℋ = { short programs } ?

• Learn SPAM detectable by 100-line program with ≤ log2 128
100⋅80 = 56,000

mistakes (that’s nothing!)

• Running HALVING requires checking, at each step, and for each program, 
whether it returns the right answer.  That’s not even computable!

• Even for classes where predictors are easily computable, such as decision trees:
• #mistakes (≈data needed to learn) ≤ log2 |ℋ|

• But runtime scales linearly with ℋ (need to check all ℎ ∈ ℋ)

• E.g. for decision trees: #mistakes ≤ 𝑂 𝑘 log 𝑘 + 𝑘 log 𝐷
Runtime = 𝑂 𝑘 𝑘 𝐷 𝑘

• We want hypothesis classes that:
• Capture lots of interesting stuff with low complexity (e.g. low cardinality)

• Are computationally efficiently learnable



Interim Summary

• log2 |ℋ| measures complexity, gives bounds on number of mistakes
(≈ data required for learning), at least in realizable case

• Lots of interesting “universal” classes with bounded cardinality

• … but runtime is exponential (or worse)

• Issues we still need to worry about:
• Computational efficiency

• Errors (non-realizability)

But first…



An Important Class: Linear Predictors
• Decide on some features 𝜙1 𝑥 , 𝜙2 𝑥 ,…

𝜙𝑖:𝒳 → ℝ, 𝜙 𝑥 = 𝜙1 𝑥 , 𝜙2 𝑥 ,… , 𝜙𝑑 𝑥 ∈ ℝ𝑑

• Linear classifiers (halfspaces) over 𝜙:
ℋ = ℎ𝑤,𝜃 𝑥 = 𝑤, 𝜙 𝑥 > 𝜃 | 𝑤 ∈ ℝ𝑑 , 𝜃 ∈ ℝ

𝜙1(𝑥)

𝜙2(𝑥)

𝑤 = (−1,2)

𝜃



An Important Class: Linear Predictors
• Decide on some features 𝜙1 𝑥 , 𝜙2 𝑥 ,…

𝜙𝑖:𝒳 → ℝ, 𝜙 𝑥 = 𝜙1 𝑥 , 𝜙2 𝑥 ,… , 𝜙𝑑 𝑥 ∈ ℝ𝑑

• Linear classifiers (halfspaces) over 𝜙:
ℋ = ℎ𝑤,𝜃 𝑥 = 𝑤,𝜙 𝑥 > 𝜃 | 𝑤 ∈ ℝ𝑑 , 𝜃 ∈ ℝ

• The feature map 𝜙 𝑥 , and the decision to use linear classifiers, 
encodes our prior knowledge

• E.g. 𝜙𝑖 𝑥 = [ word 𝑖 in 𝑥 ] or 𝜙𝑖 𝑥 = (#occurrences of 𝑖 in 𝑥)

… or maybe 𝜙𝐶𝐴𝑃𝑆 𝑥 = #𝑎𝑙𝑙 𝑐𝑎𝑝𝑠, or 𝜙𝑖 in subject(x)

… or #occurrences of phrases or pairs of words

• Can encode conjunctions: 𝜙𝑖1 + 𝜙𝑖2 + 𝜙𝑖3 > 0.5

… and disjunctions: 𝜙𝑖1 + 𝜙𝑖2 + 𝜙𝑖3 > 2.5

… and negations, and weights

• Can we (online) learn linear predictors?  How many mistakes?



Bias term or no bias term?

• Linear classifiers (halfspaces) over 𝜙:𝒳 → ℝ𝑑:
ℋ = ℎ𝑤,𝜃 𝑥 = 𝑤,𝜙 𝑥 > 𝜃 | 𝑤 ∈ ℝ𝑑 , 𝜃 ∈ ℝ

• Instead, consider augmented feature map with constant 
feature map  𝜙:𝒳 → ℝ𝑑+1:

 𝜙 𝑥 = 𝜙 𝑥 , 1

ℋ = ℎ𝑤 𝑥 = 𝑤,  𝜙 𝑥 > 0 | 𝑤 ∈ ℝ𝑑+1

• Will often be easier to work with homogeneous definition.



Linear Predictors in 1d: Initial Segments

ℋ = 𝜙 𝑥 ≤ 𝜃 | 𝜃 ∈ ℝ 𝜙 𝑥 ∈ [0,1]

e.g. 𝜙 𝑥 =
#CAPS in 𝑥

total #chars
(or just think of 𝒳 = [0,1])

• Theorem: For any learning rule A, there exists a sequence realized by 
ℋ, on which A makes a mistake on every round

• Proof: 

• 𝑥1 = 0.5

• 𝑦𝑡 = − 𝑦𝑡
• 𝑥𝑡+1 = 𝑥𝑡 + 𝑦𝑡2

−(𝑡+1)

• Realized by 𝜃 = 0.5 +  𝑡 𝑦𝑡2
− 𝑡+1

𝜃

ℎ 𝑥 = +1 ℎ 𝑥 = −1



So can we really can’t learn linear predictors?

• Answer 1:
• Counterexample based on extremely high resolution

• If we discretize 𝜃 ∈ 0,
1

𝑟
,
2

𝑟
,
3

𝑟
, … , 1 , log2 ℋ = log2 𝑟 + 1

• More generally, for linear predictors over 𝜙 𝑥 ∈ ℝ𝑑:

log ℋlinear = 𝑂(𝑑 log 𝑟) = 𝑂 𝑑 ⋅ #bits per number



Half-Spaces With Discrete Weights

𝐺𝑟 = {−1,−
𝑟 − 1

𝑟
,−

𝑟 − 2

𝑟
,… ,−

1

𝑟
, 0,

1

𝑟
, … ,

𝑟 − 2

𝑟
,
𝑟 − 1

𝑟
, 1}

𝜙:𝒳 → 𝐺𝑟
𝑑

ℋ = ℎ𝑤 𝑥 = 𝑤,𝜙 𝑥 > 0 | 𝑤 ∈ 𝐺𝑟
𝑑

• ℋ = 2𝑟 + 1 𝑑, hence HALVING will make at most 𝑂(𝑑 log 𝑟)
mistakes.

• How do we implement HALVING? 
• Keep track of Ω(𝑟𝑑) hypothesis?
• Runtime exponential in 𝑑.

• Instead: we will show 𝑝𝑜𝑙𝑦 𝑑 -time algorithm, with slightly worse 
mistake bound



What’s the problem with HALVING?

• Recall that HALVING maintains a “version space” 𝑉𝑡 of 
hypothesis consistent with examples so far, and so still under 
consideration.

𝑉𝑡 = 𝑤 ∀𝑖=1.. 𝑡−1 𝑦𝑖 𝑤,𝜙 𝑥𝑖 > 0 }

(𝑉𝑡 is a polytope in ℝ𝑑 with (𝑡 − 1) facets)

• Predictions:
ℎ𝑡 𝑥 = 𝑀𝐴𝐽𝑂𝑅𝐼𝑇𝑌 ℎ𝑤 𝑥 ∶ 𝑤 ∈ 𝑉𝑡

• Problem: calculating 𝑀𝐴𝐽𝑂𝑅𝐼𝑇𝑌 ℎ𝑤 𝑥 ∶ 𝑤 ∈ 𝑉𝑡

• Instead: we will maintain ellipsoid ℰ𝑡 ⊇ 𝑉𝑡
• Easy to calculate majority prediction (just use center of ellipsoid)
• We will show how to easily update ℰ𝑡
• We will bound the number of mistakes we can make



Ellipsoids

• Unit ball in ℝ𝑑: 𝐵 = 𝑤 ∈ ℝ𝑑 𝑤 ≤ 1 }

• Ellipsoid: image of 𝐵 under the affine transform 𝑥 ↦ 𝑀𝑥 + 𝑣, 
for some matrix 𝑀 ∈ ℝ𝑑×𝑑, and vector 𝑣 ∈ ℝ𝑑

ℰ 𝑀, 𝑣 = 𝑀𝑤 + 𝑣 𝑤 ≤ 1}

𝑣



The Ellipsoid Learner
Maintain ℰ𝑡 = ℰ 𝐴𝑡

 1 2, 𝑤𝑡 , s.t. it always contains all consistent hypothesis

The 𝐄𝐋𝐋𝐈𝐏𝐒𝐎𝐈𝐃 learning rule:

• Initialize 𝐴1 = 𝑑 ⋅ 𝐼𝑑, 𝑤1 = 0

• For each 𝑡 = 1,2, …

• Output ℎ𝑡 = 𝑥 ↦ 𝑤𝑡 , 𝜙(𝑥) > 0

• Receive (𝑥𝑡, 𝑦𝑡).

• If ℎ𝑡 𝑥𝑡 ≠ 𝑦𝑡, update ℰ𝑡+1 to minimum volume ellipsoid that contains
ℰ𝑡 ∩ 𝑤 | 𝑦𝑡 𝑤,𝜙(𝑥𝑡 > 0}:

𝑤𝑡+1 ← 𝑤𝑡 +
𝑦𝑡

𝑑+1

𝐴𝑡𝑥𝑡

𝑥𝑡
′𝐴𝑡𝑥𝑡

𝐴𝑡+1 =
𝑑2

𝑑2−1
𝐴𝑡 −

2

𝑑+1

𝐴𝑡𝑥𝑡𝑥𝑡
′𝐴𝑡

𝑥𝑡
′𝐴𝑡𝑥𝑡

• Otherwise, keep 𝑤𝑡+1 = 𝑤𝑡 , 𝐴𝑡+1 = 𝐴𝑡

𝑦𝑡𝑥𝑡

ℰ𝑡 ℰ𝑡+1



𝑤𝑡

ℰ𝑡

The Ellipsoid Learner: Analysis

• Lemma: whenever we make a mistake,

𝑉𝑜𝑙 ℰ𝑡+1 ≤ 𝑒
1

2𝑑+2 ⋅ 𝑉𝑜𝑙 ℰ𝑡

𝑦𝑡𝑥𝑡



The Ellipsoid Learner: Analysis

• Lemma: whenever we make a mistake,

𝑉𝑜𝑙 ℰ𝑡+1 ≤ 𝑒
1

2𝑑+2 ⋅ 𝑉𝑜𝑙 ℰ𝑡

• Lemma: if 𝜙 𝑥 ∈ 𝐺𝑟
𝑑 and there is a consistent hypothesis in 𝐺𝑟

𝑑, then

𝑉𝑜𝑙 ℰ𝑡 ≥
1

𝑟2𝑑
𝑉𝑜𝑙(𝐵)

• And: 𝑉𝑜𝑙 ℰ1 = 𝑑  𝑑 2𝑉𝑜𝑙(𝐵)

• Conclusion: number of mistakes is at most 

log
𝑒

1
2𝑑+2

𝑉𝑜𝑙 ℰ1
𝑉𝑜𝑙 ℰ𝑡+1

= 2𝑑 + 2 2𝑑 log 𝑟 +
𝑑

2
log 𝑑 = 𝑂 𝑑2 log 𝑟𝑑

Recall: HALVING makes at most 𝑂 𝑑 log 𝑟 mistakes.



So can we really can’t learn linear predictors?

• Answer 1:
• Counterexample based on extremely high resolution

• If we discretize 𝜃 ∈ 0,
1

𝑟
,
2

𝑟
,
3

𝑟
, … , 1 , log2 ℋ = log2 𝑟 + 1

• More generally, for linear predictors over 𝜙 𝑥 ∈ ℝ𝑑:

log ℋlinear = 𝑂(𝑑 log 𝑟) = 𝑂 𝑑 ⋅ #bits per number

• Runtime of HALVING is Ω 𝑟𝑑

• Can ensure 𝑂 𝑑2 log 𝑟𝑑 mistakes in time 𝑝𝑜𝑙𝑦(𝑑)

• (Can improve mistake bound using sophisticated randomized algorithm, 
with worse but still 𝑝𝑜𝑙𝑦(𝑑) runtime)

• But is the discretization and the sophisticated methods really necessary???

• Answer 2:
• Counterexample based on very specific sequence, in very specific order

• What happens if examples (𝑥𝑡, 𝑦𝑡) come in a random order?


