
CMSC 35900-2: A Probabilistic Approach to Machine
Learning

Problem set 1

Due Thursday, September 28th

Exchangeability

Recall the definition of an exchangeable sequence of random variables:

Definition 1. The random variables X1, X2, . . . , XN are exchangeable iff for every permutation
π ∈ SN , the joint distribution of (Xπ(1), Xπ(2), . . . , Xπ(N) is identical to the joint distribution of
X1, X2, . . . , XN .

Definition 2. The infinite sequence of random variables X1, X2, . . . is exchangeable iff every
finite subset of the variables is exchangeable.

de Finetti’s Theorem states that an infinite sequence of random variables is exchangeable iff the
random variables are i.i.d. conditioned on some other random variable.

Certainly if X1, X2, . . . are i.i.d. given Z than they are exchangeable, regardless of whether the
number of exchangeable random variables is finite or infinite. But the converse is not necessarily
true if the sequence is infinite.

Problem 1 Give a concrete joint distribution over two random binary random variables X1, X2

such that X1, X2 are exchangeable but there exists no Z such that they are i.i.d. given Z.

Model Comparison for the Naı̈ve Bayes

In this section we consider two alternate Naı̈ve Bayes models,H2 based on only two features, and
H3 based on three features. As in class, we use Yi to denote the binary label, and Xi[1], . . . , Xi[3]
to denote the binary features, with:

Yi|q ∼ Ber(q) q ∼ Uniform[0, 1]Xi[j]|Y, p ∼ Ber(pYi [j]) py[j] ∼ Beta(α, α). (1)
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With α a fixed parameter. In H3 the conditional distributions (1) are for j = 1, 2, 3, while in H2

these only describe the first two features, j = 1, 2, while for the last feature there is only a single
parameter p[3] with:

Xi[3]|p ∼ Ber(p[3]) p[3] ∼ .Beta(α, α) (2)

Notice that both models describe a joint distribution for (Yi, Xi[1], Xi[2], Xi[3]), but in H2 the
third feature is completely independent of the label and the two other features.

Our goal is to choose between the two models by comparing the Bayesian evidence for each one.
To do so, it will be useful to first remind ourselves of the evidence for a simple Beta-Bernoulli
model:

Problem 2 Let θ ∼ Beta(α, β) and Zi|θ ∼ i.i.d.Ber(θ). Calculate the Bayesian evidence
P (Z1, . . . , Zn) for a sequence of n observations Z1, . . . , Zn, k of which are positive.

Using the above calculation, we now turn to comparing the two models H2 and H3. We will use
D = ((Y1, X1[2], X1[2], X1[3]), . . . , (YN , XN [2], XN [2], XN [3])) to denote an observed training
set of N labeled examples. We will also refer to the following sets of random variables: Y =
(Y1, Y2, . . . , YN) and X[j] = (X1[j], X2[j], . . . , XN [j]).

Problem 3

1. First consider the likelihood of the maximum-likelihood estimates under each of the mod-
els. Which one will always be higher (or equal)? Why?

2. Using the Bayes Ball rules or the notion of d-separation, explain why, in each of the two
models, for each j 6= j′ we have X[j]⊥X[j′]|Y,H (recall each of these refers to a set of
random variables, as defined above).

3. Conclude that in each of the two models the Bayesian evidence factorizes as: P (D|H) =
P (Y |H)

∏
j P (X[j]|Y,H).

4. Write down an expression for P (X[3]|Y,H) under each of the two models, in terms of
counts of the form ](Y = y,X[j] = x).

5. Write down an expression for the evidence ratio P (D|H2)
P (D|H3)

.

Naı̈ve Bayes with Continuous Features and the Gaussian Mix-
ture Model

We would now like to consider a model with the same dependency structure as the Naı̈ve Bayes
model we studied in class, but where Xi[j] are real-valued (instead of binary) and Gaussian
distributed conditioned on Yi.
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Problem 4 We will first establish that a conjugate prior to the mean of a Gaussian distribution
is a Gaussian itself. Let θ ∼ N (µ0, σ

2
0) and Zi|θ ∼ i.i.d.N (θ, σ).

1. Show that the posterior distribution θ|Z1, . . . , ZN is Gaussian and calculate its mean and
variance. I.e. find the values of µN , σN for which θ|Z1, . . . , ZN ∼ N (µN , σN).

2. What are the maximum likelihood, maximum a-posteriori and posterior mean estimates of
θ given observations Z1, . . . , ZN?

3. Find the posterior distribution of ZN+1|Z1, . . . , ZN (Hint: express ZN+1 as ZN+1 = θ +
N (0, σ2)). Compare this distribution to just using the posterior mean estimate, i.e. to
P (ZN+1|θPM).

We now turn the the Naı̈ve Bayes model itself, with real valued features Xi[j]. Instead of the
parameters py[j] we will introduce the parameters µy[j] which are conditional means of Xi[j].
The model is then specified as:

Yi|q ∼ Ber(q) q ∼ Uniform[0, 1] (3)

Xi[j]|Y, p ∼ N (µYi [j], σ2) µy[j] ∼ Beta(α, α). (4)

Problem 5

1. Show that, given the parameters, the inverse conditional distribution is of the logistic linear
form:

P (Yi|Xi, µ) =
1

1 + e−(w′Xi+w0)

Write down the expression of w[j] and w0 as a function of the parameters p, q.

2. (Optional) Show that the posterior P (YN+1|XN+1, D) also has a logistic linear form.

3. (Optional) In this Gaussian Naı̈ve Bayes model, Xi|Yi, µ is a spherical Gaussian with fixed
variance (only the mean depends on Yi and µ). That is, considering Xi and µy as a vector
in Rk, we have Xi|Yi, µ ∼ N (µYi , σ2I). Now consider a more general model in which the
variance is not fixed, but rather σ0, σ1 ∈ R are parameters and Xi|Yi, µ ∼ N (µYi , (σYi)2I).
What form does Yi|Xi, µ, σ take under this model? What are the possible decision bound-
aries for prediction using estimated values of parameters? How do the answers change
when the Gaussian are not restricted to be spherical: Xi|Yi, µ ∼ N (µYi ,ΣYi) with Σ0,Σ1 ∈
Rk×k being arbitrary covariances matrices?

Naı̈ve Bayes vs. Linear Discrimination

We saw how for both the Bernoulli Naı̈ve Bayes model and the Gaussian Naı̈ve Bayes model the
inverse conditional Yi|Xi, params is a linear logistic and the decision boundary is linear. We will
now explore the differences between the two models.

3



Problem 5 We first consider a Gaussian Naı̈ve Bayes model (as in equations (??)) with a single
feature Xi[1] and with σ2 = 1 and σ2

0 = 106 (this corresponds to a fairly weak prior on µ), and a
linearly separable data set consisting of the four labeled points:

(X1 = −1, Y1 = 0), (X2 = −1, Y1 = 0), (X3 = 1, Y3 = 1), (X4 = 100, Y4 = 1)

1. What is the decision boundary of discriminative logistic regression trained by maximizing
the conditional likelihood on this data set? Imposing a proper prior on the weight vector of
such a logistic model would change the decision boundary slightly, but with a weak enough
prior (high enough variance on the weight vector), this will be a very small change. What
is the training error for such a predictor (i.e. how many errors will such a predictor make
on the training set itself)?

2. What is the decision boundary of a predictor obtained by using the maximum likelihood
parameter settings µMAP, qMAP of the Gaussian Naı̈ve Bayes classifier? Using the true MAP
parameter settings, or the true posterior, would yield very similar predictions since the prior
µy ∼ N (0, 106) is very weak. What is the training error for such a predictor?

3. Why does a generative approach fail here?

4. (Optional) Construct a data set displaying a similar behavior for the Bernoulli Naı̈ve Bayes
model. This time one feature will not be enough, but it is possible to construct an example
with four features, such that the training set is linearly separable while the predictor ob-
tained by using the maximum likelihood parameter setting (nor using the MAP setting or
the posterior mean) of the Naı̈ve Bayes model does not correctly separate the training data.
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