
Artificial Intelligence 143 (2003) 123–138

www.elsevier.com/locate/artint

Maximum likelihood bounded
tree-width Markov networks ✩

Nathan Srebro

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

Received 17 December 2001

Abstract

We study the problem of projecting a distribution onto (or finding a maximum likelihood
distribution among) Markov networks of bounded tree-width. By casting it as the combinatorial
optimization problem of finding a maximum weight hypertree, we prove that it is NP-hard to solve
exactly and provide an approximation algorithm with a provable performance guarantee.
 2002 Elsevier Science B.V. All rights reserved.

Keywords: Markov networks; Markov random fields; Undirected graphical models; Entropy decomposition;
Hyper-trees; Tree-width; Hardness

1. Introduction

A fundamental problem of machine learning is that of estimating a joint distribution
of many random variables from empirical data. One popular approach (the parametric
approach) is to limit attention to a specific “concept class” of distribution models, and
to find a good approximation for the empirical distribution within this model class. When
the model class consists of distributions with a fixed dependency structure (i.e., when the
structure of dependencies and independencies between variables is known in advance),
closed form solutions can often be found. However when the dependency structure is not
known in advance, and one seeks a simple structure that fits the data well, parametric
density estimation remains a difficult tasks. A typical approach to this task involves
heuristic search over model structure, usually without performance guarantees. While

✩ This is an extended version of the paper presented at the 17th Conference on Uncertainty in Artificial
Intelligence (UAI-01), Seattle, WA, 2001.

E-mail address: nati@mit.edu (N. Srebro).

0004-3702/02/$ – see front matter  2002 Elsevier Science B.V. All rights reserved.
PII: S0004-3702(02) 00 36 0- 0

124 N. Srebro / Artificial Intelligence 143 (2003) 123–138

model selection among arbitrary directed dependency networks using a Bayesian criterion
is known to be hard [5], the hardness of many restricted learning scenarios is not well-
understood. The potential for guaranteed approximation algorithms is also unresolved.
Here, we focus on the simpler maximum likelihood criterion, in which regularization is
attained solely by limiting the models to a concept class of bounded complexity. By casting
the maximum likelihood model search problem in purely combinatorial terms, we obtain
both hardness results and provable guarantees of approximation accuracy.

In 1968, Chow and Liu [6] provided a rigorous analysis for finding maximum likelihood
Markov trees (distributions in which the dependencies follow a tree structure, with only
pairwise direct dependencies and no loops), casting it as a problem of finding a maximum-
weight tree, and thus providing an efficient and exact algorithm for it. Going beyond
Markov trees, one can discuss Markov networks [13], in which the dependency structure
follows a general undirected graph. We would like to generalize the work of Chow and Liu
to the problem of learning a maximum likelihood Markov network of bounded complexity.
In Section 2 we discuss how tree-width is in many ways the appropriate measure of
complexity. Accordingly, we analyze the problem of learning a maximum likelihood
Markov network of bounded tree-width.

In fact, we study a somewhat more general problem. The maximum likelihood
distribution is a distribution minimizing the information divergence1 from the empirical
distribution. Finding a maximum likelihood distribution can thus be seen as a special
case of the problem of projecting a target distribution onto a concept class, i.e., finding
the distribution from within the class that minimizes the information divergence from
the target. Such projections have applications beyond finding the maximum likelihood
distribution. In this paper, we use this framework and discuss the problem of projecting
a target distribution onto the class of Markov networks of bounded tree-width.

Similarly to the work of Chow and Liu, we are able to formalize the projection problem
as a combinatorial optimization problem on graphs. We show that projecting a distribution
onto Markov networks of bounded tree-width is equivalent to finding a maximum-
weight hypertree. This equivalence gives rise to global, integer programming-based
approximation algorithms with provable performance guarantees. This contrasts with
previously suggested local-search heuristics for the same problem [11]. The equivalence
also allows us to study the computational hardness of the learning problem. We show that
learning a maximum likelihood Markov network of bounded tree-width is NP-hard, even
for tree-width two.

Several other extensions to the work of Chow and Liu have been proposed. Meila [12]
studied distributions which are mixtures of tree-shaped Markov networks. Dasgupta [8]
suggested poly-tree Bayesian networks (trees with oriented edges), proving the hardness
of this problem.

Important related work was carried out by Höffgen [9] who studied the PAC learn-
ability of bounded tree-width Markov networks (as well as a more general family of
concept classes). In this scenario, one wishes to approximately project an unknown
distribution by sampling it. Höffgen’s work primarily concerned the required sample size,

1 Also known as Kullback–Leibler (KL) divergence and as relative entropy [7].

N. Srebro / Artificial Intelligence 143 (2003) 123–138 125

while the computational complexity (efficiency) of learning bounded tree-width Markov
networks was not resolved. In studying the efficiency, Höffgen introduced a directed
entropy decomposition that leads to a minimum-weight directed hypertree problem.
However, since it is not known if a reverse reduction exists, the NP-hardness of this
hypertree problem does not translate to a hardness result on the learning task. In this
work, we introduce an undirected decomposition, which leads to a simpler (undirected)
combinatorial optimization problem. The undirected decomposition is also reversible (i.e.,
the combinatorial problem can be translated to a learning problem), allowing us to establish
hardness results on learning problems.

Details of the combinatorial optimization problem and the algorithm mentioned here
can be found in a complementary paper [10].2

It should be noted that this work is concerned with finding distributions, and not with
reconstructing the “true” structure. Maximum likelihood is generally not appropriate for
model selection, as it will always find maximal structures, even when there is no support
for some of the edges. In this sense, too, this work is an extension of Chow and Liu’s
approach.

2. Bounding the complexity of Markov networks

A Markov network over a specified graph G is determined by the marginal distributions
over cliques in G, and this representation essentially gives the number of parameters of
Markov networks over G. This number is exponential in the clique sizes, and so we would
like to keep the clique sizes small.

But other than bounding the number of parameters, we would also like to limit ourselves
to tractable computations. Although the clique marginals provide a compact representation
for any Markov network with small clique size, there is no generally efficient way of
performing exact computations (e.g., of marginal or conditional probabilities) on such
graphs. In fact, even calculating the minimum information divergence to Markov networks
over the graph (i.e., the maximum likelihood, if the target is the empirical distribution)
might be infeasible. Though theoretically possible, it would be extremely optimistic to
hope that finding the graph that minimizes this quantity would be easier than calculating it.

In order to work with Markov networks, and in particular to calculate marginal and
conditional probabilities, one usually triangulates the graph, that is, adds edges to the graph
so that all minimal cycles are 3-cycles. On a triangulated graph, such calculations can be
performed in time linear in the representation of the clique marginals, i.e., exponential in
the size of the cliques. But these are now the cliques of the augmented, triangulated graph.
So it is not enough for the Markov network to have small cliques, in order for computations
to be tractable, we need the Markov network to have a triangulation with small cliques.

This property is captured by the tree-width 3 of a graph:

2 The algorithms are motivated by the problems discussed here, and some results from Section 3 are quoted
in [10].

3 See [15] for a review of several alternate characterizations of tree-width and related literature.

126 N. Srebro / Artificial Intelligence 143 (2003) 123–138

Definition 1 (Tree-width). The tree-width of a graph is the minimum, over all triangulations
of the graph, of the maximum clique size in the triangulation, minus one:

Tree-width(G)= min
G′⊃G

G′ is triangulated

max
h∈Clique(G)

|h| − 1.

In this work, we study the problem of projecting a distribution onto Markov networks
over graphs of tree-width at most k, for some specified k. Graphs of tree-width one
constitute the class of acyclic graphs (or forests), and so for k = 1 this becomes the problem
of projecting onto Markov trees. As the width is increased, more complex Markov networks
are allowed, with an exponential dependence on k.

As alluded to earlier, there are two (not necessarily overlapping) reasons for limiting the
concept class: regularization (i.e., avoiding a large concept class that might lead to over-
fitting) and tractability (i.e., ensuring that calculating with the model will be tractable).

Bounding the tree-width of permitted Markov networks address the tractability
consideration almost exactly. Assuming we have other methods of ensuring regularization,
or that we already know the distribution exactly, but would like to realize it in a model that
would allow efficient computations, then limiting to bounded tree-width Markov networks
is a natural thing to do. In fact, exact inference on Bayesian networks essentially involves
working with a triangulated (moralized) Markov network. Therefore, the class of bounded
tree-width Markov networks is the correct choice when seeking a class of graphical models,
either directed or undirected, with the sole goal of efficiency of inference.

The regularization constraint is addressed less tightly, since the number of parameters
in a Markov network is determined just by the size and number of cliques, and is not
dependent on network being triangulated. It is interesting to note, though, that bounding
the tree-width imposes a uniform constraint on the number of parameters, since not only the
clique size is bounded, but also the number of cliques. All maximal networks of bounded
tree-width k over n variables have exactly n − k cliques of size k + 1 [15]. In fact, the
number of cliques of any size is fixed, and consequently, the number of parameters is fixed
(assuming a fixed number of states for all variables).

3. Decomposing the information divergence

Chow and Liu [6] showed that, for Markov trees, the reduction in information
divergence, relative to the empty graph, can be additively decomposed to edges. The
contribution of each edge of the tree is independent of the structure of the tree, and is
the relative information between its nodes. We show a similar decomposition for “wider”
triangulated networks. A key point of this decomposition is that the contributions of local
elements are independent of the graph structure.

Recall that a Markov network can always be factored over its cliques [3, Hammersley–
Clifford Theorem]. That is, any distribution PX that is a Markov network over some graph
G can be written as:

PX(x)=
∏

h∈Clique(G)

φh(xh) (1)

where φh depends only on the outcome xh inside the clique h.

N. Srebro / Artificial Intelligence 143 (2003) 123–138 127

In the general case, the clique factors φh might have a very complex dependence on
the distribution. However, when G is triangulated, the factor can be chosen such that the
factor of a clique depends only on the marginal distribution inside the clique. Moreover,
the clique factors can be calculated explicitly and directly from the clique marginals.

We will concentrate on a specific explicit factorization, given by:

φh(xh)= Ph(xh)∏
h′⊂h φh′(xh′)

, φ∅(·)= 1 (2)

where the product in (1) is taken over all, not necessarily maximal, cliques. That is, we refer
here to any complete subgraph of G as a clique. Factors corresponding to non-maximal
cliques can of course be subsumed into some containing maximal clique factor. However,
this leads to clique factors that are dependent on the graph structure. The factors given
by (2) are unique in that a clique’s factor does not depend on the graph G, except for the
fact that G includes the clique.

More precisely: consider mappings Ph �→ φh from marginal distributions over subsets
of variables, to factors over the subset. The mapping given in (2) is the only such mapping,
such that (1) holds for every triangulated graph G and every Markov network P over G.
A clique’s factor depends only on the marginal inside the clique, and is completely
oblivious to the distribution outside the clique, or even to the structure of the graph outside
the clique. This very strong locality property will be essential later.

For a specific triangulated graph G, the projection of a target distribution PT onto
Markov networks over G can be calculated explicitly. Following (2), and since the
projected Markov network is the one in which the clique marginals agree with PT [16],
the projection P̂G is given by:

P̂G(x)=
∏

h∈Clique(G)

φ̂h(xh), φ̂h(xh)= PT
h(xh)∏

h′⊂h φ̂h′(xh′)
(3)

where again, the product is over all, not necessarily maximal, cliques.
What we would like to do is to project PT onto Markov networks over any graph of

tree-width at most k. The core problem is finding the projected graph itself (i.e., the graph
over which the projected Markov network is achieved). We can associate with every graph
G its information divergence from PT—that is, the minimum, over all Markov networks
over G, of the information divergence from PT:

D
(
PT‖G) = min

P is a
Markov net over G

D
(
PT‖P) =D

(
PT‖P̂G

)
(4)

The projected graph is the bounded tree-width graph minimizing the information
divergence from G.

Note that adding edges to a graph can only decrease the information divergence to it,
since any distribution that was a Markov network on the sparser graph is certainly also a
Markov network on the augmented one. So, the projected graph can always be taken to
be triangulated—if it is not triangulated, it can be triangulated by adding edges without
increasing the tree-width, yielding an acceptable triangulated graph with lower or equal
divergence.

128 N. Srebro / Artificial Intelligence 143 (2003) 123–138

Taking this into account, it is enough to search over all triangulated graphs of tree-
width at most k for the graph minimizing the information divergence from PT. But for
triangulated graphs, the projected distribution P̂G is given by (3), and so the information
divergence can be calculated as:

D
(
PT‖G) = D

(
PT‖P̂G

)
= EX∼PT

[
log

PT(X)∏
h∈Clique(G) φ̂h(Xh)

]
= EPT

[
logPT] −

∑
h∈Clique(G)

EX∼PT
[
log φ̂h(Xh)

]
.

Recall the strong locality of the projected clique factors φ̂h, i.e., that they depend only on
the marginals of PT. Consequently, for each candidate clique h, the term EPT [log φ̂h(Xh)]
in the sum depends only on the marginal inside the clique, and not on the structure of the
graph G.

We can now describe a weight function over candidate cliques, such that w(h) =
EPT [log φ̂h(Xh)]. This weight function can be calculated from the target distribution PT

alone, and is independent of the graph. After calculating the weight function for every
possible clique, the information divergence to any triangulated graph is given by:

D
(
PT‖G) = EPT

[
logPT] −

∑
h∈Clique(G)

w(h) (5)

where again, the sum is over all, not necessarily maximal, cliques in G. In fact, the
summation always includes all singleton cliques, i.e., sets of a single vertex. For an empty
graph G= ∅, the only cliques are singleton cliques, and so the information divergence to
an empty graph (i.e., fully independent model) is exactly captured by the singleton cliques.
Thus, separating out the singletons, we can rewrite (5) as:

D
(
PT‖G) =D

(
PT‖∅) −

∑
h∈Clique(G), |h|>1

w(h). (6)

Eq. (6) expresses the reduction in the information divergence versus a simple base
model, as a sum of weights (derived from the target distribution) of all non-trivial cliques
that appear in the graph. Minimizing the information divergence is thus equivalent to
maximizing this sum of weights.

This is illustrated in Fig. 1. The figure represents the entropy of the target distribution,
and the entropies of its projection onto a specific triangulated graph G, and onto the empty
graph ∅ (i.e., onto the set of fully independent distributions). Note that the clique marginals
of the projection P̂G agree with PT, and so

EPT
[
log P̂G

] = −
∑
h

EPT
[
log φ̂h

] = −
∑
h

EP̂G

[
log φ̂h

]
= −EP̂G

[
log P̂G

] = −H (
P̂G

)
.

Similarly EPT [log P̂G] = H(P̂∅), and we have D(PT‖G) = H(P̂G) − H(PT) and
D(PT‖∅)=H(P̂∅)−H(PT).

N. Srebro / Artificial Intelligence 143 (2003) 123–138 129

Fig. 1. D(PT‖G)= (H(P̂∅)−H(PT))− ∑
h∈Clique(G), |h|>1 wh.

Note that this weight decomposition differs from that of Höffgen [9] in two ways.
First, Höffgen’s weights sum to H(P̂G), and so are actually complimentary to the weights
discussed here (the summed Höffgen weight of a graph is equal to H(P̂∅) minus the
summed weight of the graph as discussed here). More importantly, Höffgen’s weights are
not on cliques, but rather on directed, or ordered, sets of vertices, and apply to directed
(acyclic) graphs rather then undirected graphs. In order to calculate the Höffgen weight of
an undirected graph, it must be oriented (to form a DAG). Although the summed Höffgen
weights of all orientations of a triangulated graph are equal, the orientation is an additional,
non-local, structure that must be globally “agreed upon”. Thus, the Höffgen weight cannot
be computed locally for an undirected graph.

Before we return to maximizing the sum of weights, let us investigate the structure of
these weights.

4. The weights

The weight of each candidate clique is determined by the target distribution and was
defined in terms of the projected factor:

w(h) = EX∼PT
[
log φ̂h(Xh)

]
. (7)

Incorporating the explicit definition of the projected factors (3):

= EPT

[
log

PT
h(Xh)∏

h′⊂h φ̂h′ (Xh′)

]
= EPT

[
logPT

h(Xh)
] −

∑
h′⊂h

EPT
[
log φ̂h′(Xh′)

]
= −H (

PT
h(Xh)

) −
∑
h′⊂h

w(h′) (8)

130 N. Srebro / Artificial Intelligence 143 (2003) 123–138

where H(PT(Xh)) is the entropy of the marginal distribution of PT over h. This provides
for a simple recursive specification of the weights. Unrolling this recursion, the weight of
a candidate hyperedge can also be written as a sum:

w(h)= −
∑
h′⊆h

(−1)|h|−|h′ |H
(
PT(Xh′)

)
. (9)

Note that the weight w({v}) of a singleton {v} is the negative entropy −H(Xv) of the
single variable. Accordingly, all singleton weights are negative (or at least non-positive).
This is not surprising, as these weights sum up to EPT [log P̂∅] � 0 and are incorporated in
our formulation (6) of the projection problem as part of D(PT‖∅).

However, as more edges are added to the graph, the admissible distributions are less
limited and the projected distribution can become more similar to the target distribution.
This means that weights of candidate cliques beyond singletons should generally have a
positive contribution, representing the reduction in the information divergence.

In fact, the weight of a vertex pair {u,v}, i.e., an edge, is (following (9)): w({u,v}) =
−H(Xu,Xv) + H(Xu) + H(Xv) = I (Xu;Xv) � 0, in agreement with Chow and Liu.
The mutual information across an edge precisely captures the reduction in information
divergence attained by taking into account the dependence between the endpoints.

Now consider the weight of some candidate three-clique {1,2,3}. If the three variables
X1,X2,X3 are pairwise independent, but have some three-way dependence, then using (9),
we can calculate w(1,2,3)=H(X1)+H(X2)+H(X3)−H(X1,X2,X3). The weight is
again non-negative. It correctly captures the benefit of taking into account the dependency
between the variables, as quantified by the reduction in the information divergence. In fact,
the weight is equal to the information divergence between the true three-way marginal
distribution, and the product distribution of the three singleton marginal distributions.

It is tempting to adopt this clean interpretation of the weights, by which the weight of a
candidate clique represents the reduction in information divergence attained by taking into
account the additional dependency. Under this interpretation, the weight of a candidate
d-clique should be the information divergence between the true d-way marginal and the
maximum entropy d-way distribution that agrees with the marginals of all d − 1 sub-
cliques, similar to the hierarchical decomposition suggested by Amari [1].

The reality is different. Consider a Markov chain over three variables X1 → X2 →
X3. In this case all the information is in the pairwise dependencies, and by the above
suggested interpretation, the weight of the candidate three-clique {1,2,3} should have been
zero. Using (9), however, we can check that w(1,2,3) = −I (X1;X3) < 0. On second
thought, this should not surprise us. Consider the total weight of a graph containing the
three-clique. All the dependencies in the Markov chain are already captured by the two
pairwise dependencies (X1,X2) and (X2,X3). Accordingly, all of the reduction in the
information divergence is captured by w({1,2}) + w({2,3}). However, since we sum
all the cliques in the graph, in addition to these two pairwise weights, we will also
include w({1,3})= I (X1;X3). The pairwise weights thus over-count the reduction in the
information divergence. The weight of the candidate three-clique, which will always be
included if all three pairwise weights are included, accounts for this over-counting.

The weights of candidate cliques thus serve not only to reward for the new dependency
made possible by the clique, but also to account for over-counting inside the clique.

N. Srebro / Artificial Intelligence 143 (2003) 123–138 131

Pairwise weights need not perform any such accounting, but the weight of any larger
candidate clique can be either positive or negative.

The possibility of negative weights is very problematic from an algorithmic standpoint.
Negative weights may cause many combinatorial optimization approaches to fail. In fact,
the algorithms presented in [10] for the maximum weight hypertree problem do not work
with arbitrary negative weights. Fortunately, the weights we define here do have some
positive structure.

Although for any particular candidate clique of more than two vertices, the clique
weight can be negative, it is not possible for too many weights to be negative. As argued
before, adding edges to a graph does reduce the information divergence, but this might be
accounted for by more then just one additional clique. The total weight of a triangulated
graph G is no less than the total weight of a triangulated sub-graph G′ of G. Accordingly,
the sum of the weights of cliques in G that are not cliques in G′ must be non-negative.

We call a weight function obeying such a constraint a monotone weight function. It
is enough to require that the weight function be monotone on cliques, i.e., that the total
summed weight of a graph containing a single clique {v1, v2, . . . , vd } is no less than the
total summed weight of the graph containing the single clique {v1, v2, . . . , vd−1}. A weight
function that is monotone on cliques is also monotone on all triangulated graphs.

Note that these arguments hold only for triangulated graphs. Otherwise the total
summed weight of the graph does not represent any meaningful information quantity as
the product of the factors may not be a valid distribution function, let alone the projected
distribution.

5. The reduction

The problem of projecting a distribution onto Markov networks of bounded tree-width k
can thus be reduced to finding a triangulated graph of bounded tree-width (or equivalently,
clique size) that maximizes the total summed weight of its (not only maximal) cliques
with respect to some monotone weight function. That is, if we knew an algorithm that
finds such a graph, we could use it for projecting distributions onto Markov networks of
bounded tree-width.

To do so, we would first calculate a weight for each set of at most k + 1 vertices
(including singletons), starting with the small sets and proceeding to the larger ones,
using the recurrence (8). We would then find the maximum weight bounded tree-width
triangulated graph for these weights, but ignoring the singleton weights (the singleton
weights are necessary only for the recursive calculation).

For tree-width one, i.e., triangulated graphs with no three-cliques, this is the problem of
finding a maximum weight tree, and as we saw before, the weights are in agreement with
Chow and Liu. For higher tree-width, this is the problem of finding a maximum weight
hypertree [10].

Although the recursive definition provides for a relatively quick method of calculating
the weights for small k, it is still necessary to calculate

∑k+1
d=2

(
n
d

) = O(nk+1) weights,
and calculating each weight involves summing O(2k+1) subclique weights, for a total time
complexity of O((2n)k+1).

132 N. Srebro / Artificial Intelligence 143 (2003) 123–138

As we have not considered the representation of the target distribution, we cannot
discuss the complexity of the reduction in terms of the problem ‘size’, as this of course
depends on the representation. We do not want to go into the issues of input representations
of the distribution, except for one special case which originally motivated us: the case in
which the distribution is an empirical distribution of some sample.

The “input representation” in this case is the sample itself, of size �(T n logm), where
T is the sample size and m is the number of possible outcomes for each random variable.
So, if k is part of the input, the reduction is not polynomial in the sample, as it is exponential
in k while the sample is independent of it. If k is constant, then the reduction is polynomial.

As the number of parameters in the resulting model, and therefore the complexity of
calculations on the resulting distribution, is also exponential in k, it is tempting to hope
that the reduction is comparable to, or at least polynomial in, the resulting number of
parameters. This is essentially the output size of the learning problem, and practically
also a bound on the input size, as one would generally not have less data then there are
parameters to learn. However, this is not the case. The number of parameters is only
O(nmk+1). Therefore if n � m, the reduction is super-polynomial even in the resulting
number of parameters.

For a small, fixed, target width k, the reduction is polynomial, and the number of weights
to be calculated might not be prohibitive. For example, even for a target width of k = 2,
this is already a useful generalization of Chow and Liu.

6. The reverse reduction

In order to use the formulation (6) to analyze the computational hardness, we must show
how to perform the reverse reduction, i.e. transform an input of the maximum hypertree
problem (a weight function) to an input of the projection problem (a distribution) so
that the projected distribution implies the maximum hypertree. In this section, we show
that for every non-negative weight function on vertex sets of fixed size, there exists a
distribution that yields weights proportional to this set of weights. We thus demonstrate that
the problem of finding a maximum hypertree, at least for a non-negative weight function
on vertex sets of a fixed size, can be reduced to projecting a distribution onto Markov
networks of bounded tree-width.

Furthermore, a “small” sample can be constructed, with an empirical distribution
yielding weights that are close enough to these weights, conserving the exact structure
of the projected graph. This establishes the following theorem (proved by Sections 6.1
and 6.2):

Theorem 1 (The Reverse Reduction). The problem “given n vertices, and a non-negative
integer weight w(h) for each vertex set h of size exactly k + 1, find the maximum weight
k-hypertree” can be reduced, in time polynomial in the output, to the problem “given m
samples of n binary random variables, find a maximum likelihood Markov network of tree-
width at most k”, with sample size m= poly(nk+1 maxh w(h)).

N. Srebro / Artificial Intelligence 143 (2003) 123–138 133

This reduction is weak, in the sense that the sample size needed to produce specific
weights is polynomial in the value of the weights (and so exponential in the size of their
representation). Still, this pseudo-polynomial reduction is enough to show NP-hardness of
finding a maximum likelihood Markov network of bounded tree-width, even for tree-width
two.

6.1. A distribution yielding desired weights

We start by constructing a distribution that yields weights proportional to a desired
target weight function w (we assume without loss of generality that ∀hw(h) < 1). We
consider only (non-negative) weight functions on vertex sets of size exactly k + 1, and
construct distributions Pw yielding weights w′ that are proportional to the desired weights
w on vertex sets of size k + 1, and zero on smaller sets. In order to be achieve this, we
consider each vertex as a binary variable, and construct a distribution that is almost uniform
over them, but introduce biases over sets of k + 1 variables. Marginals over smaller sets
remain uniform, yielding the required zero weights. It is not, in general, possible to achieve
arbitrary biases on all sets of k + 1 variables concurrently, as large biases can “interfere”
with each other. Therefore, the biases must be very small, resulting in very small weights,
but still proportional to the desired set of weights.

The distribution Pw will be a uniform mixture of
(
n

k+1

)
distributions Ph

w , one for each

h ∈ (
V
k+1

)
. Each such Ph

w will deviate from uniformity only by a bias of r(h) in the parity
of the variables in h. We show below how to select r(h) according to w(h). Explicitly:

Ph
w(x)=

{ 1+r(h)
2|V | if

∑
v∈h xv is odd,

1−r(h)
2|V | if

∑
v∈h xv is even.

(10)

This results in a mixed distribution Pw in which all marginals over at most k variables are
uniform (and therefore have zero corresponding weight), while the marginal over a set h of
exactly k+1 variables has a bias of b = r(h)/

(
n

k+1

)
. The corresponding weight is therefore

w′(h) = −H(Xh)−
∑
h′⊂h

w(h)=
∑
v∈h

H(Xv)−H(Xh)

= |h| × 1 −H(Xh)= (k + 1)+
∑
xh

Pw(xh) logPw(xh)

= (k + 1)+ 2k
1 + b(h)

2k+1
log

1 + b(h)

2k+1
+ 2k

1 − b(h)

2k+1
log

1 − b(h)

2k+1

= 1

2

((
1 + b(h)

)
log

(
1 + b(h)

) + (
1 − b(h)

)
log

(
1 − b(h)

))
. (11)

Using the natural logarithm and taking the Taylor expansion:

=
∞∑

i=2 even

b(h)i

i(i − 1)
= b(h)2

2
+ O

(
b(h)4

) = r(h)2

2
(
n

k+1

)2
+ O

(
r(h)4

)
. (12)

Choosing r(h) to be approximately
√
w(h) (or more precisely, the inverse function of (11))

yields weights proportional to w.

134 N. Srebro / Artificial Intelligence 143 (2003) 123–138

6.2. A sample yielding desired weights

We have shown a distribution that produces weights proportional to any desired non-
negative weight function. But since the biases in this distribution might be irrational (being
the inverse of (11)), there is no finite sample that has such a distribution as its empirical
distribution.

We will show a finite sample that results in weights that are close enough to the
desired weights, such that the optimal structure is conserved. Given a rational weight
function w, we will show a sample with empirical distribution P̂w that produces weights
w′′(h)= w′(h)+ e(h) such that w′ are proportional to w, and

∑
h |e(h)|< 1/Qw′ where

Qw′ is the common denominator of w′. This is enough, since the total summed w′ and w′′
weights of cliques in the optimal graph will be within 1/Qw′ , less than the possible
difference due to taking cliques with differing weights.

We first show how to construct a sample that yields an empirical distribution similar
in structure to Pw , with rational biases on k + 1 candidate edges. For any mapping4

h �→ ph/Q < 1 we construct a sample Sp/Q with empirical distribution P̂p/Q such that
all k-marginals are uniform, and for |h| = k + 1:

P̂p/Q(xh)=


(

1 + ph
Q(n

k+1)

)
2−|V | if

∑
v∈h xv is odd,(

1 − ph
Q(n

k+1)

)
2−|V | if

∑
v∈h xv is even.

Unlike the exact Pw , parities of larger sets might be very biased. However, these do not
effect the resulting weights when searching for width-k Markov networks.

We will build the sample as a pooling of
(
n

k+1

)
equisized samples Shp/Q, one for each

candidate edge of size k+ 1. Each such Shp/Q will be constructed from Q equisized blocks
of (k + 1)-wise uniformly independent sample vectors. But for p of these blocks, we will
invert the elements of h appropriately so as to set the parity of xth to be odd for all sample
vectors in the block. Note that this can be done without disrupting the uniformity of any
other set of vertices of size at most k+1. The resulting Shp/Q will be uniform on all subsets
of size up to k + 1, except for a bias of p(h)/Q on h. Pooling these together yields the
desired empirical distribution.

Using [2], (k + 1)-wise independent blocks can be created of size 2nk+1, yielding a
total sample size of

(
n

k+1

)
Q2nk+1 = O(Qn2k+2), where Q is the common denominator of

the rational weights.
We now know how to construct a sample with specified rational biases. However, the

biases corresponding to rational weights are not rational. We first show how to achieve
approximate weights with biases that are square roots of rationals, and then describe how
these can be approximated with actual rationals.

We saw in (12) that the biases of the mixture components should be approximately
the square roots of the desired weights. Using biases r ′(h)= √

w(h) yields the following
weights (where b(h)′ = r ′(h)/

(
n

k+1

)
< 1):

4 The common denominator Q of the biases may be different than the common denominator Qw′ .

N. Srebro / Artificial Intelligence 143 (2003) 123–138 135

w′′(h) =
∞∑

i=2 even

b(h)′i

i(i − 1)
<
b(h)′2

2
+

∞∑
i=4 even

b(h)′4

i(i − 1)

= b(h)′2

2
+ ln 4 − 1

2
b(h)′4

= 1

2
(
n

k+1

)2
w(h)+ e(h),

where∑
h

∣∣e(h)∣∣< (
n

k + 1

)
ln 4−1

2

(maxw)2(
n

k+1

)4
<

0.19(
n

k+1

)3
maxw2.

Recall that we would like
∑

h |e(h)|< 1/Qw′ . Since the common denominatorQw′ scales
linearly with the weights, we can achieve this goal by scaling the weights down. But since
the weights may not be square rationals, taking their square root might produce irrational
weights. This can be overcome in a similar fashion, by using a rational approximation to
the square root.

This establishes Theorem 1, where the integer weights are scaled to rationals
w(h)/maxh′ w(h′)� 1.

6.3. The reduction and hardness

We saw how to reduce the maximum hypertree problem to the maximum likelihood
Markov network problem, with the same k, and even if the variables are all binary. Note
that our reduction is only pseudo-polynomial, as the sample size needed is polynomial in
the value of the weights. However, in [15] we show that the maximum hypertree problem
is NP-hard, even with zero/one weights:

Theorem 2 (Proved in [15]). The maximum hypertree problem is NP-hard, even for width
two, zero/one weights, and weights only on pairs of vertices. Furthermore, it is NP-hard to
approximate to within any constant additive offset.

This is enough to show NP-hardness of the maximum likelihood Markov network
problem, even for bound tree-width two:

Corollary 3. Finding the maximum likelihood Markov network of tree-width at most k,
for an explicitly given sample, is NP-hard, even for k = 2 and if all the variables are
binary. Furthermore, it is NP-hard to approximate the log-likelihood, or the information
divergence from the empirical distribution, to within any constant additive offset.

Note that approximating the log-likelihood to within an additive offset is equivalent
to approximating the likelihood to within a multiplicative factor. Hence, it is NP-hard to
approximate the likelihood to within a multiplicative factor.

136 N. Srebro / Artificial Intelligence 143 (2003) 123–138

7. Approximation algorithms

Although the maximum hypertree problem is NP-hard, an integer programming based
approximation algorithm can be devised [10]. For any constant k, a polynomial-time
algorithm is given that finds a triangulated graph of tree-width at most k, which has a
total summed weight within a constant factor of the maximum possible total summed
weight. Unfortunately, this constant approximation factor depends heavily on k—for
width k, we find a graph with total summed weight at least 1/(8kk!(k + 1)!) of the
optimal. Algorithms with better approximation ratios may be possible, perhaps even with
approximation ratios that do not depend on k. We discuss how this type of approximation
for the combinatorial problem translates into a sub-optimal solution for the maximum
likelihood learning problem.

Recall the decomposition of the information divergence that was presented in Fig. 1.
When the target distribution is the empirical distribution, the maximum log likelihood
of a triangulated graph G is given by −H(P̂G). Fig. 1 can be viewed as representing
the maximum likelihood of Markov networks over ∅ (fully independent models), Markov
networks over G, and the maximum attainable likelihood (the likelihood of the empirical
distribution itself), where the vertical axis is the negative log-likelihood (higher log
likelihood is lower in the figure). The weight of the graph is then the gain in maximum
log likelihood versus the fully independent model. A constant factor approximation on
the weight of the graph translates to a constant factor approximation on the gain in
log likelihood, and hence also provides for a constant factor approximation on the log
likelihood itself (approximating the gain in log likelihood is a stricter criterion than
approximating the log likelihood itself).

Such a constant factor approximation translates to a constant exponential factor
approximation on the likelihood itself. However, we cannot hope for much more. Since the
maximum hypertree problem is NP-hard to approximate to within any additive constant, we
can conclude that it is NP-hard to approximate the likelihood (or relative gain in likelihood)
to within any multiplicative constant. That is, for any constants k > 1 and c, it is NP-hard to
find a Markov network of tree-width at most k, with likelihood at least c times the optimal
likelihood among Markov networks with tree-width at most k.

The approximation result seems less appealing when viewing the problem as a
projection problem of minimizing the information divergence. As can be seen in Fig. 1,
a constant factor approximation on the weight of the graph translates to a constant factor
approximation on the reduction in information divergence versus a fully independent
model, and does not provide for a constant factor approximation on the information
divergence itself. If the information divergence to the true optimal graph D(PT‖G∗) is
much smaller than the divergence to the completely independent model (and hence much
smaller than the reduction in information divergence), then approximating the information
divergence itself is a much stricter requirement than approximating the reduction in its
value. This happens, for example, when the target distribution is very close to being a
tree-width k Markov network.

N. Srebro / Artificial Intelligence 143 (2003) 123–138 137

8. Discussion

We demonstrated how the problem of projecting a distribution onto Markov networks
of bounded tree-width can be cast as a combinatorial optimization problem of finding a
maximum weight hypertree. By studying the maximum hypertree problem, we were able
to prove that the projection problem is NP-hard and to open the door to approximation
algorithm with a provable performance guarantee. In particular, we show how an approx-
imation algorithm devised in [10] provides for a (large) constant factor approximation to
the log likelihood given an empirical distribution. A large gap remains between this posi-
tive result and the computational hardness result. However, now that the maximum weight
hypertree problem has been presented to the algorithms community, further progress on it
will directly correspond to improved algorithms for projecting a distribution onto Markov
networks of bounded tree-width.

Although the hardness results discussed here do not directly imply hardness of efficient
PAC learning, the same reverse reduction, with a slightly different analysis, can be used to
show that it is hard to probably approximately project a distribution onto Markov networks
of bounded tree-width based on samples from the distribution. As with all hardness results
about PAC learning, the hardness is with respect to randomized reductions, and establishes
that learning cannot be done in polynomial time unless NP = RP. Such hardness was
suspected, but not proved, by Höffgen [9].

An interesting open question concerns efficient PAC learnability of Markov networks
of bounded tree-width, when the target distribution is guaranteed to be such a Markov
network (this is sometimes referred to as proper PAC learnability). The general hardness
result discussed above should not deter us from seeking efficient algorithms when the target
distribution is guaranteed to be inside the concept class. For example, even though probably
approximately projecting a distribution onto Markov networks of bounded path-width is
hard in general (as can be shown by a similar reverse reduction from the Hamiltonian path
problem), it can be done in polynomial time when the target distribution is guaranteed
to be in the concept class [9]. Such proper PAC learnability of Markov networks of
bounded tree-width is at least as hard as triangulating a graph (since it effectively finds
a triangulation of the target distribution). But even though triangulation is very difficult in
practice, it can be done in linear time for fixed width k [4] (other, more practical algorithms,
without such theoretical guarantees, are also known [14]), leaving open the possibility for
efficient learning algorithms for small widths. Note that if a constant-factor approximation
algorithm on the information divergence itself is found, it can also be used for this PAC
learning task.

It is also interesting to study the weights that carry the decomposition of the reduction in
information divergence. In particular, we might ask if the monotonicity is the true property
defining the structure of these weights. That is, is any monotone weight function realizable
by some distribution? This question could potentially be answered by extending the reverse
reduction of Section 6 from a positive weight function on sets of a fixed number of vertices,
to any monotone weight function.

In this work we concentrated on finding maximum likelihood models. It would be
interesting to extend this work also to scoring functions that are appropriate for model
selection. In fact, minimum description length (MDL) scores can be decomposed to clique

138 N. Srebro / Artificial Intelligence 143 (2003) 123–138

weights over triangulated graphs. However, the weights are no longer monotone and the
approximation results do not hold. Moreover, although the optimal MDL score might be
achieved on a non-triangulated graph, the weights sum up correctly only on triangulated
graphs. The hardness results do carry over to MDL scores, i.e. finding the triangulated
graph of bounded tree-width that minimizes its MDL is NP-hard.

Acknowledgements

I would like to thank Tommi Jaakkola for helpful discussions and advice, and David
Karger for working with me on the approximation algorithm presented in the companion
paper [10] and for continued advice. I would also like to thank an anonymous reviewer for
pointing out Höffgen’s work [9].

References

[1] S. Amari, Information geometry on hierarchy of probability distributions, IEEE Trans. Inform. Theory 47 (5)
(2001) 1701–1711.

[2] N. Alon, J.H. Spencer, The Probabilistic Method, Wiley, New York, 1991.
[3] J. Besag, Spatial interaction and the statistical analysis of lattice systems, Proc. Roy. Statist. Soc. Ser. B

(1974) 192–236.
[4] H.L. Bodlaender, A linear time algorithm for finding tree-decompositions of small treewidth, SIAM J.

Comput. 25 (1996) 1305–1317.
[5] D.M. Chickering, Learning Bayesian networks is NP-complete, in: D. Fisher, H.-J. Lenz (Eds.), Learning

from Data: AI and Statistics, Vol. V, Springer-Verlag, New York, 1996, pp. 121–130.
[6] C.K. Chow, C.N. Liu, Approximating discrete probability distributions with dependence trees, IEEE Trans.

Inform. Theory IT-14 (3) (1968) 462–467.
[7] T.M. Cover, J.A. Thomas, Elements of Information Theory, Wiley–Intersciences, New York, 1991.
[8] S. Dasgupta, Learning polytrees, in: Proc. 15th Conf. on Uncertainty in Artificial Intelligence (UAI-99),

Stockholm, Sweden, 1999, pp. 134–141.
[9] K.U. Höffgen, Learning and robust learning of product distributions, in: Proceedings of the Sixth Annual

Workshop on Computational Learning Theory, Santa Cruz, CA, 1993, pp. 77–83.
[10] D. Karger, N. Srebro, Learning Markov networks: Maximum bounded tree-width graphs, in: Proceedings of

the 12th ACM–SIAM Symposium on Discrete Algorithms, 2001.
[11] F.M. Malvestuto, Approximating discrete probability distributions with decomposable models, IEEE Trans.

Syst. Man Cybernetics 21 (5) (1991) 1287–1294.
[12] M. Meila-Predoviciu, Learning with mixtures of trees, Ph.D. Thesis, Massachusetts Institute of Technology,

Cambridge, MA, 1999.
[13] J. Pearl, Probabilistic Reasoning in Intelligent Systems, Revised 2nd Printing Edition, Morgan Kaufmann,

San Mateo, CA, 1997.
[14] K. Shoikhet, D. Geiger, A practical algorithm for finding optimal triangulations, in: Proceedings AAAI-97,

Providence, RI, 1997, pp. 185–190.
[15] N. Srebro, Maximum likelihood Markov networks: An algorithmic approach, Master’s Thesis, Massa-

chusetts Institute of Technology, Cambridge, MA, 2000.
[16] N. Wermuth, S. Lauritzen, Graphical and recursive models of contingency tables, Biometrika 72 (1983)

537–552.

