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Density Estimation

* T observations of n variables X,..X..

» Estimate distribution from which they
were sampled.

 Use for inference and other
calculations.

Density Estimation, not model selection.



Chow & Liu (1968):
Maximum likelihood tree
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Maximum likelihood Markov network:

Empirical distribution

(Markov-net over complete graph)



Bounding the Complexity

« Small clique size.

 Even with small clicks: non-tractable.

* Tree-width of a graph:
minimum over all triangulations,
of the maximum clique size of
the triangulation, minus one.



Problem Statement:
ML Narrow Markov Networks

* For a specified k, maximum likelihood
Markov network of tree-width at most k.

* Equivalently, over a triangulated graph
with cliques of size at most k+1.



ML Narrow Markov Networks

e k=1: Trees (Chow and Liu)
e k>2: Local search heuristics (eg Malvestuto, 1991)

Cast as combinatorial optimization
problem:

—Hardness
—Provable “global” optimization algorithms

—Understand structure



e k=1 (trees). ML decomposes to sum of
edge weights.

e k>1: Would like similar decomposition
— identify the contribution of “/ocal structures’

* Edges are not enough:
need to consider larger cliques.



Factorization Over a
Triangulated Graph G

Py (X) = H(Dh(xh)
heCliques(G)
P
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Product over a// complete subgraphs,
not only over maximal cliques
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* Why not subsume smaller cliques in
maximal cliques ?

* Very strong locality:
A clique’s factor depends on/yon the
marginal distribution inside the clique.
It does nofdepend on the graph

structure.
P(X,)
@ (X,) =
o H(ﬂh'(xh')
h'ch

(unique factorization having this property)



ML distribution over a
Triangulated Graph G

Px (X) = H(Aph(xh)

heCliques(G)

Product over a// complete subgraphs,
not only over maximal cliques



Decomposition of ML(G)
log ML(G)=log [ ] #.(x:)

t heCligue (G)

=T ZE§[|09 o, (X))

heClique (G

Depends only on the empirical distribution
inside clique, independent of the graph.



Decomposition of ML(G)
log ML(G) =log [] ]] #.(x3)

t heClique (G)

— T ZEF;UOQ @, (X,)]

heCligue (G)

>

heCligue (G

A property of the variables in the clique.
Can be precalculated once, and then summed
up in all graphs containing the clique



Decomposition of ML(G)

logML(G)= Y w(h)

heCliques(G)

a?m L(@+ > w(h)
heCliques(G),|h|>1

ZW({V}) = Z H(X,) =log ML of fully independent model




Decomposition of ML(G)

logML(G)= Y w(h)

heCliques(G)

—logML(#)+ Y w(h)

heCliques(G),|h|>1

Combinatorial optimization problem:
triangulated graph G, maximizing its
clique-weights.



w(h) = E;[loge, (X;)]

=E.| log

P

= —H(P(h)) - > w(h')

h'ch

w(hy =Y (-1)" " H (P(h"))

h'ch



Weight of a doubleton

w({u,v}) = —H (P,.;) — W(u) — w(v)
=—H(P,.,,)+H(P,)+H(P)

=l5(u;v) 20



Weight of a triplelton
with no pairwise interactions

I(X;X3)= 1(X1:X5)= 1(X1:X3)=0
W(X11 XZ’ Xs) =H (Xl) + H (Xz) + H (Xs)
- H(X,, X, X;)
— D(P{1,2,3} I:)1 'Pz ' Ps) >0




Welights in a Markov chain

w(12,3)=H(1,3)-H(@) - H(3)
+H(1,2)+H(2,3)-H(2)-H(12,3)
=—1(1;,3) <0



Monotone Weights

Adding to a graph
cannot decrease its total weight.



The combinatorial optimization

problem
» Given:
— a width k,

— a monotone weight function on candidate
cliques of size at most k+1

* Find a triangulated graph with clique
size at most k+1 that maximizes the
sum of weights of its cliques.

The Maximum Weight k-Hypertree Problem



2-Hypertree

Junction trees are (roughly) hypertrees



Maximum Hypertrees

* For k=1: essentially linear time [Prim, Kruskal]

 For k>1: NP-hard, even for k=2.

(and even with 0/1 weights, and weights only on 2-cliques)

We're not there yet: does not
immediately imply hardness of ML
narrow Markov nets...



ML Narrow
Markov-net

empirical
distribution

Hardness

«—

Maximum
Hypertree

w()>0
on k+1-subsets




Creating a distribution for w()

» Uniform, except biases on parity of
(k+1)-subsets.

* Mixture of [kZJ components, one for
each (k+1)-subset.

Now construct sample with this distribution...



Hardness of Max-Hypertree
translates to hardness of
ML Narrow Markov-net:

 NP-hard.

* NP-hard to approximate
within an additive offset.



What are we approximating 7
log ML(G) =log ML(#) + > w(h)

heCliques(G),|h|[>1

Hard to approximate
gain to within
logML(G*)

IC ‘ additive offset.
log ML(G)

| Hard to approximate
w(G) likelihood to within
log ML (¢) . multiplicative factor




What are we approximating 7
log ML(G) =log ML(#) + > w(h)

heCliques(G),|h|>1

Approximate to
logML(G¥) within multiplicative

.................... - factor of gain ?
log ML(G) | |
s G
logML(¢) !

l




Approximation Algorithm
[with David Karger, SODA 2001]

* For any constant k:

Find a triangulated graph G with max
clique k+1, such that:

max w(G*)
W(G) > trig G*,width<k

T (k)




max w(G¥)
W(G) > trig G*,width<k

f (k)

f (k) =8k!(k +1)!

Running time: polynomial in number of weight, i.e. nO(k)

Greedily adding one clique at a time can be
arbitrarily bad on certain inputs.



What are we approximating 7
log ML(G) =log ML(#) + > w(h)

heCliques(G),|h|[>1

0
Approximate to within

logML(G¥) small multiplicative
factor ?

log ML(G)

| -Independent of k 7
G
# Wi ) -Arbitrarily small ?
log ML(9)




What are we approximating 7
(the distribution projection view)

0
~H(P)——
Can we get approximation
on the relative entropy ?
E,(logG*)——

o D(PIIG) - Be very good when the
5(10gG) | target (true) distribution is

F WEG) almost a Markov network?

E;(logg)



* Is there a distribution yielding
any monotone weight function ?

* What is the “right” condition on
the weight function ?



Summary

ML Narrow Markov Network problem as a
combinatorial optimization problem:

— Hardness results
— Analyzable algorithms of ‘globa/” nature

— “linked”to Max-Hypertree problem

* Weights: an interesting information
decomposition.

http://theory.lcs.mit.edu/~natis/HyperTrees/
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