Computational and Statistical Learning Theory

Problem set 8

Due: December 1st

Please send your solutions to|learning-submissions@ttic.edu

Problems

1. Stability :

(a) Use McDiamird’s inequality to show that if a learning rule A is ¢(m) stable, then with
probability greater than 1 — 9,

L(A) < L(A) + f(e(m),log(1/8),m)

where f has only a polynomial dependence on log(1/§). Write down f explicitly.
(b) Use the above guarantee to analyze the RERM learning rule A(S) = argmin L(w) +

2||w||3, for linear prediction with a Lipschitz bounded loss, and obtain a learning guar-
antee for the norm-bounded linear predictor class {w|||w||s < B}.

Write down the resulting sample complexity, as well as the sample complexity obtained
from the stability-based analysis we did in class, and the sample complexity of ERM
we obtained from concentration-based arguments.

2. Boosting :
For any binary hypothesis class H over &X', and some € < % and v < 1, assume there
exists a learning rule A(S) and a sample size m s.t. for any distribution D(X, £1) where
infreyy Lp(h) = 0, we have that w.p. > 1 — v over S ~ D™, L(A(S)) < e. Prove an upper
bound on the VC-dimension of # as a function of m, € and §, with a polynomial dependence
on m. We can conclude that from a statistical perspective, weak learning implies strong

learning.

3. Boosting :
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(a) Consider linear prediction with the 0/1 loss using the class of sparse linear predictors:
{w € RY|wl|lo < B}, where ||wl|y is the number of non-zeros in w, over X = R,
Analyze the VC-dimension of this class.

(b) Let H be a binary (41) hypothesis class over X with VC-dim(?) < d. Consider the
class
Hp = {x — sign( Z a;hi)|loi € Ryhy € H}
i=1..B

Analyze the VC-dimension of this class.

4. Boosting :
Derive a length-(d + 1) compression scheme for a learning rule which is an ERM over linear
separators in ¢ (with respect to the 0/1 error).

5. Boosting :

Combine the confidence boosting and accuracy boosting arguments to rigorously show that
weak learning implies strong learning. In particular, considering a hypothesis class {H,, }, if
we have a learning rule A s.t. for some ¢ = 1 — v < 2 and some § < 1, for every n and
every distribution D over &,,, w.p.> 1 — d, L(A(D)) < € and A requires m _4(n) > poly(n)
samples and runtime, specify how AdaBoost can be used to obtain L(fl(D, €, 5)) < € w.p.
> 1 — ¢ with sample and runtime complexity 7(n) < poly(n, 1/¢ log(1/5)). Provide an
explicit expression for the bound on the resulting sample complexity.



