Convex Optimization – Lecture 2

Today:

- Convex Analysis
- Center-of-mass Algorithm

Convex Analysis

Convex Sets

<u>Definition</u>: A set $C \subseteq \mathbb{R}^n$ is *convex* if for all $x, y \in C$ and all $0 \le \lambda \le 1$,

$$\lambda x + (1 - \lambda)y \in C$$

Operations that preserve convexity:

- Intersection of convex sets is convex
- Scaling, translation, or generally affine transformations (f(x) = Ax + b)

Convex combination: The point $\sum_{i=1}^k \theta_i x_i$ such that $\theta_i \geq 0$ for all i, and $\sum_{i=1}^k \theta_i = 1$ is a *convex combination* of x_1, \ldots, x_k .

Claim: If C is convex and $x_i \in C$ for all i, then $\sum_{i=1}^k \theta_i x_i \in C$.

Convex hull: The convex hull of a set S, denoted conv(S), is the intersection of all convex sets containing S.

Equal to the set of all (finite) convex combinations of points in S:

$$conv(S) = \left\{ \sum_{i=1}^{k} \theta_i x_i \mid \text{finite } k, \sum_i \theta_i = 1, \theta_i \ge 0, x_i \in S \right\}$$

Two special convex sets: hyperplanes and halfspaces

Hyperplane: $\{x \in \mathbb{R}^n \mid \langle a, x \rangle = b\}$, where $a \in \mathbb{R}^n$, $a \neq 0$, $b \in \mathbb{R}$.

Halfspace: $\{x \in \mathbb{R}^n \mid \langle a, x \rangle \leq b\}$

Polyhedra: A polyhedron is the intersection of a finite number of halfspaces. May be unbounded.

A *polytope* is the convex hull of a finite number of points. Always bounded.

Separating hyperplane theorem

Suppose $C, D \subseteq \mathbb{R}^n$ are convex and disjoint: $C \cap D = \emptyset$. Then there exist $a \neq 0, b$ s.t. $\langle a, x \rangle \leq b$ for all $x \in C$, and $\langle a, x \rangle \geq b$ for all $x \in D$.

Not true if either of the sets is not convex.

Special case: separating a point from a convex set.

Finding a convex set given a point outside it.

Supporting hyperplane theorem

A supporting hyperplane to a set $C \in \mathbb{R}^n$ at a boundary point x_0 is the set: $\{x \mid \langle a, x \rangle = b\}, \langle a, x_0 \rangle = b$, and for all $x \in C, \langle a, x \rangle \leq b$.

Theorem: If C is (open) convex, then there exists a supporting hyperplane at every boundary point of C.

Clarification: the converse statement is also true.

Convex Functions

<u>Definition</u>: Let $C \subseteq \mathbb{R}^n$ be a convex set. A function $f: C \mapsto \mathbb{R}$ is *convex* if for all $x, y \in C$ and all $0 \le \lambda \le 1$,

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

We say that f is concave if -f is convex.

Extended-value function: Sometimes it is convenient to extend a convex function to all of \mathbb{R}^n by defining its value to be $+\infty$ outside the domain. The extended-value function $\tilde{f}: \mathbb{R}^n \mapsto \mathbb{R} \cup \{\infty\}$ is defined as:

$$\tilde{f}(x) = \begin{cases} f(x) & x \in C \\ \infty & x \notin C \end{cases}$$

We can then recover the domain of the original function f from the extension \tilde{f} by $C = \{x \mid \tilde{f}(x) < \infty\}.$

First-order condition

The gradient is a *linear functional* that maps each column vector $x \in \mathbb{R}^n$ to the dual vector space $(\mathbb{R}^n)^*$.

First order condition: A differentiable f is convex iff C is convex and:

$$f(x) \ge f(x_0) + \langle \nabla f(x_0), x - x_0 \rangle$$
 for all $x_0, x \in C$

This is the first-order Taylor approximation of f at x_0 .

The condition states that this linear approximation is a global *underestimator* of the function.

For convex functions, the local information (function value and gradient at a point) gives global information (underestimator).

Characterization of an optimal point:

$$\nabla f(x_0) = 0 \quad \Rightarrow \quad x_0 \in \operatorname*{argmin}_{x \in C} f(x)$$

subgradient

We can define a similar first-order condition for non-differentiable functions. Definition: $g \in \mathbb{R}^n$ is a *subgradient* of f at x_0 iff:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$
 for all $x \in C$

<u>Definition:</u> The set of all subgradients is called a *subdifferential*:

$$\partial f(x_0) = \{g \mid g \text{ is a subgradient of } f \text{ at } x_0\}$$

We will use $\nabla f(x_0)$ to denote a single subgradient.

For differentiable functions, the subgradient is unique and given by the gradient. For non-differentiable functions, the subgradient may not be unique.

Theorem: $f: C \mapsto \mathbb{R}$ is convex \Leftrightarrow there exists a subgradient at each $x \in C$. This means that convexity is characterized as having subgradients.

Similar to the differentiable case, we have a characterization of an optimum: Theorem: $0 \in \partial f(x^*) \Leftrightarrow x^* \in \operatorname{argmin}_{x \in C} f(x)$.

Proof:

 \Rightarrow From the definition of subgradients we have:

$$f(x) \ge f(x^*) + \langle 0, x - x^* \rangle = f(x^*)$$
 for all $x \in C$

 \Leftarrow Since x^* is a minimizer we have for all $x \in C$:

$$f(x^*) \le f(x) \implies f(x) \ge f(x^*) + \langle 0, x - x^* \rangle$$

and therefore, $0 \in \partial f(x^*)$.

This means that every local minimum is also a global minimum of f.

Epigraph

The *epigraph* of a function $f: \mathbb{R}^n \to \mathbb{R}$ is defined as:

$$\operatorname{epi}(f) = \left\{ (x, t) \in \mathbb{R}^{n+1} \mid f(x) \le t \right\}$$

Claim: f is a convex $function \Leftrightarrow epi(f)$ is a convex set.

A subgradient defines a supporting hyperplane to the epigraph. May not be unique.

Sublevel sets

The α -sublevel set of a function $f: \mathbb{R}^n \to \mathbb{R}$ is defined as

$$S_{\alpha} = \{ x \mid f(x) \le \alpha \}$$

<u>Claim</u>: If f is a convex function $\Rightarrow S_{\alpha}$ is a convex set for all α .

Proof: If $(x, y) \in S_{\alpha}$, then $f(x) \leq \alpha$ and $f(y) \leq \alpha$, and so $f(\lambda x + (1 - \lambda)y) \leq \infty$

 $\lambda f(x) + (1 - \lambda)f(y) \le \alpha$ for $0 \le \lambda \le 1$, and hence $\lambda x + (1 - \lambda)y \in S_{\alpha}$.

The converse is not true! But defines quasiconvex functions:

<u>Definition</u>: $f: \mathbb{R}^n \to \mathbb{R}$ is quasiconvex if its sublevel sets S_α are convex for all α .

A subgradient defines a supporting hyperplane to the sublevel set:

Claim: Denote $f(x_0) = \alpha$. If $\nabla f(x_0) \neq 0$ then $S_\alpha \subseteq \{x \mid \langle \nabla f(x_0), x - x_0 \rangle \leq 0\}$. Proof: $x \in S_\alpha$ means that $f(x) \leq f(x_0)$. In addition, since f is convex, we have that: $f(x) \geq f(x_0) + \langle \nabla f(x_0), x - x_0 \rangle$. Now,

$$\langle \nabla f(x_0), x \rangle \le \langle \nabla f(x_0), x_0 \rangle + (f(x) - f(x_0))$$

 $\le \langle \nabla f(x_0), x_0 \rangle$

This is very important for optimization. If we are at x_0 and want to improve (reduce) f, then the subgradient excludes half of the space.

Center-of-mass Algorithm

Extends Bisection to higher dimensions. Special type of *cutting-plane* methods (query point may vary).

Problem:

$$\min_{x \in C} f(x)$$

f, C convex.

Assumptions:

- Function is bounded: $|f| \leq B$.
- Access to first- and zero-order oracles.

Center-of-mass Algorithm [Levin, Newman 1965]

Let $G^{(1)} = C$.

For $t = 1, \ldots, T$ do

- i) Compute center of mass: $c_t = \frac{\int_{x \in G^{(t)}} x dx}{\int_{x \in G^{(t)}} dx}$
- ii) Compute subgradient at c_t , obtain $g_t \in \partial f(c_t)$, and let:

$$G^{(t+1)} = G^{(t)} \cap \{x \in \mathbb{R}^n \mid \langle g_t, x - c_t \rangle \le 0\}$$

Output: $\tilde{x} \in \operatorname{argmin}_{1 \le t \le T} f(c_t)$.

We next analyze the convergence of this algorithm.

Grunbaum's Theorem (1960)

Let $G \subseteq \mathbb{R}^n$ be a bounded convex set, with center of mass c, then for any hyperplane passing through c (i.e., $\{g \mid \langle g, x - c \rangle = 0\}$), we have:

$$\operatorname{Vol}\left(G \cap \left\{x \in \mathbb{R}^n \mid \langle g, x - c \rangle < 0\right\}\right) \le \left(1 - \frac{1}{e}\right) \operatorname{Vol}(G)$$

Therefore, after t iterations of the algorithm:

$$\operatorname{Vol}(G^{(t)}) \le \left(1 - \frac{1}{e}\right)^t \operatorname{Vol}(C)$$

Claim:

$$f(\tilde{x}) - f^* \le 2B \left(1 - \frac{1}{e}\right)^{t/n}$$

This implies that in order to get ϵ -suboptimality it is enough to run for $T = 2.2n \log(2B/\epsilon)$ iterations (queries to the oracles).

Solve: $2B\left(1-\frac{1}{e}\right)^{t/n} \le \epsilon \text{ for } t.$

This means linear convergence.

Proof:

Let x^* be a minimizer of f (for simplicity, we assume it's unique). Due to the update rule, we have that:

$$\langle g_t, x - c_t \rangle > 0$$
 for all $x \in (G^{(t)} \setminus G^{(t+1)})$

Now, since $g_t \in \partial f(c_t)$ then: $f(x) \geq f(c_t) + \langle g_t, x - c_t \rangle$. So $f(x) > f(c_t)$ for all $x \in (G^{(t)} \setminus G^{(t+1)})$. Therefore, we never exclude the optimal point, so $x^* \in G^{(t)}$ for all t.

Next, for $0 \le \epsilon \le 1$ define the set $C_{\epsilon} = \{(1 - \epsilon)x^* + \epsilon x \mid x \in C\}$ (shrinking C around x^*).

Note that $Vol(C_{\epsilon}) = \epsilon^n Vol(C)$.

Combining this with $Vol(G^{(t)}) \leq (1 - \frac{1}{e})^t Vol(C)$ we can defer that:

$$\epsilon > \left(1 - \frac{1}{e}\right)^{t/n} \implies \operatorname{Vol}(G^{(t+1)}) < \operatorname{Vol}(C_{\epsilon})$$

This implies that for $\epsilon > (1 - \frac{1}{e})^{t/n}$ there must be a time $1 \le r \le t$, and $x_{\epsilon} \in C_{\epsilon}$ such that $x_{\epsilon} \in G^{(r)}$ and $x_{\epsilon} \notin G^{(r+1)}$.

From the argument above: $x \in (G^{(t)} \setminus G^{(t+1)}) \Rightarrow f(c_t) < f(x_{\epsilon})$.

On the other hand, from convexity we have:

$$f(\underbrace{(1-\epsilon)x^* + \epsilon x}) \le (1-\epsilon)f(x^*) + \epsilon f(x)$$

$$= f(x^*) - \epsilon f(x^*) + \epsilon f(x)$$

$$\le f(x^*) + 2\epsilon B$$

So together:

$$f(c_t) < f(x^*) + 2B\epsilon$$

Substituting for ϵ completes the proof.

<u>Comment:</u> Finding the center-of-mass is hard in general (even for polyhedra), so this is fast but each iteration is expensive.