
Computational and Statistical Learning Theory

Problem set 8

Due: December 1st

Please send your solutions to learning-submissions@ttic.edu

Problems
1. Stability :

(a) Use McDiamird’s inequality to show that if a learning rule A is ε(m) stable, then with
probability greater than 1− δ,

L(A) ≤ L̂(A) + f(ε(m), log(1/δ),m)

where f has only a polynomial dependence on log(1/δ). Write down f explicitly.

(b) Use the above guarantee to analyze the RERM learning rule A(S) = argmin L̂(w) +

λ
2
‖w‖22, for linear prediction with a Lipschitz bounded loss, and obtain a learning guar-

antee for the norm-bounded linear predictor class {w|‖w‖2 ≤ B}.
Write down the resulting sample complexity, as well as the sample complexity obtained
from the stability-based analysis we did in class, and the sample complexity of ERM
we obtained from concentration-based arguments.

2. Boosting :
For any binary hypothesis class H over X , and some ε < 1

2
and γ < 1, assume there

exists a learning rule A(S) and a sample size m s.t. for any distribution D(X ,±1) where
infh∈H LD(h) = 0, we have that w.p. ≥ 1− γ over S ∼ Dm, L(A(S)) < ε. Prove an upper
bound on the VC-dimension ofH as a function of m, ε and δ, with a polynomial dependence
on m. We can conclude that from a statistical perspective, weak learning implies strong
learning.

3. Boosting :
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(a) Consider linear prediction with the 0/1 loss using the class of sparse linear predictors:
{w ∈ Rd|‖w‖0 ≤ B} , where ‖w‖0 is the number of non-zeros in w, over X = Rd.
Analyze the VC-dimension of this class.

(b) Let H be a binary (±1) hypothesis class over X with VC-dim(H) ≤ d. Consider the
class

HB = {x 7→ sign(
∑
i=1...B

αihi)|αi ∈ R, hi ∈ H}

Analyze the VC-dimension of this class.

4. Boosting :
Derive a length-(d+1) compression scheme for a learning rule which is an ERM over linear
separators in Rd (with respect to the 0/1 error).

5. Boosting :
Combine the confidence boosting and accuracy boosting arguments to rigorously show that
weak learning implies strong learning. In particular, considering a hypothesis class {Hn}, if
we have a learning rule A s.t. for some ε = 1 − γ < 2 and some δ < 1, for every n and
every distribution D over Xn, w.p.≥ 1− δ, L(A(D)) < ε and A requires mA(n) ≥ poly(n)
samples and runtime, specify how AdaBoost can be used to obtain L(Ã(D, ε̃, δ̃)) ≤ ε̃ w.p.
≥ 1 − δ̃ with sample and runtime complexity m̃(n) ≤ poly(n, 1/ε̃, log(1/δ̃)). Provide an
explicit expression for the bound on the resulting sample complexity.
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