Convex Optimization
Lecture 16

Today:

e Projected Gradient Descent
e Conditional Gradient Descent
e Stochastic Gradient Descent

e Random Coordinate Descent



Recall: Gradient Descent

Gradient descent algorithm:

Init x(®) € dom(f)

lterate  x (KD  x (k) t(k)Vf(x(k))

Convergence:!
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Smoothness and Strong Convexity

Def: f is u-strongly convex Def: f is M-smooth
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Can be viewed as a condition on the directional 2" derivatives
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What about constraints?

mxin f(x)

st. r e X

where X is convex



Projected Gradient Descent

Idea: make sure that points are feasible by projecting onto X

y(k+1)

Algorithm: .

projection

. y<k+1> o) g0
where ¢*) € o f (z™)

° x(k—i—l) _ HX(y(k—H))

gradient step

The projection operator Iy onto X

[y(2) = min ||z — ||

Notice: subgradient instead of gradient (even for differentiable functions)



Projected gradient descent — convergence rate:
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Same as unconstrained case!
But, requires projection... how expensive is that?

Examples:

Fuclidean ball
PSD constraints
Linear constraints Axz < b

Sometimes as expensive as solving the original optimization problem!



Conditional Gradient Descent

A projection-free algorithm!
Introduced for QP by Marguerite Frank and Philip Wolfe (1956)

Algorithm

o Initialize: 29 € X

o s = argmin(V f(2®)), s)
seX




Notice

e f assumed M-smooth

e X assumed bounded

e First-order oracle

e Linear optimization (in place of projection)

e Sparse iterates (e.g., for polytope constraints)

Convergence rate

For M-smooth functions with step size %) = =

M R?

# iterations required for e-optimality: =

where R = sup, e ||© — y|
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Define: %) = f(x®)) — f(z*), we have:

S+ < (1 — 4y50) M(t(];)>232

A simple induction shows that for ¢(%) = k:—2+1

5 < 2M R?
= k+1

Same rate as projected gradient descent, but without projection!
Does need linear optimization

[smoothness]

lupdate]

[convexity]



What about strong convexity?
Not helpful! Does not give linear rate (xlog(1/¢))
* Active research



Randommness in Convex Optimization

Insight: first-order methods are robust — inexact gradients are sufficient

As long as gradients are correct on average, the error will vanish

Long history (Robbins & Monro, 1951)



Stochastic Gradient Descent

Motivation
Many machine learning problems have the form of empirical risk minimization

min Z filz) + \Q(x

reR!
where f; are convex and A is the regularization constant

Classification: SVM, logistic regression
Regression: least-squares, ridge regression, LASSO

Cost of computing the gradient?
m-n

What if m is VERY large?
We want cheaper iterations



Idea: Use stochastic first-order oracle: for each point x € dom( f) returns a stochas-
tic gradient

g(x) st Elg(z)] € 0f ()

That is, g is an unbiased estimator of the subgradient

Example

min % D Ufilz) + X))

For this objective, select j € {1,...,m} w.a.r. and return VF}(z)
Then,

Blj(a)) = = 3" VE(2) = V(@)



SGD iterates:
2D k) t(k)g(:c(k))

How to choose step size t#)7

e Lipschitz case: t*)

S

e [-strongly-convex case: tF) ;le

Note: decaying step size!

(Figures borrowed from Francis Bach’s slides)
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Convergence rates
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Additional assumption: E[||g(z)||*] < B? for all x € dom(f)

Comment: holds in expectation, with averaged iterates

E

Similar rates as with exact gradients!
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where E[[|V f(z) — g()[] < 0

Smoothness?

Not helpful! (same rate as non-smooth)
Lower bounds (Nemirovski & Yudin, 1983)
* Active research

Acceleration?

Cannot be easily accelerated!
Mini-batch acceleration

* Active research



Random Coordinate Descent

Recall: cost of computing exact GD update: m - n
What if n VERY is large?
We want cheaper iterations

Random coordinate descent algorithm:

e Initialize: (%) € dom(f)
o [terate: pick i(k) € {1,...,n} randomly
oD (k) t(k)vi(k)f<x(k))ez’(k)

where we denote: V,f(z) = %(az)

Assumption: f is convex and differentiable



What if f not differentiable?
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(Figures borrowed from Ryan Tibshirani’s slides)



[teration cost? V,f(x)+ O(1)
Compare to V f(x) + O(n) for GD

Example: quadratic

f(x) = %ZCTQQZ‘ —v'z

Vir)=Qx —v
Vif(z) =q¢ 'z — v,

Can view CD as SGD with oracle: g(z) = nV,f(z)e;
Clearly,

n

Blj(a)) = ~n S Vif (0)e; = V(@)

Can replace individual coordinates with blocks of coordinates



Example: SVM

Primal: \
min §||w|\2 + Z max(1 — y;w ' 2;,0)

Dual:

1
min éaTQoz —1'a

st. 0<a; <1/\ Vi

_ T
where Qi; = Yiy; 2; 2
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(Shalev-Schwartz & Zhang, 2013)



Convergence rate

Directional smoothness for f: there exist My, ..., M, s.t. forany i € {1,...,n}
re€R" andu € R

)

Note: implies f is M-smooth with M < > M,

Consider the update:

x(k+1)

No need to know M;’s, can be adjusted dynamically



Rates (Nesterov, 2012):
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Same total cost as GD, but with much cheaper iterations

Comment: holds in expectation

E {f(x“ﬁ))} <

Acceleration?
Yes!

* Active research




