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Abstract

For supervised classification problems, it is well
known that learnability is equivalent to uniform
convergence of the empirical risks and thus to
learnability by empirical minimization. Inspired
by recent regret bounds for online convex opti-
mization, we study stochastic convex optimiza-
tion, and uncover a surprisingly different situation
in the more general setting: although the stochastic
convex optimization problem is learnable (e.g. us-
ing online-to-batch conversions), no uniform con-
vergence holds in the general case, and empirical
minimization might fail. Rather then being a dif-
ference between online methods and a global min-
imization approach, we show that the key ingredi-
ent is strong convexity and regularization.

Our results demonstrate that the celebrated theo-
rem of Alonet al on the equivalence of learnabil-
ity and uniform convergence does not extend to
Vapnik's General Setting of Learning, that in the
General Setting considering only empirical mini-
mization is not enough, and that despite Vanpnik’s
result on the equivalence sfrict consistency and
uniform convergence, uniform convergenceis only
a sufficient, but not necessary, condition for mean-
ingful non-trivial learnability.

1 Introduction
We consider the stochastic convex minimization problem

argmin F'(w) (1)
wew

where F(w) = Ez [f(w; Z)] is the expectation, with re-
spect toZ, of a random objective that is convexw. The
optimization is based on an i.i.d. samplg ..., 2z, drawn
from an unknown distribution. The goal is to choose
based on the sample and full knowledge/gf, -) and W
so as to minimizeF’(w). Alternatively, we can also think

of an unknown distribution over convex functions, where

we are given a sample of functiodsv — f(w;z;)} and
would like to optimize the expected function.
case is the familiar prediction setting where= (x,y) is

an instance-label paiVy is a subset of a Hilbert space, and
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fw;x,y) = £({w, $(x)), y) for some convex loss function
¢ and feature mapping.

The situation in which the stochastic dependencevon
is linear, as in the preceding example, is fairly well under-
stood. When the domair and the mapping are bounded,
one can uniformly (over alv € ) bound the deviation
between the expected objectiféw) and the empirical av-
erage

F(w)=RE[f(w;2)] = L) f(w;z). ()
1=1

This uniform convergence df (w) to F(w) justifies choos-
ing the empirical minimizer

W = argmin F'(w), 3)

and guarantees that the expected valué'o&) converges

to the optimal valug”(w*) = inf,, F(w). Furthermore, a
similar guarantee can also be obtained for an approximate
minimizer of the empirical objective.

Our goal here is to consider the stochastic convex opti-
mization problem more broadly, without assuming any met-
ric or other structure on the parametesr mappings of it, or
any special structure of the objective functiff; -). Viewed
as optimization based on a sample of functions, we do not
impose any constraints on the functions, or the relation-
ship between the functions, except that each function-

f(w; z) separately is convex and Lipschitz-continuous.

An online analogue of this setting has recently received
considerable attention. Online convex optimization conse
a sequence of convex functiofi§; z1), . . ., f(*; 2z, ), which
can be chosen by an adversary, and a sequence of online pre-
dictorsw;, wherew; can depend only ony, ..., z,_1. On-
line guarantees provide an upper bound on the online regret,
L5 f(wi; ;) —ming, 2 37, f(w; 2;). Note the difference
versus the stochastic setting, where we sesikgle predic-
tor w and would like to bound thpopulation sub-optimality
F(w) — F(w*).

Zinkevich [Zin03] showed that requiring(w; z) to be
Lipschitz-continuous w.r.tw is enough for obtaining an
online algorithm with online regret which diminishes as
1/y/n. If f(w,z) is not merely convex w.r.tw, but also
strongly convex, the regret diminishes with a faster rate of
1/n [HKKAOQ6].

These online results parallel known results in the
stochastic settingwhen the stochastic dependenceworis



linear. However, they apply also in a much broader setting, be understood in terms of minimizing an implicit requladze
when the stochastic dependencemis not linear, e.g. when  problem.

f(w;z) = [|lw —z||, for p # 2. The requirement that the

functionsw — f(w;z) be Lipschitz-continuous is much 2 Setup and Background

more general than a specific requirement on the structure ofA tochasti timizati blem i ified b
the functions, and does not at all constrain the relatignshi stochaslic convex optimization probiem 1S specitied by a

between the functions. That is, we can think:ads param- convex domairvy, which in this paper we always take to
eterizing all possible Lipschitz-continuous convex fuoies be a closed and bounded subset of a Hilbert spacand a

w s f(w;2). We note that this is quite different from the function f : W x Z — R which is convex w.r.t. its first

work of von Luxburg and Bousquet [vLB04] who studied argument.

learning with functions that are Lipschitz with respectto
The results for the online setting prompt us to ask

whether similar results, requiring only Lipschitz confityy

can also be obtained for stochastic convex optimizatioe. Th

answer we discover is surprisingly complex.

e We say that the problem igarnable (or “solvable”)
iff there exists a rule for choosingr based on an
i.i.d. samplez, ..., z,, and complete knowledge ®¥
andf(-;-), such that for any > 0, anye > 0, and large
enough sample size, for any distribution ovee, with

Our first surprising observation is that requiring Lips- probability at least — & over a sample of size, we
chitz continuity isnot enough for ensuring uniform conver- have F(w) < F(w*) + . We say that such a,rule is
gence of'(w) to F'(w), nor for the empirical minimizer uniformly consistent, or that it “solves” the stochastic
w to converge to an optimal solution. We present convex, optimization problem.

bounded, Lipschitz-continuous examples where even as the
sample size increases, the expected value of the empirical e We say that the problem isounded by B iff for all
minimizerw is bounded away from the population optimum: w € W we have|w| < B.
F(w)=1/2>0=F(w*).

In essentially all previously studied settings we are aware
of where learning or stochastic optimization is possible, w

o We say that the problem &-Lipschitz if f(w;z)is L-
Lipschitz w.r.t.w. Thatis, forany: € Z andw, wy €

have at least some form of locally uniform convergence,and ¥V We have

an empirical minimization approach is appropriate. In fact |f(wis2) — f(wa; 2)| < L ||wy — wal|.

for common models of supervised learning, it is known that ’ h

uniform convergence isquivalento stochastic optimization e We say that the problem-strongly convexif for any

being possible [ABCH97]. This might lead us to think that 2 € Z, w1, ws € Wanda € [0, 1] we have

Lipschitz-continuity is not enough to make stochastic @nv

optimization possible, even though it is enough to ensure on flawi+(1—a)wy; 2) < af(wi; 2)+(1—a) f(wo; 2)

line convex optimization is possible. N 9
However, this gap between the online and stochastic set- —ga(l —a)lwi —waf" .

ting cannot be, since it is possible to convert the online Note that this strengthens the convexity requirement,

method of Zinkevich to a batch algorithm, with a matching which corresponds to setting= 0.

guarantee on the population sub-optimalityw) — F'(w™).

This guarantee holds for the specific outgutof the algo- 2.1 Generalized Linear Stochastic Optimization

rithm, which isnot, in general, the empirical minimizer. It We sav that a oroblem is aeneralized lineamroblem if
seems, then, that we are in a strange situation where stochas y P IS ge 1zed fineap :

tic optimization is possible, but only using a specific (o) f(w; z) can be written as
algorithm, rather than the more natural empirical minimize f(w;2) = g((w, p(2)); 2) + r(w) (4)
We show that the “magic” can be understood not as a . o
gap between online optimization and empirical minimiza- Whereg : R x Z — R is convex w.r.t. its first argument,
tion, but rather in terms of regularization. r: W — Ris convex, andp : Z — 'H. A special case
To do so, we first show that forsironglyconvex stochas- 1S supervised learning of a linear predictor with a convex

tic optimization problem, even though we might still have 0SS function, wherg(-; -) encodes the loss function. Learn-
no uniform convergence, the empirical minimizer is guar- ability results for linear predictors can in-fact be stateare

anteed to converge to the population optimum. This result 9enerally as guarantees on stochastic optimization ofrgene
seems to defy Vapnik’s celebrated result on the equivalence@lized linear problems:
of uniform convergence arsrict consistency of the empir- Theorem 1. Consider a generalized linear stochastic convex

ical minimizer [Vap95, Vap9g]. We explain why there is o, iii7ation problem of the forr#), such that the domain
contradiction here: Vapnik’s notion of “strict consistghis W is bounded byB, the image of¢’ is bounded byR and
too strict and does not capture all situations in which leern g(u; 2) is L,-Lipschitz inu. Then for any distribution over

is non-trivial, yet still p035|ble._ . N and anys > 0, with probability at leasti — § over a sample
Convergence of the empirical minimizer to the pop-

ulation optimum for strongly convex objectives justifies of size n:

stochastic convex optimization of weakly convex Lipschitz . B2(RL,)2log(1/6)
continuous functions usinggularizedempirical minimiza- sup |F(w) — F(W)‘ <O \/ g )
tion. In fact, we discuss how Zinkevich’s algorithm can also ~ W€" "



That is, the empirical valueé(w) convergeuniformly,
forallw € W, to their expectation8'(w). This ensures that
with probability at least — ¢, for all w € W:

) 5)

F(w) - F(w") < (F(w) — F(w))
Lo ( V B2(RLy)? log(1/9)
n

The empirical suboptimality term on the right-hand-side-va
ishes for the empirical minimize¥, establishing that empir-
ical minimization solves the stochastic optimization peoi
with a rate of,/1/n. Furthermore, (5) allows us to bound the
population suboptimality in terms of the empirical subepti
mality and obtain meaningful guarantees even for approxi-
mate empirical minimizers.

The non-stochastic term{w) does not play a role in the

above bound, as it can always be canceled out. However,

when this terms is strongly-convex (e. g whenitis a squared

norm regularization termm(w) = 2 ||w|| ), a faster conver-
gence rate can be guaranteed

Theorem 2. [SSS08] Consider a generalized linear stochas-
tic convex optimization problem of the forf#), such that
r(w) is A-strongly convex, the image ofis bounded byR
and g(u; z) is Lg-Lipschitz inu. Then for any distribution
overz and any$ > 0, with probability at leastl — 6 over a
sample of size, for all w € W:

F(w)—F(w*) < 2(F(w)—F(W))+O(

2.2 Online Convex Optimization

Zinkevich [Zin03] established that Lipschitz continuityida
convexity of the objective functions with respect to thei-opt
mization argument are sufficient for online optimizafion
Theorem 3. [ShaQ7, Corollary 1] Letf : W x Z — R be
such thatV is bounded byB and f(w, z) is convex and_-
Lipschitz with respect tev. Then, there exists an online al-
gorithm such that for any sequeneg . . ., z, the sequence
of online vectorsw, . .., w,, satisfies;

%Zf(wi;zl < wa 2 +0<\/ ) (6)

Subsequently, Hazaet al [HKKAO06] showed that a

(RLy)*log(1/4)
An

Online-to-batch conversions

In this paper, we are not interested in the online setting,
but rather in the batch stochastic optimization settinggneh
we would like to obtain a single predictev with low ex-
pected value ovefuture examplesF'(w) = E, [f(w;z)].
Using martingale inequalities, it is possible to converban
line algorithm to a batch algorithm with a stochastic guaran
tee. One simple way to do so is to run the online algorithm
on the stochastic sequence of functigiis z1), ..., (-, z»)
and set the single predictev to be the average of the on-
line choiceswy, ..., w,. Assuming the conditions of Theo-
rem 3, it is possible to show (e.g. [CCG04]) that with proba-
bility of at leastl — J we have

) )

It is also possible to derive a similar guarantee assumiag th
conditions of Theorem 4 [KTO08]:

The conditions for Theorem 3 generalize those of The-
orem 1 whenr(w) = 0: If f(w;z) = g({(w,¢(z))) sat-
isfies the conditions of Theorem 1 then it also satisfies the
conditions of Theorem 3 witl. = L, R and the bound on
the population sub-optimality of g|ven in (7) matches the
guarantee o using Theorem 1. Similarly, the conditions
of Theorem 4 roughly generalize those of Theorem 2 with
L = RL, + L, and the guarantees are similar (except for
alog- factor and as long ds. = O(RLy)). Itis important
to note, however, that the guarantees (7) and (&)atsub-
sume Theorems 1 and 2, as the online-to-batch guarantees
apply only to a specific choic& which is defined in terms
of the behavior of a specific algorithm. They do not provide
guarantees on the empirical minimizer, and certainly not a
uniform guarantee in terms of the empirical sub-optimality

B2 L2 log(1/9)
n

F(W) — F(w*) < 0(

L? log(n/9)

o (8)

F(#) - F(w") < o(

3 Warm-Up: Finite Dimensional Case

We begin by noting that in the finite dimensional case, Lips-
chitz continuityis enough to guarantee uniform convergence,
hence also learnability via empirical minimization.

faster rate can be obtained when the objective functions arérhaorem 5. Let)V  RY be bounded by3 and let f(w, =)

not only convex, but also strongly convex:

Theorem 4. [HKKAQ06, Theorem 1] Letf : W x Z — R
be such that functiorf(w, z) is A-strongly convex and.-
Lipschitz with respect tev. Then, there exists an online al-
gorithm such that for any sequeneg . . ., z, the sequence
of online vectorsv, . .., w,, satisfies:

1 1 .
ﬁzi:f(wi;zi)éﬁzi:f(w ;Zi)+0<

1We present here slightly more general theorem statemeants th
those found in the original papers [Zin03, HKKAQ6]. We do not
require differentiability, and instead of bounding thedjeat and
the Hessian we bound the Lipschitz constant and the parawfete
strong convexity. The bound in Theorem 3 is also a hit tigtitan
that originally established by Zinkevich.

L? log(n)
An

be L-Lipschitz w.r.tw. Then with probability of at least—§
over a sample of size, for all w € W:

\/LQBleog(n) log(g)

n

F(w) - F(w)| <

Proof. We will show uniform convergence by bounding
the /.,-covering number of the class of functiod® =
{z— f(w;z)lw € W}. To do so, we first note that as a
subset of arts-sphere, we can bound the covering number
of W with respect to the Euclidean distanggwq, ws) =
|lwi — wal| [VGO5]: (for d > 3)

N(e,W, dz) = O(d* (£)") ©)



We now turn to covering numbers ofF with re-
spect to the {,, distance do(f(w1;-), f(wa;+))
sup, | f(w1;2) — f(wa; z)|. By Lipschitz continuity, for
any wi,we € W we havesup, |f(w1;2) — f(we; 2)| <
L ||wi — wa||. An e-covering of W w.r.t. d, therefore yields
an Le-covering of F w.r.t. d., distances, and so:

N(e,Frds) < N(e/LW, dy) = o(d2 (%)d) (10)

Noting that the empirical; covering number is bounded by
thed, covering number, and using a uniform bound in terms
of empirical?, covering numbers we get [Pol84]:

Pr( sup |F(w) —F(W)‘

>
wew h 6)

<8N (€, F, doo) exp(— 9577

LB\’ 2
<o(a (T) exp(- 257) ).

Equating the right-hand-side foand bounding we get the
bound in the Theorem. O

We can therefore conclude that empirical minimization
is uniformly consistent with the same rate as in Theorem 5:

L2B2dlog(n)log(%)
n

F(W) < F(w*) + 0O \/ (11)

with probability at least — ¢ over a sample of size. This is

4.1 Empirical Minimizer far from Population Optimal
Consider a convex stochastic optimization problem given by

funlw: (5, ) = [l (w = )|
- VZ eliliwli - <) (12)

where for now we will set the domain to tldedimensional
unit spherew {weR?: |w| <1} and takez

(x, ) with a € [0,1]% andx € W, and where: x v denotes

an element-wise product. We will first consider a sequence
of problems, where = 2" for any sample size;, and es-
tablish that we cannot expect a convergence rate which is
independent of the dimensionalify We then formalize this
example in infinite dimensions.

One can think of the problem (12) as that of finding the
“center” of an unknown distribution over € R¢, where we
also have stochastic per-coordinate “confidence” measures
ali]. We will actually focus on the case where some coordi-
nates are missing, i.e. occasional}i] = 0.

In any case the domaiw is bounded by one, and for
anyz = (x, a) the functionw — f,(w;z) is convex and
1-Lipschitz. Thus, the conditions of Theorem 3 hold, and
the convex stochastic optimization problem is learnable by
running Zinkevich's online algorithm and taking an average

Consider the following distribution ovel = (X, «):

X = 0 with probability one, and is uniform over{0, 1}.
That is, a[¢] are i.i.d. uniform Bernoulli. For a random
sample(x1, 1), . . ., (xn, @, ) We have that with probabil-
ity greater thanl — e~! > 0.63, there exists a coordinate
j € 1...2"suchthat all confidence vectats in the sample

the standard approach for establishing learnability. W& no  are zero on the coordinagei.e. a;[j] = 0 forall i = 1..n.
turn to ask whether such an approach can also be takeninthg et ¢; € 1V be the standard basis vector corresponding to

infinite dimensional case, i.e. yielding a bound that dods no
depend on the dimensionality.

4 Learnable, but not with Empirical

Minimizer
The results of the Section 2.2 suggest that perhaps Ligschit
continuity is enough for obtaining guarantees on stocbasti
convex optimization using a more direct approach, even in
infinite dimensions. In particular, that perhaps Lipschdn-
tinuity is enough for ensuring uniform convergence, which
in turn would imply learnability using empirical minimiza-
tion, as in the infinite dimensional linear case, the finite di
mensional Lipschitz case, and in essentially all studied sc
narios of stochastic optimization that we are aware of. En-

suring uniform convergence would further enable us to use

approximate empirical minimizers, and bound the stocbasti
sub-optimality ofanyvectorw in terms of its empirical sub-
optimality, rather than obtaining a guarantee on the stocha
tic sub-optimality of only one specific procedural choick{o
tained from running the online learning algorithm).

this coordinate. Then

. 1

Fuz(ej) = —~ > e (e; = 0)]]
but

Fo(ej) = Ex o [lax (e — 0)[] = Ex,a [la]f]]] = 1/2.

We established that for any, we can construct a con-
vex Lipschitz-continuous objective in high enough dimen-
sion such that with probability at lea@®3 over the sample,

SUPy, ‘Faz)(w) — Fy,(w)| > 1/2. Furthermore, sincé(-; -)

is non-negative, we have thaf is an empirical minimizer,
but its expected valug),,(e;) = 1/2 is far from the optimal
expected valuein, Fy,(w) = F;,(0) = 0.

= S el =0

i

4.2 In Infinite Dimensions: Population Minimizer Does
Not Converge to Population Optimum

To formalize the example in a sample-size independent way,
take W to be the unit sphere of an infinite-dimensional
Hilbert space with orthonormal basig, e, . . ., where for

Unfortunately, this is not the case. Despite the fact thata v € W, we refer to its coordinates[j] = (v, e;) w.r.t this

bounded, Lipschitz-continuous, stochastic convex o@émi
tion problem is learnable even in infinite dimensions, as dis

basis. The confidences are now a mapping of each coor-
dinate to[0, 1]. That is, an infinite sequence of realgin1].

cussed in Section 2.2, we show here that uniform conver- The element-wise product operatiarn v is defined with re-

gence does not hold and that it might not be learnable with
empirical minimization.

spect to this basis and the objective functjap of equation
(12) is well defined in this infinite-dimensional space.



We again take a distribution oveéf = (X, a) where
X = 0 and« is an i.i.d. sequence of uniform Bernoulli
random variables. Now, for any finite sample there is al-
most surely a coordinatg with «;[j] = 0 for all ¢, and

so we a.s. have an empirical minimiz&,(e;) = 0 with
Fip(ej) =1/2> 0 = Fy, (0).

5.1 Empirical Minimizer converges to Population
Optimum

Theorem 6. Consider a stochastic convex optimization

problem such thatf(w;z) is A-strongly convex and.-

Lipschitz with respect taw € W. Letz,...,2, be an

i.i.d. sample and let be the empirical minimizer. Then,

We see that although the stochastic convex optimization with probability at leastl — § over the sample we have

problem (12) is learnable (using Zinkevich’s online algo-
rithm), the empirical value$},,(w) do not converge uni-
formly to their expectations, and empirical minimizatian i
not guaranteed to solve the problem!

4.3 Unique Empirical Minimizer Does Not Converge to
Population Optimum

It is also possible to construct a sharper counterexample, i
which theuniqueempirical minimizerw is far from having
optimal expected value. To do so, we augmgntby a small
term which ensures its empirical minimizer is unique, amd fa
from the origin. Consider:

Jun(W; (X, @) = fun(W; (x, ) + € Z 271‘(“’[1'] —1)2

(13)
wheree = 0.01. The objective is still convex and + ¢)-
Lipschitz. Furthermore, since the additional term is #iyic
convex, we have that,,,(w; z) is strictly convex w.r.tw and
so the empirical minimizer is unique.

Consider the same distribution ovér X = 0 while
afi] are i.i.d. uniform zero or one. The empirical mini-

mizer is the minimizer of},,(w) subject to the constraints
[w|| < 1. Identifying the solution to this constrained op-
timization problem is tricky, but fortunately not necessar
It is enough to show that the optimum of thaconstrained
optimization problenw?,. = arg min F},,(w) (without con-
strainingw € W) has norm|w/.|| > 1. Notice that

in the unconstrained problem, whenewerj] = 0 for all

i = 1..n, only the second term of;;;, depends omw|j] and
we havew;.[j] = 1. Since this happens a.s. for some co-
ordinatej, we can conclude that the solution to the con-
strained optimization problem lies on the boundary/of
i.e. has|w| = 1. But for such a solution we have

Fag(W) > Ea [/22; @il W?[i]] > Ea [3; aliWw?[i]] =
Lw|? = 3, while F(w*) < F(0) = e.

In conclusion, no matter how big the sample size is, the

unigue empirical minimizew of the stochastic convex opti-

mization problem (13) is a.s. much worse than the population

optimum,F(w) > 1 > ¢ > F(w*), and certainly does not
converge to it.

5 Empirical Minimization of a Strongly
Convex Objective

We saw that empirical minimization is not adequate for
stochastic convex optimization even if the objective is
Lipschitz-continuous. We will now show that, if the objec-
tive f(w; z) is stronglyconvex w.r.t.w, the empirical mini-

mizerdoesconverge to the optimum. This is despite the fact

that even in the strongly convex case, we still might not have

uniform convergence of (w) to F'(w).

412
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Proof. To prove the Theorem, we use a stability argument
introduced by Bousquet and Elisseeff [BE02]. Denote

F(w) - F(w") <

(14)

.y 1
F® —— ) /
(w) = — | D_f(w,2) + f(w, =)
J#i
the empirical average with; replaced by an independently
and identically drawr}, and consider its minimizer:
a0 — in B
w arg min (w).
We first use strong convexity and Lipschitz-continuity te es

tablish that empirical minimization is stable in the follimg
sense:

Vi 2 €2 |f(W,2) - J(W 0, 2)| < 6,
(15)
2
with 8, = 4L (this is referred to as “CV (Replacement)

Stability” [RIV’IZPOS] and is similar to “uniform stability”
[BEO2]). We then show that (15) implies convergence of
F(w) to F(w*).

Claim 6.1. Under the conditions of Theorem 6, the stability
bound(15) holds with3,, = 4L

Proof of Claim 6.1: We first calculate:

E(w") - F(w)

an "

IO z) — f(zm) | N (F(WD, 2;) = f(W, 2))
o n n
n n
+ (F“') (WD) — B (w) (16)
[fW D, 2i) — f(W,zi)| | |f(W,2)) = F(w D, 2D)|
< 2L % - w (17)
n

where the first inequality follows from the fact that® is
the minimizer of '(Y) (w) and for the second inequality we
use Lipschitz continuity. But from strong convexityﬁ(w)
and the fact thatv minimizesF(w) we also have that

L . : 2

F(w®) > F(w) + 2 va) - WH . (18)
Combining (18) with (17) we gefw( — w|| < 4L/(An).
Finally from Lipschitz continuity, for any € Z:

4L?
S An

(19)



Claim 6.2. If the stability bound(15) holds, then for any  zero/one Bernoulli variables. Recall that almost surely we

0 > 0, with probabilityl — § over the sample, have a coordinatg that is never “observed”, i.e. such that
3 V;a;[j] = 0. Consider a vectote; of magnituded < ¢ <1
F(w) - F(w") < 7” (20)  in the direction of this coordinate. We have ttiég,(te;) =

A2 1 A2 [
- . e . 2t2 but Fou(te;) = st+5t%. HenceFy,(te;) — Fpy(te;) =
A similar result that is not specific &, but yields only a t2/2. ealte;) = 3t+3 wa(te;) = Flste;)

v/ Bn + % rate appears in [RMPO5, Theorem 4.4]. The faster In particular, we can set = 1 and establish
rate is important for us here. SUPw e (Fon(W) — Fy(w)) > 3 regardless of the sample

size. We see then that the empirical averaiggw) donot
converge uniformly to their expectations, even as the sampl
size increases.

Proof of Claim 6.2: Since the samples with; and with
z} are identically distributed, and is independent of;, we
have:

5.3 Not Even Local Uniform Convergence

For anye > 0, consider limiting our attention only to predic-
where the expectation is over, ..., z,, z.. This holds for ~ tors that are close to being population optimal:

E[F(w)] = E [F(%)] = E | 7(%; )]

all i, and so we can also write: W, = {W EW : Fipg(W) < Fop(W*) + €} .
1 & . o . _
E[F(W)] = =S E[f(&w®:2)]. 21 Settingt = ¢ we havete; € W, (focusing for convenience
[F(W) n ; [f(w c )} (21) on\ < 1) and so:
We also have: sup (Fon(w) = Foy(w)) > 3¢ (25)
we €
E [ﬁ(v@,)} —E 1 Z f(W;z)| = 1 Z]E [f(W; 2)] regardless of the sample size. And so, even in an arbitrar-
n = n = ily small neighborhood of the optimum, the empirical values
(22) F,.,(w) do not converge uniformly to their expected values
Combining (21) and (22) and using (15) yields even asw — oo. This is in sharp contrast to essentially all

Lo other results on stochastic optimization and learningwreat
E[F(%) = F(W)] = = Y E[f(w,2) - f(w;2)] < g, areawareof
=1 5.4 Bounding Population Sub-Optimality in term of
Empirical Sub-Optimality

A practical question related to uniform convergence is
whether we can obtain a uniform bound on the population
sub-optimality in terms of the empirical sub-optimality a
in Theorem 2. We first note that merely due to the fact that
E[F(W)— F(w*)] <E [F(W) _ F(vAv)} < Bn. (23) the empirical objectivé” is strongly convex, any approxi-
mate empirical minimizer must be close ¥, and due to
Using Markov’s inequality yields (20). O the fact that the expected objectiFas Lipschitz-continuous
any vector close tev cannot have a much worse value than
We suspect that the dependencejon the above bound . We therefore have, under the conditions of Theorem 6,
can be improved tiog(1/4), matching the dependence &n  that with probability at least — &, for all w € W:
in the online-to-batch guarantee (8) and the guranteebléor t

: . X X 5 . 9
generalized linear case. For more details, see Appendix A. F(w) — F(w*) < /% /F(w) - (;L)L\ (26)
n

5.2 But Without Uniform Convergence!

We now turn to ask whether the convergence of the empirical
minimizer in this case is a result of uniform convergence.

Consider augmenting the objective functifin, of Sec-
tion 4 with a strongly convex term:

We also have thak [F(w*)] = E [ﬁ’(w*)} > E [ﬁ(@)},
where the equality is just equating an expectation to an ex-

pectation of an average, and the inequality follows from op-
timality of w. We can therefore conclude:

It is important to emphasize that this is an immediate con-
sequence of (14) and does not involve any further stochastic
properties of nor F. Although this uniform inequality does
allow us to bound the population sub-optimality in terms
of the empirical sub-optimality, the empirical sub-optiitya
must be quadratic in the desired population sub-optimality
Compare this dependence with the more favorable linear de-
pendence of Theorem 2. Unfortunately, as we show next,
this is the best that can be ensured.

Consider the objectivé,,, and the same distribution over
Z = (X, ) discussed above and recall that is a vector of
magnituder along a coordinatg s.t.V;a;[j] = 0. We have
that Fy(te;) — EFuo(W) = 2> and so setting = /2¢/X,

2This is a modification of a derivation extracted from the froo We get ane-empirical-suboptimal vector with population
of Theorem 12 in [BE02] sub-optimalityF,(te;) — Foy(0) = 2t + 512 = /5 +e.

A
Jea(W; X, ) = fup(W;x, ) + 3 HWH2 . (24)

The modified objectivef,,(-;-) is A-strongly convex and
(1 + N)-Lipschitz over the domaiy = {w: |w| <1}
and thus satisfies the conditions of Theorem 6.

Consider the same distribution ovér = (X, «) used
in Section 4:X = 0 ande is an i.i.d. sequence of uniform



This establishes that the dependenc?@ in the first term
of (26) is tight, and the situation is qualitatively diffetehan
the generalized linear case.

6 Regularization

We now return to the case wheféw, z) is Lipschitz (and
convex) w.r.tw but not strongly convex. As we saw, empiri-
cal minimization may fail in this case, despite the guaredte
success of an online approach. Our goal in this section is to
underscore a more direct, non-procedural, optimization cr
terion for stochastic optimization.

5.5 Contradiction to Vapnik?

At this point, a reader familiar with Vapnik's work on nec-
essary and sufficient conditions for consistency of emaiiric
minimization (i.e. conditions fof'(w) — F(w*)) might be , . L L
confused. To do so, we define a regularized empirical minimization

In seeking such necessary and sufficient conditions problem
[Vap98, Chapter 3], Vapnik excludes certain consistent set
tings where the consistency is so-called “trivial”. The mai
example of an excluded setting is one in which there is one
hypothesisw® that dominates all others, i.¢.(w’;2) <
f(w;z) forallw € W and allz € Z [Vap98, Figure 3.2].
When this is the case, empirical minimization will be consis
tent regardless of the behavior Bfw) for w # w°.

In order to exclude such “trivial” cases Vapnik defines
strict (aka “non-trivial”) consistency of empirical miniga-

n
A . A 2 1
Wi = Inin (5 [wi” + = Ef(wazi)> ; (29)
=
where )\ is a parameter that will be determined later. The
following theorem establishes that the minimizer of (29 is
good solution to the stochastic convex optimization proble

Theorem 7. Letf : W x Z — R be such thatV is bounded
by B and f(w, z) is convex and_-Lipschitz with respect to

tion as (in our notation): w. Letzy,...,z, be anii.d. sample and le¥, be the
inf F(w)% inf Fw) > c¢ 27) minimizer of(29) with A = 1/ 8L° Then, with probability
F(w)ze F(w)ze at leastl — § we have

for all ¢ € R, where the convergence is in probability. This

condition indeed ensures tha(w) = F(w*). Vapnik's

Key Theorem on Learning Theory [Vap98, Theorem 3.1]

then states thastrict consistency of empirical minimiza-  pyyof Letr(w;z) = 2||w||? + f(w;2) and letR(w) =
. i 2 ’

tion is equivalent to one-sided uniform conAvergencg. “One- E. [r(w, 2)]. Note thatw, is the empirical minimizer for
sided” meaning requiring onlyup (Fioy(w) — Fia(W)) — 0, the stochastic optimization problem definediiy; z).
rather thensup | Fio,(w) — }7“(24)(w)‘ % 0. Note that the We apply Theorem 6 te(w;z), to this end note that

. : . __sincef is L-Lipschitz andvw € W, ||w|| < B we see that
ggg\l}g';e"’n‘ggve shows the lack of such one-sided umformr is in fact L + AB-Lipschitz. Applying Theorem 6 now we

In the example presented above, even though Theorem><° that

6 establishe#’(w) = F(w*), the consistency isn't “strict”

F(wy) — F(w")

L2B? 8
< — .
=4 on (1 * 5n)

. . N . 4(L + AB)?
2 Wl +F (W) = R(Wy) < 1§R(W)+¥

by the definition above. To see this, for any- 0, consider ST
the vectorte; (whereV,;c;[j] = 0) with ¢ = 2¢. We have A(L+AB)? ) A(L + AB)?
F(te;) = Lt + 212 > cbut Fpu(te;) = 312 = 2X2 S R(WH)t == = 5 [W "+ F (W) + =
: _ ]
Focusing om =  we get: Now note that|w*|| < B and so we get that
F(w)>c F(VAVX) < F(W*)—i- 532 + ( ;:\n )
almost surely for any sample sizg violating the strict con- \ SI2  S\B2
sistency requirement (27). The fact that the right-hani@-si < F(w*) + 532 4 i + 5

of (28) is strictly greater thed’(w*) = 0 is enough for ob-
taining (non strict) consistency of empirical minimizatjo
but this is not enough for satisfying strict consistency.

Plugging in the value of given in the theorem statement we
see that

We emphasize that stochastic convex optimization is far
from “trivial” in that there is no dominating hypothesis tha
will always be selected. Although for convenience of analy-
sis we tookX = 0, one should think of situations in which
X is stochastic with an unknown distribution.

We see then that there is no mathematical contradiction ~ From the above theorem and the discussion in Section 4
here to Vapnik's Key Theorem. Rather, we see a demonstra-we see that regularization is essential for convex stoithast
tion that strict consistency is too strict a requirement an optimization. It is interesting to contrast this with the-on
that interesting, non-trivial, learning problems mightratd line learning algorithm of Zinkevich [Zin03]. Seemingly,
non-strict consistency which isot equivalent to one-sided the online approach of Zinkevich does not rely on regular-
uniform convergence. We see that uniform convergence is aization. However, a more careful look reveals an underlying
sufficient, but not at all necessary, condition for consisye regularization also in the online technique. Indeed, Shale
of empirical minimization in non-trivial settings. Shwartz [Sha07] showed that Zinkevich’s online learning

. [L2B2 32 |L2B2
< * N - N
F(wy) < F(w") +4 on + on on

This gives us the required bound. O



uniform convergence

learnable

Figure 1: Lipschitz-continuous convex problems (triangle
are all learnable, but not necessarily using empirical min-
imization. Lipschitz-continuous strongly convex probkm
(dotted rectangle) are all learnable with empirical mirzaai
tion, but uniform convergence might not hold. For bounded
generalized linear problems (starred rectangle), unifaym

vergence always holds. Our two separating examples are

also indicated.

algorithm can be viewed as approximate coordinate ascent%f
optimization of the dual of the regularized problem (29). ca

Furthermore, it is also possible to obtain the same online
regret bound using a Follow-The-Regularized-Leader ap-
proach, which at each iteratiandirectly solves the regu-
larized minimization problem (29) on, .. ., z;_1. The key,
then, seems to be regularization, rather then a procedural o
line versus global minimization approach.

6.1 Regularization vs Constraints

The role of regularization here is very different than in flam
iar settings such &5 regularization in SVMs and, regular-
ization in LASSO. In those settings regularization serees t
constrain our domain to a low-complexity domain (e.g. low-
norm predictors), where we rely on uniform convergence. In
fact, almost all learning guarantees for such settingswiieat
are aware of can be expressed in terms of some sort of un
form convergence. And as we mentioned, learnability (under
the standard supervised learning model) is in &ptivalent
to a uniform convergence property.

In our case, constraining the norm of does not
ensure uniform convergence. Consider the exanfple
of Section 4. Even over a restricted domaif,
{w:||w| < r}, for arbitrarily small* > 0, the empir-

ical averagesl’(w) do not uniformly converge toF(w)
and Pr (lim SUD,, 00 SUPwew, ‘F(W) — F(w)| > O)
1. Furthermore, consider replacing the regularization term

X ||w||* with a constraint on the norm djfw ||, namely, solv-
ing the problem

(30)

W, = arg min F(w
Iwil<r (w)

As we show below, we cannot solve the stochastic opti-

[ uniform convergencesup |F(w) — F(w)| — 0 }

skemje
Buiures|
pasinladns
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learnable withw: F(w) — F(w™)

shemje
Buiures|
pasinladns
(172)3{

learnable: F(w) — F(w™)

[ )

Figure 2: Relationship between different properties of
stochastic optimization problems.

mization problem by setting in a distribution-independent
way (i.e. without knowing the solution...). To see this,aot
that whenX = 0 a.s. we must have — 0 to ensure
F(w,) — F(w*). However, ifX = e; a.s., we must set
r — 1. No constraint will work for all distributions over
= (X, a)! This sharply contrasts with traditional uses
regularization, were learning guarantees are actugliy t
lly stated in terms of a constraint on the normrather thanii
terms of a parameter such &sand adding a regularization

term of the form3 |w||? is viewed as a proxy for bounding
the norm||w||.

7 Summary

Following the work of Zinkevich [Zin03], we expected to
be able to generalize well established results on stochas-
tic optimization of linear functions also to the more getera
Lipschitz-convex case. We discovered a complex and unex-
pected situation, where strong convexity and regulaonpati
play a key role and ultimately did reach an understanding of
stochastic convex optimization that does not rely on online
techniques (Figure 1).

For stochastic objectives that arise from supervised pre-
diction problems, it is well known that learnability, i.ele-
ability of the stochastic optimization problem, is equiva-
lent to uniform convergence, and so whenever the problem
is learnable, it is learnable using empirical minimization
[ABCH97]. Many might think that this principal, namely
that a problem is learnable iff it is learnable using empiric
minimization, extends also the “General Setting of Learn-
ing” [Vap95] which includes also the stochastic convex-opti
mization problem studied here.

However, we demonstrated stochastic optimization prob-
lems in which these equivalences do not hold. There is no
contradiction, since stochastic optimization problemeat th
arise from supervised learning have a restricted structure
and in particular the examples we study are not among such
problems. In fact, for reasonable loss functions, in order t
make f(w; x,y) = ¢(predw,x),y) convex for both posi-



tive and negative labels, we must essentially make the pre-
diction function pre¢iw, x) both convex and concave i,
i.e. linear. And so stochastic (or online) convex optimimat

problems that correspond to supervised problems are often

generalized linear problems.

To summarize, although there is no contradiction to the
work of Vapnik [Vap95] or of Alonet al[ABCH97], we see
that learning in the General Setting is more complex than we
perhaps appreciate. Empirical minimization might be con-
sistent without local uniform convergence, and more safpri
ingly, learning might be possible, but not by empirical mini
mization (Figure 2).

Acknowledgments

We would like to thank Leon Bottou, Tong Zhang, and
Vladimir Vapnik for helpful discussions.

References

[ABCH97] N. Alon, S. Ben-David, N. Cesa-Bianchi, and
D. Haussler. Scale-sensitive dimensions, uni-
form convergence, and learnabilityJ. ACM
44(4):615-631, 1997.

[BEO2] O. Bousquet and A. Elisseeff. Stability and gen-
eralization. J. Mach. Learn. Res2:499-526,
2002.

[CCGO04] N. Cesa-Bianchi, A. Conconi, and C. Gentile.

On the generalization ability of on-line learning
algorithms. IEEE Transactions on Information
Theory 50(9):2050-2057, September 2004.
[HKKAO6] E. Hazan, A. Kalai, S. Kale, and A. Agarwal.
Logarithmic regret algorithms for online convex
optimization. InProceedings of the Nineteenth
Annual Conference on Computational Learning
Theory 2006.
[HKLW91] David Haussler, Michael Kearns, Nick Little-
stone, and Manfred K. Warmuth. Equivalence
of models for polynomial learnabilitynforma-
tion and Computation95(2):129-161, Decem-
ber 1991.
S.M. Kakade and A. Tewari. On the generaliza-
tion ability of online strongly convex program-
ming algorithms. IMNIPS 2008.

D. Pollard. Convergence of Stochastic Pro-
cessesSpringer, New York, 1984.

S. Rakhlin, S. Mukherjee, and T. Poggio. Sta-
bility results in learning theory.Analysis and
Applications 3(4):397-419, 2005.

S. Shalev-ShwartzOnline Learning: Theory,
Algorithms, and ApplicationsPhD thesis, The
Hebrew University, 2007.

K. Sridharan, N. Srebro, and S. Shalev-Shwartz.
Fast rates for regularized objectives. Au-
vances in Neural Information Processing Sys-
tems 222008.

V.N. Vapnik.The Nature of Statistical Learning
Theory Springer, 1995.

V. N. Vapnik. Statistical Learning TheoryWi-
ley, 1998.

J.L. Verger-Gaugry.

[KTO8]

[Polg4]

[RMPO5]

[Sha07]

[SSS08]

[Vap95]

[Vap9s8]

[VGO5] Covering a ball with

smaller equal balls ilR™. Discrete Comput.
Geom, 33(1):143-155, 2005.

U. von Luxburg and O. Bousquet. Distance—
based classification with lipschitz functions.
Mach. Learn. Res5:669-695, 2004.

M. Zinkevich. Online convex programming
and generalized infinitesimal gradient ascent.
In Proceedings of the Twentieth International
Conference on Machine Learning003.

A High Confidence Bounds

The bounds in Theorems 6 and 7 have polynomial rather than
logarithmic dependence on the confidence paranaefEnis
leads to the question of whether these bounds can be im-
proved to depend just dng(1/4§), matching the dependence
on¢ in the online-to-batch guarantees (7) and (8). While we
suspect this might be the case, the question remains open.

We emphasize that the question here pertains to the
bound on the convergenoé the empirical minimizer The
online-to-batch guarantees apply only to a specific procedu
rally defined predictor, which is not the empirical mininize
Another simple way to achieve a logarithmic dependence
on 1/4 is to use empirical minimization combined with a
generic boosting-the-confidence method [HKLW91]. Again,
this leads to a high-confidence bound for a different leaynin
rule, based on the empirical minimizer, but is not the empir-
ical minimizer.

As for results regarding the empirical minimizer itself,
we note that it is possible to get high-confidence bounds,
with only a logarithmic dependence aré. However, these
bounds come at the price of worse dependence on the other
parameters of the learning problem. For instancé (ifv)
is twice continuously differentiable, with a uniform upper
bound),,.. on the eigenvalues of its Hessian, and the con-
ditions of Theorem 6 hold, we get that with probability at

(1/5))\max

leastl — d:
L?log
0( e )

F(w) — F(w")
Also, under the conditions of Theorem 6 and without any ad-
ditional assumption, Bousquet and Elisseeff [BE02] previd
arguments for a bound of the form
1%um0. 32)
n

2
O<L_

[vLBO4]

[Zin03]

< (31)

F(w) - F(w") <

A
Unfortunately, neither of these two bounds is sufficient for

obtaining a version of Theorem 7 which matches the online-
to-batch guarantee (8) or the bound of Theorem 1 for the
generalized linear case. Optimizing for the value)os

a function of the sample size, we get that the bound on the
unregularized objective function in Theorem 7 is replacged b

1/3
F(wy) — F(w*) < O((B4L2 1057(11/5))\111%) )
if we use (31), or
1/4
F(Wy) — F(w*) < o<(w) )

if we use (32). In particular, the dependence on the sample
sizen is significantly worse than—1/2,

n



