Similarity-Based Theoretical Foundation for Sparse Parzen Window Prediction

Nina Balcan Avrim Blum Carnegie Mellon

Nati Srebro

Toyota Technological Institute—Chicago

Sparse Parzen Window Prediction

• We are concerned with predictors of the form:

$$f(x) = \sum_{i=1}^{n} \alpha_i K(x, x'_i)$$

 $x'_1,...,x'_n$ are *landmarks* (often used also as training data) and K(x,x') encodes similarity.

- SVMs: learn α by minimizing objective related to dual large margin problem in implicit Hilbert space.
- Parzen/Soft Nearest-Neighbor: $\alpha_i = y'_i$
- Learn α_i by directly minimizing empirical loss
- Also want **sparsity**, i.e. many $\alpha_i=0$, and so only few landmarks actually used for prediction

The Learning Rule

- Use $|\alpha|_1 = \sum_i |\alpha_i|$ as surrogate for sparsity
- Hinge loss: $[1-y \cdot f(x)]_{+} = max(0, 1-y \cdot f(x))$
- Yields the popular learning rule:

minimize
$$\sum_{i=1}^{m} [1 - y_i f(x_i)]_+$$
s.t.
$$\sum_{j=1}^{n} |\alpha_j| \le M$$

where $(x_1, y_1), \dots, (x_m, y_m)$ are **labeled** training examples, which might, or might not, be the same as the landmarks (recall landmarks need not be labeled).

The Learning Rule: References

- Bennett and Campbell (SIGKDD Explot. Newsl. 2000), Support vector machines: hype or hallelujah?
- Roth (ICANN'01), Sparse kernel regressors.
- Guigue, Rakotomamonjy & Canu (ECML'05), Kernel basis pursuit.

With different loss functions:

• Singer (NIPS'99), Leveraged vector machines.

Combined with $|\alpha|_2$ regularization:

- Osuna and Girosi (1999). Reducing the run-time complexity in support vector machines. Advances in kernel methods: Support Vector learning.
- Gunn and Kandola (2002). Structural modelling with sparse kernels. Machine Learning, 48, 137—163

Learning Guarantees?

- Despite popularity of learning rule (*), no established guarantees in terms of K!
- For SVMs, guarantees based on large margin in implied feature space.
- Even if SVM condition holds (large margin in implied space), can (*) also be used? No previously known guarantee...
 - In fact, combining $|\alpha|_1$ and $|\alpha|_2$ suggested in order to benefit from SVM guarantees.
- Is there a simple and interpretable condition on K that guarantees learnability using rule (*)?
 - Since (*) doesn't require $K \ge 0$, would hope for guarantees that do not rely on $K \ge 0$.
 - Do landmarks have to be training examples?

Our Results

- Natural condition on K that justifies Learning Rule (*)
 - View K as similarity function
 - No requirement that $K{\succcurlyeq}0$
 - Labeled sample complexity (training points) and unlabeled sample complexity (landmarks) yielding generalization error bound.
- If $K \succeq 0$ and is a good kernel for SVMs
 - \Rightarrow also satisfies our condition
 - \Rightarrow Learning Rule (*) can be used

Non-PSD Similarity

🤔 SVM requires K≽0

- Often not the case for natural similarity, e.g.:
 - "Earth Movers Distance" (especially in vision)
 - BLAST scores for proteins or DNA
 - $K(x_1,x_2)=P_{x'}[d(x_1,x_2) \le d(x_1,x')]$ close x_2 is to x_1 , relative to all other points
- Can coerce K to be PSD and use SVM:
 - Gerpel et al (NIPS'98), Classification of pairwise proximity data
 - Wu et al (ICML'05), An analysis of transformations on non-positive semidefinite similarity matrix for kernel machines
 - Luss and d'Aspremont (NIPS'07), SVM classification with indifinite kernels

Percentile rank of how

- Checn and Ye (ICML'08), Training SVMs with indefinite kernels
- But perhaps more natural to use (*)

 \Rightarrow Our guarantee justifies using (*), even when K eq 0.

Condition Justifying Learning Rule (*)

Definition: K is a $(\varepsilon, \gamma, \tau)$ -good similarity function if there exists a probabilistic set R of "reasonable points" such that:

• There is at least τ mass of reasonable points: $\Pr_{x',R(x')}[R(x')] \geq \tau$ Can think of R(x) as random 0/1 indicator

• A parzen predictor based on the reasonable points has average hinge loss at most ϵ relative to margin γ :

 $\mathsf{E}_{\mathsf{x},\mathsf{y}}$ [[1-y·g(x)/ γ]₊] $\leq \epsilon$

where $g(x) = E_{x',y',R(x')}[y' K(x,x') | R(x')]$

Theorem: If K is a $(\varepsilon, \gamma, \tau)$ -good similarity function, then, for any $\delta, \varepsilon_1 > 0$, with probability $\geq 1 - \delta$ over a sample x'_1, \dots, x'_n of

$$n = \frac{2}{\tau} \left(\log(2/\delta) + 16 \frac{\log(2/\delta)}{\epsilon_1^2 \gamma^2} \right)$$

random (potentially unlabeled) landmarks, there exists a predictor $f(x) = \sum^{n} o K(x, x')$

$$f(x) = \sum_{i=1}^{n} \alpha_i K(x, x'_i)$$

With low ℓ_1 -norm:

$$|\alpha|_1 = \sum |\alpha_i| \le 1/\gamma$$

and low expected error:

 $\mathsf{E}_{x,y}[\;[1\text{-}y\text{-}f(x)]_{+}\;] \leq \epsilon + \epsilon_{1}$

Corollary: If K is a $(\varepsilon, \gamma, \tau)$ -good similarity function, then, for any $\delta, \varepsilon_1 > 0$, with probability $\geq 1 - \delta$ over a sample x'_1, \dots, x'_n of

$$n = O\left(\frac{\log(1/\delta)}{\tau\gamma^2\epsilon_1^2}\right)$$

random (potentially unlabeled) landmarks, and a (labeled) sample $(x_1, y_1), \dots, (x_m, y_m)$ of size

$$m = \tilde{\mathcal{O}}\left(\frac{\log n \log(1/\delta)}{\gamma^2 \epsilon_1^2}\right)$$

the predictor obtain by learning rule (*) with M=1/ γ has expected hinge loss:

 $\mathsf{E}_{x,y} \big[\ [1 \text{-} y \text{-} f(x)]_{\text{+}} \ \big] \leq \epsilon + \epsilon_1$

Good for SVM \Rightarrow Good for (*)

Definition: $K \succeq 0$ is a (ϵ, γ)-good kernel if there exists a vector β , $|\beta| \le 1/\gamma$, in the implied Hilbert space s.t. E[$[1-y \cdot \langle \beta, x \rangle]_+$] $\le \epsilon$

Theorem: If K > 0 is a (ε, γ)-good kernel (for a problem with deterministic labels), then for any $\varepsilon_1 > 0$, K is also a $(\epsilon_0 + \epsilon_1, \frac{\gamma^2}{(1 + \epsilon_0/\epsilon_1)}, \epsilon_0 + 2\epsilon_1)$ -good similarity function.

Actually, might be $(\epsilon_0 + \epsilon_1, c\gamma^2/(1 + \epsilon_0/\epsilon_1), (\epsilon_0 + 2\epsilon_1)/c)$ -good, for some c>1, which is only better in terms of learning guarantees. **Corollary:** If $K \succeq 0$ is a (ε, γ) -good kernel, then for any $\varepsilon_1, \delta > 0$, with probability $\geq 1-\delta$, over a sample x'_1, \dots, x'_n of

$$n = O\left(\frac{(1 + \epsilon/\epsilon_1)^2 \log(1/\delta)}{(\epsilon + \epsilon_1)\gamma^4 \epsilon_1^2}\right)$$

random (potentially unlabeled) landmarks, and a (labeled) sample $(x_1, y_1), \dots, (x_m, y_m)$ of size

$$m = \tilde{\mathcal{O}}\left(\frac{(1 + \epsilon/\epsilon_1)^2 \log n \log(1/\delta)}{\gamma^4 \epsilon_1^2}\right)$$

the predictor obtain by learning rule (*) with M=1/ γ has expected hinge loss $\leq \epsilon + \epsilon_1$

Full details and proofs: Improved Guarantees for Learning via Similarity Functions, Balcan, Blum and Srebro, COLT 2008