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Abstract
Recently regret bounds for online convex optimization have been derived under very general

conditions. These results can be used also in the stochastic batch setting by applying online-to-
batch conversions. In this paper we study whether stochastic guarantees can be obtained more di-
rectly, for example using uniform convergence guarantees. We discover a surprising and complex
situation: although the stochastic convex optimization problem is solvable (e.g. using online-to-
batch conversions), no uniform convergence holds in the general case, and empirical minimiza-
tion might fail. Rather then being a difference between online methods and a global minimization
approach, we show that the key ingredient is strong convexity and regularization. Using stability
arguments, we prove that strongly convex problems are solvable using empirical minimization.
We then understand how weakly convex problems can be solved using regularization, and discuss
how online algorithms can also be understood in terms of regularization.

1 Introduction
We consider the stochastic convex minimization problem

argmin
w∈W

F (w) (1)

where F (w) = Eθ [f(w; θ)] is the expectation of a random objective with respect to θ. The
optimization is based on an i.i.d. sample θ1, . . . , θn drawn from an unknown distribution. The goal
is to choose w based on the sample and full knowledge of f(·, ·) and W so as to minimize F (w).
A special case is the familiar prediction setting where θ = (x, y) is an instance-label pair and, e.g.,
f(w; x, y) = `(〈w, φ(x)〉, y) for some convex loss function `.

The situation in which the stochastic dependence on w is linear, as in the preceding example, is
fairly well understood. When the domain W and the mapping φ are bounded, one can uniformly
bound the deviation between the expected objective F (w) and the empirical average

F̂ (w) = Ê [f(w; θ)] = 1
n

n∑
i=1

f(w; θi). (2)

This uniform convergence of F̂ (w) to F (w) justifies choosing the empirical minimizer

ŵ = arg min
w

F̂ (w), (3)
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and guarantees that the expected value of F (ŵ) converges to the optimal value F (w?), where w? =
arg minw F (w) is the population optimum.

Our goal here is to consider the stochastic convex optimization problem more broadly, without
assuming any metric or other structure on the parameter θ or mappings of it, or any special structure
of the objective function f(·; ·).

An online analogue of this setting has recently received considerable attention. Online con-
vex optimization concerns a sequence of convex functions f(·; θ1), . . . , f(·; θn), which can be
chosen by an adversary, and a sequence of online predictors wi, where wi can depend only on
θ1, . . . , θi−1. Online guarantees provide an upper bound on the online regret, 1

n

∑
i f(wi; θi) −

minw
1
n

∑
i f(w; θi). Note the difference versus the stochastic setting, where we seek a single

predictor w̃ and would like to bound the population sub-optimality F (w̃)− F (w?).
Zinkevich [1] showed that requiring f(w; θ) be Lipschitz-continuous w.r.t. w is enough for

obtaining an online algorithm with online regret which diminishes as O (1/
√
n). If f(w, θ) is not

merely convex w.r.t. w, but also strongly convex, the regret bound can be improved to Õ(1/n) [2].
These online results parallel known results in the stochastic setting, when the stochastic depen-

dence on w is linear. However, they apply also in a much broader setting, when the dependence
on w is not linear. E.g. when f(w; θ) = ‖w − θ‖p for p 6= 2. The requirement that the functions
w 7→ f(w; θ) be Lipschitz-continuous is much more general than a specific requirement on the
structure of the functions, and does not at all constrain the relationship between the functions. We
note that this is quite different from the work of von Luxburg and Bousquet [3] who studied learning
with functions that are Lipschitz with respect to θ.

The results for the online setting prompt us to ask whether similar results, requiring only Lips-
chitz continuity, can also be obtained for stochastic convex optimization. The answer we discover is
surprisingly complex.

Our first surprising observation is that requiring Lipschitz continuity is not enough for ensuring
uniform convergence of F̂ (w) to F (w), nor for the empirical minimizer ŵ to converge to an optimal
solution. We present convex, bounded, Lipschitz-continuous examples where even as the sample
size increases, the expected value of the empirical minimizer ŵ is bounded away from the population
optimum: F (ŵ) = 1/2 > 0 = F (w?).

In essentially all previously studied settings we are aware of where stochastic optimization is
possible, we have at least some form of locally uniform convergence, and an empirical minimization
approach is appropriate. In fact, for common models of supervised learning, it is known that uniform
convergence is equivalent to stochastic optimization being possible [4]. This might lead us to think
that Lipschitz-continuity is not enough to make stochastic convex optimization possible, even though
it is enough to ensure online convex optimization is possible.

However, this gap between the online and stochastic setting cannot be, since it is possible to
convert the online methods of Zinkevich and of Hazan et al to batch algorithms, with matching
guarantees on the population sub-optimality F (w̃)−F (w?). These guarantees hold for the specific
output w̃ of the algorithm, which is not, in general, the empirical minimizer. It seems, then, that we
are in a strange situation where stochastic optimization is possible, but only using a specific (online)
algorithm, rather than the more natural empirical minimizer.

We show that the “magic” can be understood not as a gap between online optimization and em-
pirical minimization, but rather in terms of regularization. We first show that for a strongly convex
stochastic optimization problem, even though we might still have no uniform convergence, the em-
pirical minimizer is guaranteed to converge to the population optimum. This justifies stochastic con-
vex optimization of general Lipschitz-continuous functions using regularized empirical minimiza-
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tion. In fact, we discuss how Zinkevich’s algorithm can also be understood in terms of minimizing
an implicit regularized problem.

2 Setup and Background
A stochastic convex optimization problem is specified by a convex domain W, which in this paper
we always take to be a compact subset of a Hilbert space, and a function f : W × Θ → R which
is convex w.r.t. its first argument. We say that the problem is “solvable” iff there exists a rule for
choosing w̃ based on an i.i.d. sample θ1, . . . , θn, and complete knowledge of W and f(·; ·), such
that for any δ > 0, any ε > 0, and large enough sample size n, for any distribution over θ, with
probability at least 1− δ over a sample of size n, we have F (w̃)− F (w?) ≤ ε.

We will consider various conditions on the convex optimization problem. We say that W is
bounded by B if for all w ∈ W we have ‖w‖ ≤ B. A function f : W → R is said to be L-
Lipschitz if for any two vectors w1,w2 ∈W we have |f(w1)− f(w2)| ≤ L ‖w1 −w2‖. We say
that a function f is λ-strongly convex if for any w1,w2 ∈W and α ∈ [0, 1] we have

f(αw1 + (1− α)w2) ≤ αf(w1) + (1− α)f(w2)− λ

2
α (1− α) ‖w1 −w2‖2 . (4)

Note that this strengthens the requirement that f is convex, which corresponds to setting λ = 0.
We say that a problem is a generalized linear problem if f(w; θ) can be written as

f(w, θ) = g(〈w, φ(θ)〉; θ) + r(w) (5)

where g : R × Θ → R is convex w.r.t. its first argument, r : W → R is convex, and φ is an arbi-
trary mapping of θ to the Hilbert space in which W resides. A special case is supervised learning
of a linear predictor with a convex loss function, where g(·; ·) encodes the loss function. Learn-
ability results for linear predictors can in-fact be stated more generally as guarantees on stochastic
optimization of generalized linear problems:

Theorem 1. Consider a generalized linear stochastic convex optimization problem of the form (5),
such that the domain W is bounded byB, the image of φ is bounded byR and g(z; θ) isLg-Lipschitz
in z. Then for any distribution over Θ and any δ > 0, with probability at least 1− δ:

sup
w∈W

∣∣∣F (w)− F̂ (w)
∣∣∣ ≤ O(√B2(RLg)2 log(1/δ)

n

)
(6)

That is, the empirical values F̂ (w) converge uniformly, for all w ∈ W, to their expectations
F (w). This ensures that with probability at least 1− δ, for all w ∈W:

F (w)− F (w?) ≤ (F̂ (w)− F̂ (ŵ)) +O

(√
B2(RLg)2 log(1/δ)

n

)
(7)

The empirical suboptimality term on the right-hand-side vanishes for the empirical minimizer ŵ,
establishing that empirical minimization solves the stochastic optimization problem with a rate of
O
(√

1/n
)

. Furthermore, (7) allows us to bound the population suboptimality in terms of the em-
pirical suboptimality and obtain meaningful guarantees even for approximate empirical minimizers.
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The non-stochastic term r(w) does not play a role in the above bound, as it can always be
canceled out. However, when this terms is strongly-convex (e.g. when it is a squared-norm regular-
ization term, rw = λ

2 ‖w‖
2), a faster convergence rate can be guaranteed:

Theorem 2. [5] Consider a generalized linear stochastic convex optimization problem of the form
(5), such that r(w) is λ-strongly convex and Lr-Lipschitz, the image of φ is bounded by R and
g(z; θ) is Lg-Lipschitz in z. Then for any distribution over Θ and any δ > 0, with probability at
least 1− δ, for all w ∈W:

F (w)− F (w?) ≤ 2(F̂ (w)− F̂ (ŵ)) +O
(

(RLg + Lr)2 log(1/δ)
λn

)
(8)

Online Convex Optimization

Zinkevich [1] established that Lipschitz continuity and convexity of the objective functions with
respect to the optimization argument are sufficient for online optimization1:

Theorem 3. [6, Corollary 1] Let f : W×Θ→ R be such that W is bounded by B and f(w, θ) is
convex and L-Lipschitz with respect to w. Then, there exists an online algorithm such that for any
sequence θ1, . . . , θn the sequence of online vectors w1, . . . ,wn satisfies:

1
n

∑
i

f(wi; θi) ≤
1
n

∑
i

f(w?; θi) +O

(√
B2 L2

n

)
(9)

Subsequently, Hazan et al [2] showed that a faster rate can be obtained when the objective
functions are not only convex, but also strongly convex:

Theorem 4. [2, Theorem 1] Let f : W×Θ→ R be such that function f(w, θ) is λ-strongly convex
and L-Lipschitz with respect to w. Then, there exists an online algorithm such that for any sequence
θ1, . . . , θn the sequence of online vectors w1, . . . ,wn satisfies:

1
n

∑
i

f(wi; θi) ≤
1
n

∑
i

f(w?; θi) +O
(
L2 log(n)

λn

)
In this paper, we are not interested in the online setting, but rather in the batch stochastic opti-

mization setting, where we would like to obtain a single predictor w̃ with low expected value over
future examples F (w̃) = Eθ [f(w̃; θ)]. Using martingale inequalities, it is possible to convert an
online algorithm to a batch algorithm with a stochastic guarantee. One simple way to do so is to
run the online algorithm on the stochastic sequence of functions f(·, θ1), . . . , f(·, θn) and set the
single predictor w̃ to be the average of the online choices w1, . . . ,wn. Assuming the conditions of
Theorem 3, it is possible to show (e.g. [7]) that with probability of at least 1− δ we have

F (w̃)− F (w?) ≤ O

(√
B2 L2 log(1/δ)

n

)
. (10)

1We present here slightly more general Theorem statements than those found in the original papers [1, 2]. We do not
require differentiability, and instead of bounding the gradient and the Hessian we bound the Lipschitz constant and the
parameter of strong convexity. The bound in Theorem 3 is also a bit tighter.
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It is also possible to derive a similar guarantee assuming the conditions of Theorem 4:

F (w̃)− F (w?) ≤ O
(
L2 log(n/δ)

λn

)
. (11)

The conditions for Theorem 3 generalize those of Theorem 1 when r(w) = 0: If f(w; θ) =
g(〈w, φ(θ)〉) satisfies the conditions of Theorem 1 then it also satisfies the conditions of Theorem
3 with L = LgR and the bound on the population sub-optimality of w̃ given in (10) matches
the guarantee on ŵ using Theorem 1. Similarly, the conditions of Theorem 4 generalize those of
Theorem 2 with L = RLg + Lr and the guarantees are similar (except for a log-factor). It is
important to note, however, that the guarantees (10) and (11) do not subsume Theorems 1 and 2,
as the online-to-batch guarantees apply only to a specific choice w̃ which is defined in terms of the
behavior of a specific algorithms. They do not provide guarantees on the empirical minimizer, and
certainly not a uniform guarantee in terms of the empirical sub-optimality.

3 Solvable, but not with Empirical Minimizer
The results of the previous section suggest that perhaps Lipschitz continuity is enough for obtain-
ing guarantees on stochastic convex optimization using a more direct approach. In particular, that
perhaps Lipschitz continuity is enough for ensuring uniform convergence, which in turn would im-
ply that the empirical minimizer converges to the stochastic optimum, as in the linear case and
in essentially all studied scenarios of stochastic optimization that we are aware of. Ensuring uni-
form convergence would further enables us to use approximate empirical minimizers, and bound the
stochastic sub-optimality of any vector w in terms of its empirical sub-optimality, rather than ob-
taining a guarantee on the stochastic sub-optimality of only one specific procedural choice (obtained
from running the online learning algorithm).

Unfortunately, this is not the case. Despite the fact that a bounded, Lipschitz-continuous,
stochastic convex optimization problem is solvable, as demonstrated in the previous Section, we
show here that uniform convergence does not hold and that it might not be solvable with empirical
minimization.

Consider a convex stochastic optimization problem given by:

f(12)(w; θ) = ‖w ∗ θ‖ (12)

where for now we will set the domain to the d-dimensional unit sphere W =
{
w ∈ Rd : ‖w‖ ≤ 1

}
and take θ ∈ Θ = {0, 1}d where w ∗ θ denotes an element-wise product. We will first consider a
sequence of problems, where d = 2n for any sample size n, and later present the infinite-dimensional
case. In any case the domain W is bounded by one, and for any θ the function w 7→ f(12)(w; θ)
is convex and 1-Lipschitz. Thus, the conditions of Theorem 3 hold, and the convex stochastic
optimization problem is solvable by running Zinkevich’s online algorithm and taking an average.

Consider a uniform distribution over Θ. For a random sample θ1, . . . , θn we have that with
probability greater than 1−e−1 > 0.63, there exists a coordinate j ∈ 1 . . . 2n such that all parameter
vectors θi in the sample are zero on the coordinate j, i.e. θi[j] = 0. Let ej ∈ W be the standard
basis vector corresponding to this coordinate. Then F̂(12)(ej) = 1

n

∑
i ‖ej ∗ θi‖ = 1

n

∑
i |θi[j]| = 0

but F(12)(ej) = Eθ [‖ej ∗ θ‖] = Eθ [|θ[j]|] = 1/2. We established that for any n, we can construct
a convex Lipschitz-continuous objective such that with probability at least 0.63 over the sample,
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supw

∣∣∣F(12)(w)− F̂(12)(w)
∣∣∣ ≥ 1/2. Furthermore, since f(·; ·) is non-negative, we have that ej is an

empirical minimizer, but its expected value F(12)(ej) = 1/2 is far from the optimal expected value
minw F(12)(w) = F(12)(0) = 0.

To formalize the example in a sample-size independent way, take W to be the unit sphere of
a Hilbert space with orthonormal basis e1, e2, . . ., Θ be the set of infinite binary sequences, and
w∗θ =

∑
j θ[j]〈w, ej〉ej . For any finite sample there is almost surely a coordinate j with θi[j] = 0

for all i, and so we a.s. have an empirical minimizer F̂(12)(ej) = 0 with F(12)(ej) = 1/2 > 0 =
F(12)(0).

We see that although the stochastic convex optimization problem (12) is solvable (using Zinke-
vich’s online algorithm), empirical minimization might not solve the problem!

It is also possible to construct a sharper counterexample, in which the unique empirical mini-
mizer ŵ is far from having optimal expected value. To do so, we augment f(12) by a small term
which ensures its empirical minimizer is unique:

f(13)(w; θ) = f(12)(w; θ) + 0.1 ‖1− θ −w‖log2 d
(13)

where 1 is the vector of all ones and ‖x‖p denotes the `p-norm, and this time we will take W ={
w ∈ Rd

∣∣‖w‖ ≤ 3
}

. The problem is still convex, and 1.1-Lipschitz. The additional strictly convex
term ensures the empirical minimizer is unique. Setting d = 2n as before ensures us that for a sample
of size n, with probability greater than half, there are between one and eight “always zero” indices j
with ∀iθi[j] = 0, and the second term ensures us that the unique empirical minimizer has ŵ[j] = 1
on each one of these always zero coordinate. We then have F(13)(ŵ) ≥ F (ŵ) ≥ E [|θ[j]|] = 1

2 while
F(13)(w?) ≤ F(13)(0) ≤ 0.1 ‖1‖log2 d

= 0.2. And so, most of the time the empirical minimizer will
not be close to the true optimum.

4 Empirical Minimization of a Strongly Convex Objective
We saw that empirical minimization is not adequate for stochastic convex optimization even if the
objective is Lipschitz-continuous. We will now show that, if the objective f(w; θ) is strongly convex
w.r.t. w, the empirical minimizer does converge to the optimum. This is despite the fact that even in
the strongly convex case, we still might not have uniform convergence of F̂ (w) to F (w).

Theorem 5. Consider a stochastic convex optimization problem such that f(w; θ) is λ-strongly
convex and L-Lipschitz with respect to w. Let θ1, . . . , θn be an i.i.d. sample and let ŵ be the
empirical optimum. Then, with probability of at least 1− δ we have

F (ŵ)− F (w?) ≤ O
(
L2

δ λn

)
. (14)

Proof. The proof is based on the concept of uniform stability [8]. Denote

F̂ (i)(w) =
1

n− 1

∑
j 6=i

f(w, θi)

the empirical average without the ith sample and let ŵ(i) = arg minw = F̂ (i)(w) be its min-
imizer. We first establish that the empirical minimizer is β = 2L2

λn uniformly stable, i.e. that
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∣∣f(ŵ, θ)− f(ŵ(i), θ)
∣∣ ≤ β for all samples and all θ. To do so, we first calculate:

F̂ (ŵ(i))− F̂ (ŵ) =
f(ŵ(i), θi)− f(ŵ, θi)

n
+

∑
j 6=i
(
f(ŵ(i), θi)− f(ŵ, θi)

)
n

=
f(ŵ(i), θi)− f(ŵ, θi)

n
+
n− 1
n

(
F̂ (i)(ŵ(i))− F̂ (i)(ŵ)

)
≤ |f(ŵ(i), θi)− f(ŵ, θi)|

n
≤ L

n
‖ŵ(i) − ŵ‖ , (15)

where the first inequality follows from the fact that ŵ(i) is the minimizer of F̂ (i)(w) and in the
second inequality we use the Lipschitz property. But from strong convexity of F̂ (w) and the fact
that ŵ minimizes F̂ (w) we also have that λ

2

∥∥ŵ(i) − ŵ
∥∥2 ≤ F̂ (ŵ(i)) − F̂ (ŵ). Combining this

with (15) we obtain
∥∥ŵ(i) − ŵ

∥∥ ≤ 2L/(λn) and from Lipschitz continuity we get∣∣∣f(ŵ, θ)− f(ŵ(i), θ)
∣∣∣ ≤ 2L2

λn = β . (16)

Now, from [8, Page 508] we have:

E
[
F (ŵ)− F̂ (ŵ)

]
≤ 2β = 4L2

λn (17)

Adding E
[
F̂ (w?)− F (w?)

]
= 0 to the left-hand side and using the fact that ŵ minimizes F̂ :

4L2

λn
≥ E

[
F (ŵ)− F̂ (ŵ)

]
= E [F (ŵ)− F (w?)] + E

[
F̂ (w?)− F̂ (ŵ)

]
≥ E [F (ŵ)− F (w?)] .

Now, since the random variable F (ŵ) − F (w?) is non-negative we can apply Markov’s inequality
to get that

P [F (ŵ)− F (w?) > ε] ≤ E [F (ŵ)− F (w?)]
ε

≤ 4L2

λεn
.

The proof follows by rearranging the above.

We believe the dependence on δ in the above bound can be improved to log 1/δ, matching the
online-to-batch guarantee (11).

We now turn to ask whether the convergence of the empirical minimizer in this case is a result
of uniform convergence, and whether we can obtain a uniform bound in terms of the empirical
sub-optimality as in (8). We first note that merely due to the fact that the empirical objective F̂ is
strongly convex, any approximate empirical minimizer must be close to ŵ, and due to the fact that
the expected objective F is Lipschitz-continuous any vector close to ŵ cannot have a much worse
value than ŵ. We therefore have, under the conditions of Theorem 5, that with probability at least
1− δ, for all w ∈W:

F (w)− F (w?) ≤
√

2L2

λ

√
F̂ (w)− F̂ (ŵ) +O

(
L2

δ λn

)
(18)
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This is an immediate consequence of (14) and does not involve any stochastic properties of F̂ and
F . Although this uniform inequality does allow us to bound the population sub-optimality in terms
of the empirical sub-optimality, the empirical sub-optimality must be quadratic in the desired popu-
lation sub-optimality. Compare this dependence with the simple linear dependence of (8). Unfortu-
nately, as we show next, this is the best that can be ensured.

To establish that the dependence on the empirical sub-optimality ε = F̂ (w) − F̂ (ŵ) in (18) is
tight, consider augmenting the objective function f(12) of Section 3 with a strongly convex term:

f(19)(w; θ) = f(12)(w; θ) +
λ

2
‖w‖2 . (19)

The modified objective f(19)(·; ·) is λ-strongly convex and (1 + λ)-Lipschitz and thus satisfies the
conditions of Theorem 5. For any sample, the unique empirical minimizer is the zero vector, which
is also the population optimum. But consider a vector tej where j is some coordinate that is always
zero on the sample (i.e. ∀iθi[j] = 0) and t > 0 is a scalar. We have that F̂(19)(tej)− F̂(19)(ŵ) = λ

2 t
2

and so setting t =
√

2ε/λ, we get an ε-empirical-suboptimal vector with population sub-optimality
F(19)(tej) − F(19)(0) = 1

2 t + λ
2 t

2 =
√

ε
2λ + ε. This establishes that the dependence on

√
ε
λ in the

first term of (18) is tight, and the situation is qualitatively different than the generalized linear case.
The above calculation also enables us establish that, even for a strongly convex objective, al-

though the empirical minimizer itself does converge, not only might we not have uniform conver-
gence of F̂ (w) to F (w), but we might not even have local uniform convergence. That is, we might
not have supw

∣∣∣F̂ (w)− F (w)
∣∣∣ n→∞−→ 0 even when the supremum is only over an arbitrarily small

neighborhood of the optimum. This is in sharp contrast to essentially all other results on stochastic
optimization that we are aware of.

5 Regularization
We now get back to the case where f(w, θ) is Lipschitz (and convex) w.r.t. w but not strongly
convex. As we saw, empirical minimization may fail in this case, despite the guaranteed success
of an online approach. Our goal in this section is to underscore a more direct, non-procedural,
optimization criterion for stochastic optimization.

To do so, we define a regularized empirical minimization problem

min
w∈W

(
λ
2 ‖w‖

2 + 1
n

n∑
i=1

f(w, θi)

)
, (20)

where λ is a parameter that will be determined later. The following theorem establishes that the
minimizer of (20) is a good solution to the stochastic convex optimization problem:

Theorem 6. Let W be a B bounded set and let f : W × Θ → R be such that for all θ ∈ Θ the
function f(w, θ) is convex and L-Lipschitz with respect to w. Let θ1, . . . , θn be an i.i.d. sample and

let ŵλ be the minimizer of (20) with λ =
√

L2

δ B2 n . Then, with probability at least 1− δ we have

F (ŵλ)− F (w?) ≤ O

(√
L2B2

δ n

)
.
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Proof. Let r(w, θ) = λ
2 ‖w‖

2 + f(w, θ) and let R(w) = Eθ [r(w, θ)]. From Theorem 5 we know
that there exists a constant a such that

F (ŵ) = λ
2 ‖ŵ‖

2 + R(ŵ) ≤ λ
2 ‖ŵ‖

2 + R(w?) +
aL2

δ λn
= λ

2

(
‖ŵ‖2 + ‖w?‖2

)
+
aL2

δ λn

Using the boundedness assumption and plugging the value of λ we conclude our proof.

From the above theorem and the discussion in Section 3 we conclude that regularization is a
necessary tool for stochastic optimization. It is interesting to contrast this with the online learning
algorithm of Zinkevich [1]. Seemingly, the online approach of Zinkevich does not rely on regulariza-
tion. However, a more careful look reveals an underlying regularization also in the online technique.
Indeed, Shalev-Shwartz [6] showed that Zinkevich’s online learning algorithm can be viewed as ap-
proximate coordinate ascent optimization of the dual of the regularized problem (20). Furthermore,
it is also possible to obtain the same online regret bound using a Follow-The-Regularized-Leader
approach, which at each iteration i directly solves the regularized minimization problem (20) on
θ1, . . . , θi−1. The key, then, seems to be regularization, rather then a procedural online versus global
minimization approach.

Regularization vs Constraints

The role of regularization here is very different than in familiar settings such as `2 regularization
in SVMs and `1 regularization in LASSO. In those settings regularization serves to constrain our
domain to a low-complexity domain (e.g. low-norm predictors), where we rely on uniform conver-
gence. In fact, almost all learning guarantees for such settings that we are aware of can be expressed
in terms of some sort of uniform convergence. And as we mentioned, learnability (under the standard
supervised learning model) is in fact equivalent to a uniform convergence property.

In our case, constraining the norm of w does not ensure uniform convergence. Consider the
example f(12)(·; ·) of Section 3. Even over a restricted domain Wr = {w|‖w‖ ≤ r}, for ar-
bitrarily small r > 0, the empirical averages F̂ (w) do not uniformly converge to F (w) and
Pr
(

limn→∞ supw∈Wr

∣∣∣F̂ (w)− F (w)
∣∣∣ > 0

)
= 1. Furthermore, consider replacing the additional

regularization term λ‖w‖2 with a constraint on the norm of ‖w‖, namely, solving the problem
w̃ = arg min‖w‖≤r F̂ (w). As we show below, we cannot set r in a distribution-independent way
(i.e. without knowing the solution...), as we did for λ. To see this, note that for the example f(12)(·; ·)
we must have r → 0 to ensure F (w̃) → F (w?). However, for f(w) = ‖e1 −w‖, we must set
r → 1. If the stochastic convex optimization problem includes both types of functions, no constraint
will work for all distributions over functions. This sharply contrasts with traditional uses of regular-
ization, were learning guarantees are actually typically stated in terms of a constraint on the norm
rather than in terms of a regularization parameter.

6 Summary
Following the work of Zinkevich [1], we expected to be able to generalize well established results
on stochastic optimization of linear functions also to the more general Lipschitz-convex case. We
discovered a complex and unexpected situation, where strong convexity and regularization play a
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Figure 1: Left: Relationship between different properties of stochastic optimization problems.
Right: Lipschitz-continuous convex problems (triangle) are all solvable, but not necessarily using
empirical minimization. Lipschitz-continuous strongly convex problems (dotted rectangle) are all
solvable with empirical minimization, but uniform convergence might not hold. For bounded gen-
eralized linear problems (starred rectangle), uniform convergence always holds. Our two separating
examples are also indicated.

key role and ultimately did reach an understanding of stochastic convex optimization that does not
rely on online techniques. Figure 1 summarizes some of our results.

For stochastic objectives that arise from supervised prediction problems, it is well known that
learnability, i.e. solvability of the stochastic optimization problem, is equivalent to uniform conver-
gence, and so whenever the problem is solvable, it is solvable using empirical minimization [4].
However, we demonstrated stochastic optimization problems in which these equivalences do not
hold. There is no contradiction, since stochastic optimization problems that arise from supervised
learning have a restricted structure, and in particular the examples we study are not among such prob-
lems. In fact, for a reasonable loss function, in order to make f(w; x, y) = `(pred(w,x), y) convex
for both positive and negative labels, we must essentially make the prediction function pred(w,x)
both convex and concave in w, i.e. linear. And so the only stochastic (or online) convex optimization
problems that correspond to supervised problems are generalized linear problems.
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