
Convex Optimization
Lecture 16

Today:

• Projected Gradient Descent

• Conditional Gradient Descent

• Stochastic Gradient Descent

• Random Coordinate Descent

Recall: Gradient Descent

Gradient descent algorithm:

Gradient Descent
(Steepest Descent w.r.t Euclidean Norm)

Δ𝑥 = −𝛻𝑓 𝑥 𝑘

Reminder: We are violating here the distinction between the primal space and
the dual gradient space—we are implicitly linking them by matching
representations w.r.t. a chosen basis

Note: Δ𝑥 is not normalized (i.e. we don’t require Δ𝑥 2 = 1). This just
changes the meaning of 𝑡.

How do we choose the stepsize 𝑡 𝑘 ?

Init 𝑥 0 ∈ 𝑑𝑜𝑚(𝑓)

Iterate 𝑥 𝑘+1 ← 𝑥 𝑘 − 𝑡 𝑘 𝛻𝑓 𝑥 𝑘

Convergence:1

Lower'Bounds
• Some%upper%bounds:

• Is%this%the%best%we%can%do?
• What%if%we%allow%! "# ops?
• YES!
• When%using%only%first>order%oracle%(gradients)

• History:
• Nemirovski&%Yudin (1983)
• Nesterov (2004)

#iter
$ ≼ &' ≼ (

#iter
&' ≼ (

#iter
& ≤ *

& ≤ *
$ ≼ &' Oracle/ops

GD + log1/1 2 3∗ #

1
5# 3∗ #

1#
5#
61 78 + !(")

A>GD + log1/1 2 3∗ #

1
x x 78 + !(")1κ =M/µ

Smoothness and Strong Convexity

𝑓 𝑥 + 𝛻𝑓 𝑥 , Δ𝑥 +
𝝁
2

Δ𝑥 ଶ
ଶ ≤ 𝑓 𝑥 + Δ𝑥 ≤ 𝑓 𝑥 + 𝛻𝑓 𝑥 , Δ𝑥 +

𝑴
2

Δ𝑥 ଶ
ଶ

Can be viewed as a condition on the directional 2nd derivatives

𝝁 ≤ 𝑓௩ᇱᇱ 𝑥 = డమ

డ௧మ
𝑓 𝑥 + 𝑡𝑣 = 𝑣ୃ𝛻ଶ𝑓 𝑥 𝑣 ≤ 𝑴 (for 𝑣 ଶ = 1)

Def: 𝑓 is 𝜇-strongly convex Def: 𝑓 is 𝑀-smooth

𝑓(𝑥 + Δ𝑥)

𝑓 𝑥 + 〈𝛻𝑓 𝑥 , Δ𝑥〉

𝑓 𝑥 + 𝛻𝑓 𝑥 , Δ𝑥 +
𝜇
2

Δ𝑥 ଶ

𝑓 𝑥 + 𝛻𝑓 𝑥 , Δ𝑥 +
𝑀
2

Δ𝑥 ଶ

What about constraints?

min
x
f (x)

s.t. x ∈ X

where X is convex

Projected Gradient Descent

Idea: make sure that points are feasible by projecting onto X

Algorithm:

3.1. Projected Subgradient Descent for Lipschitz functions 21

xt

yt+1

gradient step

(3.2)

xt+1

projection (3.3)

X

Fig. 3.2 Illustration of the Projected Subgradient Descent method.

not exist) by a subgradient g 2 @f(x). Secondly, and more importantly,

we make sure that the updated point lies in X by projecting back (if

necessary) onto it. This gives the Projected Subgradient Descent algo-

rithm which iterates the following equations for t � 1:

yt+1 = xt � ⌘gt, where gt 2 @f(xt), (3.2)

xt+1 = ⇧X (yt+1). (3.3)

This procedure is illustrated in Figure 3.2. We prove now a rate of

convergence for this method under the above assumptions.

Theorem 3.1. The Projected Subgradient Descent with ⌘ = R
L
p

t
sat-

isfies

f

1

t

tX

s=1

xs

!
� f(x⇤)  RLp

t
.

Proof. Using the definition of subgradients, the definition of the

method, and the elementary identity 2a>b = kak2 + kbk2 � ka � bk2,

x(k)

x(k+1)

y(k+1)

• y(k+1) = x(k) − t(k)g(k)
where g(k) ∈ ∂f (x(k))

• x(k+1) = ΠX (y(k+1))

The projection operator ΠX onto X :

ΠX (x) = min
z∈X
‖x− z‖

Notice: subgradient instead of gradient (even for differentiable functions)

Projected gradient descent – convergence rate:

µ � ∇2 �M ∇2 �M ‖∇‖ ≤ L
‖∇‖ ≤ L,
µ � ∇2

κ log 1
ε

M‖x∗‖2+(f(x1)−f(x∗))
ε

L2‖x∗‖2
ε2

L2

µε

Same as unconstrained case!
But, requires projection... how expensive is that?

Examples:
Euclidean ball
PSD constraints
Linear constraints Ax ≤ b

Sometimes as expensive as solving the original optimization problem!

Conditional Gradient Descent

A projection-free algorithm!
Introduced for QP by Marguerite Frank and Philip Wolfe (1956)

Algorithm

• Initialize: x(0) ∈ X

• s(k) = argmin
s∈X

〈∇f (x(k)), s〉

• x(k+1) = x(k) + t(k)(s(k) − x(k))

Notice

• f assumed M -smooth

• X assumed bounded

• First-order oracle

• Linear optimization (in place of projection)

• Sparse iterates (e.g., for polytope constraints)

Convergence rate

For M -smooth functions with step size t(k) = 2
k+1:

iterations required for ε-optimality: MR2

ε

where R = supx,y∈X ‖x− y‖

Proof

f (x(k+1)) ≤f (x(k)) + 〈∇f (x(k)), x(k+1) − x(k)〉 +
M

2
‖x(k+1) − x(k)‖2 [smoothness]

=f (x(k)) + t(k)〈∇f (x(k)), s(k) − x(k)〉 +
M

2
(t(k))2‖s(k) − x(k)‖2 [update]

≤f (x(k)) + t(k)〈∇f (x(k)), x∗ − x(k)〉 +
M

2
(t(k))2R2

≤f (x(k)) + t(k)(f (x∗)− f (x(k))) +
M

2
(t(k))2R2 [convexity]

Define: δ(k) = f (x(k))− f (x∗), we have:

δ(k+1) ≤ (1− t(k))δ(k) +
M(t(k))2R2

2

A simple induction shows that for t(k) = 2
k+1:

δ(k) ≤ 2MR2

k + 1

Same rate as projected gradient descent, but without projection!
Does need linear optimization

What about strong convexity?
Not helpful! Does not give linear rate (κ log(1/ε))
? Active research

Randomness in Convex Optimization

Insight: first-order methods are robust – inexact gradients are sufficient

As long as gradients are correct on average, the error will vanish

Long history (Robbins & Monro, 1951)

Stochastic Gradient Descent

Motivation
Many machine learning problems have the form of empirical risk minimization

min
x∈Rn

m∑

i=1

fi(x) + λΩ(x)

where fi are convex and λ is the regularization constant

Classification: SVM, logistic regression
Regression: least-squares, ridge regression, LASSO

Cost of computing the gradient?
m · n

What if m is VERY large?
We want cheaper iterations

Idea: Use stochastic first-order oracle: for each point x ∈ dom(f) returns a stochas-
tic gradient

g̃(x) s.t. E[g̃(x)] ∈ ∂f (x)

That is, g̃ is an unbiased estimator of the subgradient

Example

min
x∈Rn

1

m

m∑

i=1

Fi(x)︷ ︸︸ ︷
(fi(x) + λΩ(x))

For this objective, select j ∈ {1, . . . ,m} u.a.r. and return ∇Fj(x)
Then,

E[g̃(x)] =
1

m

∑

i

∇Fi(x) = ∇f (x)

SGD iterates:
x(k+1) ← x(k) − t(k)g̃(x(k))

How to choose step size t(k)?

• Lipschitz case: t(k) ∝ 1√
k

• µ-strongly-convex case: t(k) ∝ 1
µk

Note: decaying step size!

GD SGD

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost

time
lo

g(
ex

ce
ss

 c
os

t)

stochastic

deterministic

(Figures borrowed from Francis Bach’s slides)

Convergence rates

µ � ∇2 �M ∇2 �M ‖∇‖ ≤ L
‖∇‖ ≤ L,
µ � ∇2

GD κ log 1
ε

M‖x∗‖2
ε

L2‖x∗‖2
ε2

L2

µε

SGD ? ? B2‖x∗‖2
ε2

B2

µε

Additional assumption: E[‖g̃(x)‖2] ≤ B2 for all x ∈ dom(f)

Comment: holds in expectation, with averaged iterates

E

[
f

(
1

K

K∑

k=1

x(k)

)]
− f (x∗) ≤ . . .

Similar rates as with exact gradients!

µ � ∇2 �M ∇2 �M ‖∇‖ ≤ L
‖∇‖ ≤ L,
µ � ∇2

GD κ log 1
ε

M‖x∗‖2
ε

L2‖x∗‖2
ε2

L2

µε

AGD
√
κ log 1

ε
M‖x∗‖2√

ε
× ×

SGD ? ‖x∗‖σ
ε2

+ M‖x∗‖2
ε

B2‖x∗‖2
ε2

B2

µε

where E[‖∇f (x)− g̃(x)‖2] ≤ σ2

Smoothness?
Not helpful! (same rate as non-smooth)
Lower bounds (Nemirovski & Yudin, 1983)
? Active research

Acceleration?
Cannot be easily accelerated!
Mini-batch acceleration
? Active research

Random Coordinate Descent

Recall: cost of computing exact GD update: m · n
What if n VERY is large?
We want cheaper iterations

Random coordinate descent algorithm:

• Initialize: x(0) ∈ dom(f)

• Iterate: pick i(k) ∈ {1, . . . , n} randomly

x(k+1) = x(k) − t(k)∇i(k)f (x(k))ei(k)

where we denote: ∇if (x) = ∂f
∂xi

(x)

Assumption: f is convex and differentiable

What if f not differentiable?

x1

x2

f

x1

x2

−4 −2 0 2 4
−4

−2
0

2
4

●

A: No! Look at the above counterexample

Q: Same question again, but now f (x) = g(x) +
Pn

i=1 hi(xi), with
g convex, di↵erentiable and each hi convex ... ? (Non-smooth part
here called separable)

5

(Figures borrowed from Ryan Tibshirani’s slides)

Iteration cost? ∇if (x) + O(1)
Compare to ∇f (x) + O(n) for GD

Example: quadratic

f (x) =
1

2
x>Qx− v>x

∇f (x) = Qx− v
∇if (x) = q>i x− vi

Can view CD as SGD with oracle: g̃(x) = n∇if (x)ei
Clearly,

E[g̃(x)] =
1

n
n
∑

i

∇if (x)ei = ∇f (x)

Can replace individual coordinates with blocks of coordinates

Example: SVM
Primal:

min
w

λ

2
‖w‖2 +

∑

i

max(1− yiw>zi, 0)

Dual:

min
α

1

2
α>Qα− 1>α

s.t. 0 ≤ αi ≤ 1/λ ∀i
where Qij = yiyj z

>
i zj

SHALEV-SHWARTZ AND ZHANG

λ astro-ph CCAT cov1

10−3

2 4 6 8 10 12 14 16 18 20 22
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SDCA
SDCA−Perm
SGD

2 4 6 8 10 12 14 16 18 20 22
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SDCA
SDCA−Perm
SGD

2 4 6 8 10 12 14 16 18 20 22
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SDCA
SDCA−Perm
SGD

10−4

5 10 15 20 25 30 35 40
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SDCA
SDCA−Perm
SGD

2 4 6 8 10 12 14 16 18 20 22
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SDCA
SDCA−Perm
SGD

2 4 6 8 10 12 14 16 18 20 22
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SDCA
SDCA−Perm
SGD

10−5

10 20 30 40 50 60 70 80 90 100 110
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SDCA
SDCA−Perm
SGD

5 10 15 20 25 30 35
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SDCA
SDCA−Perm
SGD

5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SDCA
SDCA−Perm
SGD

10−6

50 100 150 200 250 300
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SDCA
SDCA−Perm
SGD

20 40 60 80 100 120 140 160 180 200
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SDCA
SDCA−Perm
SGD

10 20 30 40 50 60 70 80 90 100 110
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SDCA
SDCA−Perm
SGD

Figure 7: Comparing the primal sub-optimality of SDCA and SGD for the non-smooth hinge-loss
(γ = 0). In all plots the horizontal axis is the number of iterations divided by training set
size (corresponding to the number of epochs through the data).

596

(Shalev-Schwartz & Zhang, 2013)

Convergence rate

Directional smoothness for f : there exist M1, . . . ,Mn s.t. for any i ∈ {1, . . . , n},
x ∈ Rn, and u ∈ R

|∇if (x + uei)−∇if (x)| ≤Mi|u|

Note: implies f is M -smooth with M ≤∑iMi

Consider the update:

x(k+1) = x(k) − 1

Mi(k)
∇i(k)f (x(k)) · ei(k)

No need to know Mi’s, can be adjusted dynamically

Rates (Nesterov, 2012):

µ � ∇2 �M ∇2 �M ‖∇‖ ≤ L
‖∇‖ ≤ L,
µ � ∇2

GD κ log 1
ε

M‖x∗‖2
ε

L2‖x∗‖2
ε2

L2

µε

CD nκ log 1
ε , κ =

∑
iMi
µ

n‖x∗‖2∑iMi
ε × ×

Same total cost as GD, but with much cheaper iterations

Comment: holds in expectation

E
[
f (x(k))

]
− f ∗ ≤ . . .

Acceleration?
Yes!
? Active research

