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Abstract

For supervised classification problems, it is well
known that learnability is equivalent to uniform
convergence of the empirical risks and thus to
learnability by empirical minimization. Inspired
by recent regret bounds for online convex opti-
mization, we study stochastic convex optimiza-
tion, and uncover a surprisingly different situation
in the more general setting: although the stochastic
convex optimization problem is learnable (e.g. us-
ing online-to-batch conversions), no uniform con-
vergence holds in the general case, and empirical
minimization might fail. Rather then being a dif-
ference between online methods and a global min-
imization approach, we show that the key ingredi-
ent is strong convexity and regularization.

Our results demonstrate that the celebrated theo-
rem of Alonet al on the equivalence of learnabil-
ity and uniform convergence does not extend to
Vapnik’s General Setting of Learning, that in the
General Setting considering only empirical mini-
mization is not enough, and that despite Vanpnik’s
result on the equivalence ofstrict consistency and
uniform convergence, uniform convergence is only
a sufficient, but not necessary, condition for mean-
ingful non-trivial learnability.

1 Introduction

We consider the stochastic convex minimization problem

argmin
w∈W

F (w) (1)

where F (w) = EZ [f(w; Z)] is the expectation, with re-
spect toZ, of a random objective that is convex inw. The
optimization is based on an i.i.d. samplez1, . . . , zn drawn
from an unknown distribution. The goal is to choosew

based on the sample and full knowledge off(·, ·) andW
so as to minimizeF (w). Alternatively, we can also think
of an unknown distribution over convex functions, where
we are given a sample of functions{w 7→ f(w; zi)} and
would like to optimize the expected function. A special
case is the familiar prediction setting wherez = (x, y) is
an instance-label pair,W is a subset of a Hilbert space, and

f(w;x, y) = `(〈w, φ(x)〉, y) for some convex loss function
` and feature mappingφ.

The situation in which the stochastic dependence onw

is linear, as in the preceding example, is fairly well under-
stood. When the domainW and the mappingφ are bounded,
one can uniformly (over allw ∈ W) bound the deviation
between the expected objectiveF (w) and the empirical av-
erage

F̂ (w) = Ê [f(w; z)] = 1
n

n
∑

i=1

f(w; zi). (2)

This uniform convergence of̂F (w) to F (w) justifies choos-
ing the empirical minimizer

ŵ = arg min
w

F̂ (w), (3)

and guarantees that the expected value ofF (ŵ) converges
to the optimal valueF (w?) = infw F (w). Furthermore, a
similar guarantee can also be obtained for an approximate
minimizer of the empirical objective.

Our goal here is to consider the stochastic convex opti-
mization problem more broadly, without assuming any met-
ric or other structure on the parameterz or mappings of it, or
any special structure of the objective functionf(·; ·). Viewed
as optimization based on a sample of functions, we do not
impose any constraints on the functions, or the relation-
ship between the functions, except that each functionw 7→
f(w; z) separately is convex and Lipschitz-continuous.

An online analogue of this setting has recently received
considerable attention. Online convex optimization concerns
a sequence of convex functionsf(·; z1), . . . , f(·; zn), which
can be chosen by an adversary, and a sequence of online pre-
dictorswi, wherewi can depend only onz1, . . . , zi−1. On-
line guarantees provide an upper bound on the online regret,
1
n

∑

i f(wi; zi)−minw
1
n

∑

i f(w; zi). Note the difference
versus the stochastic setting, where we seek asingle predic-
tor w̃ and would like to bound thepopulation sub-optimality
F (w̃) − F (w?).

Zinkevich [Zin03] showed that requiringf(w; z) to be
Lipschitz-continuous w.r.t.w is enough for obtaining an
online algorithm with online regret which diminishes as
1/

√
n. If f(w, z) is not merely convex w.r.t.w, but also

strongly convex, the regret diminishes with a faster rate of
1/n [HKKA06].

These online results parallel known results in the
stochastic setting,when the stochastic dependence onw is



linear. However, they apply also in a much broader setting,
when the stochastic dependence onw is not linear, e.g. when
f(w; z) = ‖w − z‖p for p 6= 2. The requirement that the
functionsw 7→ f(w; z) be Lipschitz-continuous is much
more general than a specific requirement on the structure of
the functions, and does not at all constrain the relationship
between the functions. That is, we can think ofz as param-
eterizing all possible Lipschitz-continuous convex functions
w 7→ f(w; z). We note that this is quite different from the
work of von Luxburg and Bousquet [vLB04] who studied
learning with functions that are Lipschitz with respect toz.

The results for the online setting prompt us to ask
whether similar results, requiring only Lipschitz continuity,
can also be obtained for stochastic convex optimization. The
answer we discover is surprisingly complex.

Our first surprising observation is that requiring Lips-
chitz continuity isnot enough for ensuring uniform conver-
gence ofF̂ (w) to F (w), nor for the empirical minimizer
ŵ to converge to an optimal solution. We present convex,
bounded, Lipschitz-continuous examples where even as the
sample size increases, the expected value of the empirical
minimizerŵ is bounded away from the population optimum:
F (ŵ) = 1/2 > 0 = F (w?).

In essentially all previously studied settings we are aware
of where learning or stochastic optimization is possible, we
have at least some form of locally uniform convergence, and
an empirical minimization approach is appropriate. In fact,
for common models of supervised learning, it is known that
uniform convergence isequivalentto stochastic optimization
being possible [ABCH97]. This might lead us to think that
Lipschitz-continuity is not enough to make stochastic convex
optimization possible, even though it is enough to ensure on-
line convex optimization is possible.

However, this gap between the online and stochastic set-
ting cannot be, since it is possible to convert the online
method of Zinkevich to a batch algorithm, with a matching
guarantee on the population sub-optimalityF (w̃)−F (w?).
This guarantee holds for the specific outputw̃ of the algo-
rithm, which isnot, in general, the empirical minimizer. It
seems, then, that we are in a strange situation where stochas-
tic optimization is possible, but only using a specific (online)
algorithm, rather than the more natural empirical minimizer.

We show that the “magic” can be understood not as a
gap between online optimization and empirical minimiza-
tion, but rather in terms of regularization.

To do so, we first show that for astronglyconvex stochas-
tic optimization problem, even though we might still have
no uniform convergence, the empirical minimizer is guar-
anteed to converge to the population optimum. This result
seems to defy Vapnik’s celebrated result on the equivalence
of uniform convergence andstrict consistency of the empir-
ical minimizer [Vap95, Vap98]. We explain why there is no
contradiction here: Vapnik’s notion of “strict consistency” is
too strict and does not capture all situations in which learning
is non-trivial, yet still possible.

Convergence of the empirical minimizer to the pop-
ulation optimum for strongly convex objectives justifies
stochastic convex optimization of weakly convex Lipschitz-
continuous functions usingregularizedempirical minimiza-
tion. In fact, we discuss how Zinkevich’s algorithm can also

be understood in terms of minimizing an implicit regularized
problem.

2 Setup and Background

A stochastic convex optimization problem is specified by a
convex domainW , which in this paper we always take to
be a closed and bounded subset of a Hilbert spaceH, and a
function f : W × Z → R which is convex w.r.t. its first
argument.

• We say that the problem islearnable (or “solvable”)
iff there exists a rule for choosing̃w based on an
i.i.d. samplez1, . . . , zn, and complete knowledge ofW
andf(·; ·), such that for anyδ > 0, anyε > 0, and large
enough sample sizen, for any distribution overz, with
probability at least1 − δ over a sample of sizen, we
haveF (w̃) ≤ F (w?) + ε. We say that such a rule is
uniformly consistent, or that it “solves” the stochastic
optimization problem.

• We say that the problem isbounded by B iff for all
w ∈ W we have‖w‖ ≤ B.

• We say that the problem isL-Lipschitz if f(w; z) is L-
Lipschitz w.r.t.w. That is, for anyz ∈ Z andw1,w2 ∈
W we have

|f(w1; z) − f(w2; z)| ≤ L ‖w1 − w2‖ .

• We say that the problemλ-strongly convex if for any
z ∈ Z, w1,w2 ∈ W andα ∈ [0, 1] we have

f(αw1+(1−α)w2; z) ≤ αf(w1; z)+(1−α)f(w2; z)

− λ
2 α(1 − α) ‖w1 − w2‖2

.

Note that this strengthens the convexity requirement,
which corresponds to settingλ = 0.

2.1 Generalized Linear Stochastic Optimization

We say that a problem is ageneralized linearproblem if
f(w; z) can be written as

f(w; z) = g(〈w, φ(z)〉; z) + r(w) (4)

whereg : R × Z → R is convex w.r.t. its first argument,
r : W → R is convex, andφ : Z → H. A special case
is supervised learning of a linear predictor with a convex
loss function, whereg(·; ·) encodes the loss function. Learn-
ability results for linear predictors can in-fact be statedmore
generally as guarantees on stochastic optimization of gener-
alized linear problems:

Theorem 1. Consider a generalized linear stochastic convex
optimization problem of the form(4), such that the domain
W is bounded byB, the image ofφ is bounded byR and
g(u; z) is Lg-Lipschitz inu. Then for any distribution overz
and anyδ > 0, with probability at least1 − δ over a sample
of size n:

sup
w∈W

∣

∣

∣F (w) − F̂ (w)
∣

∣

∣ ≤ O
(
√

B2(RLg)2 log(1/δ)

n

)



That is, the empirical valueŝF (w) convergeuniformly,
for all w ∈ W , to their expectationsF (w). This ensures that
with probability at least1 − δ, for all w ∈ W :

F (w) − F (w?) ≤ (F̂ (w) − F̂ (ŵ))

+ O
(
√

B2(RLg)2 log(1/δ)

n

)

(5)

The empirical suboptimality term on the right-hand-side van-
ishes for the empirical minimizer̂w, establishing that empir-
ical minimization solves the stochastic optimization problem
with a rate of

√

1/n. Furthermore, (5) allows us to bound the
population suboptimality in terms of the empirical subopti-
mality and obtain meaningful guarantees even for approxi-
mate empirical minimizers.

The non-stochastic termr(w) does not play a role in the
above bound, as it can always be canceled out. However,
when this terms is strongly-convex (e.g. when it is a squared-
norm regularization term,r(w) = λ

2 ‖w‖2), a faster conver-
gence rate can be guaranteed:

Theorem 2. [SSS08] Consider a generalized linear stochas-
tic convex optimization problem of the form(4), such that
r(w) is λ-strongly convex, the image ofφ is bounded byR
and g(u; z) is Lg-Lipschitz inu. Then for any distribution
overz and anyδ > 0, with probability at least1 − δ over a
sample of sizen, for all w ∈ W :

F (w)−F (w?) ≤ 2(F̂ (w)−F̂ (ŵ))+O
(

(RLg)
2 log(1/δ)

λn

)

2.2 Online Convex Optimization

Zinkevich [Zin03] established that Lipschitz continuity and
convexity of the objective functions with respect to the opti-
mization argument are sufficient for online optimization1:

Theorem 3. [Sha07, Corollary 1] Letf : W × Z → R be
such thatW is bounded byB andf(w, z) is convex andL-
Lipschitz with respect tow. Then, there exists an online al-
gorithm such that for any sequencez1, . . . , zn the sequence
of online vectorsw1, . . . ,wn satisfies:

1

n

∑

i

f(wi; zi) ≤
1

n

∑

i

f(w?; zi) + O
(
√

B2 L2

n

)

(6)

Subsequently, Hazanet al [HKKA06] showed that a
faster rate can be obtained when the objective functions are
not only convex, but also strongly convex:

Theorem 4. [HKKA06, Theorem 1] Letf : W × Z → R

be such that functionf(w, z) is λ-strongly convex andL-
Lipschitz with respect tow. Then, there exists an online al-
gorithm such that for any sequencez1, . . . , zn the sequence
of online vectorsw1, . . . ,wn satisfies:

1

n

∑

i

f(wi; zi) ≤
1

n

∑

i

f(w?; zi) + O
(

L2 log(n)

λn

)

1We present here slightly more general theorem statements than
those found in the original papers [Zin03, HKKA06]. We do not
require differentiability, and instead of bounding the gradient and
the Hessian we bound the Lipschitz constant and the parameter of
strong convexity. The bound in Theorem 3 is also a bit tighterthan
that originally established by Zinkevich.

Online-to-batch conversions
In this paper, we are not interested in the online setting,
but rather in the batch stochastic optimization setting, where
we would like to obtain a single predictor̃w with low ex-
pected value overfuture examplesF (w̃) = Ez [f(w̃; z)].
Using martingale inequalities, it is possible to convert anon-
line algorithm to a batch algorithm with a stochastic guaran-
tee. One simple way to do so is to run the online algorithm
on the stochastic sequence of functionsf(·, z1), . . . , f(·, zn)
and set the single predictor̃w to be the average of the on-
line choicesw1, . . . ,wn. Assuming the conditions of Theo-
rem 3, it is possible to show (e.g. [CCG04]) that with proba-
bility of at least1 − δ we have

F (w̃) − F (w?) ≤ O
(
√

B2 L2 log(1/δ)

n

)

. (7)

It is also possible to derive a similar guarantee assuming the
conditions of Theorem 4 [KT08]:

F (w̃) − F (w?) ≤ O
(

L2 log(n/δ)

λn

)

. (8)

The conditions for Theorem 3 generalize those of The-
orem 1 whenr(w) = 0: If f(w; z) = g(〈w, φ(z)〉) sat-
isfies the conditions of Theorem 1 then it also satisfies the
conditions of Theorem 3 withL = LgR and the bound on
the population sub-optimality of̃w given in (7) matches the
guarantee on̂w using Theorem 1. Similarly, the conditions
of Theorem 4 roughly generalize those of Theorem 2 with
L = RLg + Lr and the guarantees are similar (except for
a log-factor, and as long asLr = O(RLg)). It is important
to note, however, that the guarantees (7) and (8) donot sub-
sume Theorems 1 and 2, as the online-to-batch guarantees
apply only to a specific choicẽw which is defined in terms
of the behavior of a specific algorithm. They do not provide
guarantees on the empirical minimizer, and certainly not a
uniform guarantee in terms of the empirical sub-optimality.

3 Warm-Up: Finite Dimensional Case

We begin by noting that in the finite dimensional case, Lips-
chitz continuityisenough to guarantee uniform convergence,
hence also learnability via empirical minimization.

Theorem 5. LetW ⊂ R
d be bounded byB and letf(w, z)

beL-Lipschitz w.r.t.w. Then with probability of at least1−δ
over a sample of sizen, for all w ∈ W :

∣

∣

∣F (w) − F̂ (w)
∣

∣

∣ ≤ O





√

L2B2d log(n) log(d
δ )

n





Proof. We will show uniform convergence by bounding
the `∞-covering number of the class of functionsF =
{z 7→ f(w; z)|w ∈ W}. To do so, we first note that as a
subset of aǹ 2-sphere, we can bound the covering number
of W with respect to the Euclidean distanced2(w1,w2) =
‖w1 − w2‖ [VG05]: (for d > 3)

N (ε,W , d2) = O
(

d2
(

B
ε

)d
)

(9)



We now turn to covering numbers ofF with re-
spect to the `∞ distance d∞(f(w1; ·), f(w2; ·)) =
supz |f(w1; z) − f(w2; z)|. By Lipschitz continuity, for
any w1,w2 ∈ W we havesupz |f(w1; z) − f(w2; z)| ≤
L ‖w1 − w2‖. An ε-covering ofW w.r.t.d2 therefore yields
anLε-covering ofF w.r.t. d∞ distances, and so:

N (ε,F , d∞) ≤ N (ε/L,W , d2) = O
(

d2
(

LB
ε

)d
)

(10)

Noting that the empirical̀1 covering number is bounded by
thed∞ covering number, and using a uniform bound in terms
of empirical`1 covering numbers we get [Pol84]:

Pr
(

sup
w∈W

∣

∣

∣F (w) − F̂ (w)
∣

∣

∣ ≥ ε
)

≤ 8N(ε,F , d∞) exp(− nε2

128LR )

≤ O
(

d2

(

LB

ε

)d

exp(− nε2

128LR )
)

.

Equating the right-hand-side toδ and boundingε we get the
bound in the Theorem.

We can therefore conclude that empirical minimization
is uniformly consistent with the same rate as in Theorem 5:

F (ŵ) ≤ F (w?) + O





√

L2B2d log(n) log(d
δ )

n



 (11)

with probability at least1−δ over a sample of sizen. This is
the standard approach for establishing learnability. We now
turn to ask whether such an approach can also be taken in the
infinite dimensional case, i.e. yielding a bound that does not
depend on the dimensionality.

4 Learnable, but not with Empirical
Minimizer

The results of the Section 2.2 suggest that perhaps Lipschitz
continuity is enough for obtaining guarantees on stochastic
convex optimization using a more direct approach, even in
infinite dimensions. In particular, that perhaps Lipschitzcon-
tinuity is enough for ensuring uniform convergence, which
in turn would imply learnability using empirical minimiza-
tion, as in the infinite dimensional linear case, the finite di-
mensional Lipschitz case, and in essentially all studied sce-
narios of stochastic optimization that we are aware of. En-
suring uniform convergence would further enable us to use
approximate empirical minimizers, and bound the stochastic
sub-optimality ofanyvectorw in terms of its empirical sub-
optimality, rather than obtaining a guarantee on the stochas-
tic sub-optimality of only one specific procedural choice (ob-
tained from running the online learning algorithm).

Unfortunately, this is not the case. Despite the fact that a
bounded, Lipschitz-continuous, stochastic convex optimiza-
tion problem is learnable even in infinite dimensions, as dis-
cussed in Section 2.2, we show here that uniform conver-
gence does not hold and that it might not be learnable with
empirical minimization.

4.1 Empirical Minimizer far from Population Optimal

Consider a convex stochastic optimization problem given by:

f(12)(w; (x, α)) = ‖α ∗ (w − x)‖

=

√

∑

i

α
2[i](w[i] − x[i])2 (12)

where for now we will set the domain to thed-dimensional
unit sphereW =

{

w ∈ R
d : ‖w‖ ≤ 1

}

and takez =

(x, α) with α ∈ [0, 1]d andx ∈ W , and whereu ∗ v denotes
an element-wise product. We will first consider a sequence
of problems, whered = 2n for any sample sizen, and es-
tablish that we cannot expect a convergence rate which is
independent of the dimensionalityd. We then formalize this
example in infinite dimensions.

One can think of the problem (12) as that of finding the
“center” of an unknown distribution overx ∈ R

d, where we
also have stochastic per-coordinate “confidence” measures
α[i]. We will actually focus on the case where some coordi-
nates are missing, i.e. occasionallyα[i] = 0.

In any case the domainW is bounded by one, and for
anyz = (x, α) the functionw 7→ f(12)(w; z) is convex and
1-Lipschitz. Thus, the conditions of Theorem 3 hold, and
the convex stochastic optimization problem is learnable by
running Zinkevich’s online algorithm and taking an average.

Consider the following distribution overZ = (X, α):
X = 0 with probability one, andα is uniform over{0, 1}d.
That is, α[i] are i.i.d. uniform Bernoulli. For a random
sample(x1, α1), . . . , (xn, αn) we have that with probabil-
ity greater than1 − e−1 > 0.63, there exists a coordinate
j ∈ 1 . . . 2n such that all confidence vectorsαi in the sample
are zero on the coordinatej, i.e. αi[j] = 0 for all i = 1..n.
Let ej ∈ W be the standard basis vector corresponding to
this coordinate. Then

F̂(12)(ej) =
1

n

∑

i

‖αi ∗ (ej − 0)‖ =
1

n

∑

i

|αi[j]| = 0

but

F(12)(ej) = EX,α [‖α ∗ (ej − 0)‖] = EX,α [|α[j]|] = 1/2.

We established that for anyn, we can construct a con-
vex Lipschitz-continuous objective in high enough dimen-
sion such that with probability at least0.63 over the sample,

supw

∣

∣

∣F(12)(w) − F̂(12)(w)
∣

∣

∣ ≥ 1/2. Furthermore, sincef(·; ·)
is non-negative, we have thatej is an empirical minimizer,
but its expected valueF(12)(ej) = 1/2 is far from the optimal
expected valueminw F(12)(w) = F(12)(0) = 0.

4.2 In Infinite Dimensions: Population Minimizer Does
Not Converge to Population Optimum

To formalize the example in a sample-size independent way,
take W to be the unit sphere of an infinite-dimensional
Hilbert space with orthonormal basise1, e2, . . ., where for
v ∈ W , we refer to its coordinatesv[j] = 〈v, ej〉 w.r.t this
basis. The confidencesα are now a mapping of each coor-
dinate to[0, 1]. That is, an infinite sequence of reals in[0, 1].
The element-wise product operationα∗v is defined with re-
spect to this basis and the objective functionf(12) of equation
(12) is well defined in this infinite-dimensional space.



We again take a distribution overZ = (X, α) where
X = 0 and α is an i.i.d. sequence of uniform Bernoulli
random variables. Now, for any finite sample there is al-
most surely a coordinatej with αi[j] = 0 for all i, and
so we a.s. have an empirical minimizerF̂(12)(ej) = 0 with
F(12)(ej) = 1/2 > 0 = F(12)(0).

We see that although the stochastic convex optimization
problem (12) is learnable (using Zinkevich’s online algo-
rithm), the empirical valueŝF(12)(w) do not converge uni-
formly to their expectations, and empirical minimization is
not guaranteed to solve the problem!

4.3 Unique Empirical Minimizer Does Not Converge to
Population Optimum

It is also possible to construct a sharper counterexample, in
which theuniqueempirical minimizerŵ is far from having
optimal expected value. To do so, we augmentf(12) by a small
term which ensures its empirical minimizer is unique, and far
from the origin. Consider:

f(13)(w; (x, α)) = f(12)(w; (x, α)) + ε
∑

i

2−i(w[i]−1)2

(13)
whereε = 0.01. The objective is still convex and(1 + ε)-
Lipschitz. Furthermore, since the additional term is strictly
convex, we have thatf(13)(w; z) is strictly convex w.r.t.w and
so the empirical minimizer is unique.

Consider the same distribution overZ: X = 0 while
α[i] are i.i.d. uniform zero or one. The empirical mini-
mizer is the minimizer of̂F(13)(w) subject to the constraints
‖w‖ ≤ 1. Identifying the solution to this constrained op-
timization problem is tricky, but fortunately not necessary.
It is enough to show that the optimum of theunconstrained
optimization problemw∗

UC = arg min F̂(13)(w) (without con-
strainingw ∈ W) has norm‖w∗

UC‖ ≥ 1. Notice that
in the unconstrained problem, wheneverαi[j] = 0 for all
i = 1..n, only the second term off(13) depends onw[j] and
we havew∗

UC[j] = 1. Since this happens a.s. for some co-
ordinatej, we can conclude that the solution to the con-
strained optimization problem lies on the boundary ofW ,
i.e. has‖ŵ‖ = 1. But for such a solution we have
F(13)(ŵ) ≥ Eα

[√
∑

i α[i]ŵ2[i]
]

≥ Eα

[
∑

i α[i]ŵ2[i]
]

=
1
2 ‖ŵ‖2

= 1
2 , while F (w?) ≤ F (0) = ε.

In conclusion, no matter how big the sample size is, the
unique empirical minimizer̂w of the stochastic convex opti-
mization problem (13) is a.s. much worse than the population
optimum,F (ŵ) ≥ 1

2 > ε ≥ F (w?), and certainly does not
converge to it.

5 Empirical Minimization of a Strongly
Convex Objective

We saw that empirical minimization is not adequate for
stochastic convex optimization even if the objective is
Lipschitz-continuous. We will now show that, if the objec-
tive f(w; z) is stronglyconvex w.r.t.w, the empirical mini-
mizerdoesconverge to the optimum. This is despite the fact
that even in the strongly convex case, we still might not have
uniform convergence of̂F (w) to F (w).

5.1 Empirical Minimizer converges to Population
Optimum

Theorem 6. Consider a stochastic convex optimization
problem such thatf(w; z) is λ-strongly convex andL-
Lipschitz with respect tow ∈ W . Let z1, . . . , zn be an
i.i.d. sample and let̂w be the empirical minimizer. Then,
with probability at least1 − δ over the sample we have

F (ŵ) − F (w?) ≤ 4L2

δ λn
. (14)

Proof. To prove the Theorem, we use a stability argument
introduced by Bousquet and Elisseeff [BE02]. Denote

F̂ (i)(w) =
1

n





∑

j 6=i

f(w, zi) + f(w, z′i)





the empirical average withzi replaced by an independently
and identically drawnz′i, and consider its minimizer:

ŵ
(i) = arg min

w∈W
F̂ (i)(w).

We first use strong convexity and Lipschitz-continuity to es-
tablish that empirical minimization is stable in the following
sense:

∀z1, . . . , zn, z′i, z ∈ Z
∣

∣

∣f(ŵ, z) − f(ŵ(i), z)
∣

∣

∣ ≤ βn

(15)
with βn = 4L2

λn (this is referred to as “CV (Replacement)
Stability” [RMP05] and is similar to “uniform stability”
[BE02]). We then show that (15) implies convergence of
F (ŵ) to F (w?).

Claim 6.1. Under the conditions of Theorem 6, the stability
bound(15)holds withβn = 4L2

λn .

Proof of Claim 6.1: We first calculate:

F̂ (ŵ(i)) − F̂ (ŵ)

=
f(ŵ(i), zi) − f(ŵ, zi)

n
+

∑

j 6=i

(

f(ŵ(i), zi) − f(ŵ, zi)
)

n

=
f(ŵ(i), zi) − f(ŵ, zi)

n
+

f(ŵ, z′i) − f(ŵ(i), z′i)

n

+
(

F̂ (i)(ŵ(i)) − F̂ (i)(ŵ)
)

(16)

≤ |f(ŵ(i), zi) − f(ŵ, zi)|
n

+
|f(ŵ, z′i) − f(ŵ(i), z′i)|

n

≤ 2L

n

∥

∥

∥ŵ
(i) − ŵ

∥

∥

∥ (17)

where the first inequality follows from the fact thatŵ
(i) is

the minimizer ofF̂ (i)(w) and for the second inequality we
use Lipschitz continuity. But from strong convexity ofF̂ (w)

and the fact that̂w minimizesF̂ (w) we also have that

F̂ (ŵ(i)) ≥ F̂ (ŵ) + λ
2

∥

∥

∥ŵ
(i) − ŵ

∥

∥

∥

2

. (18)

Combining (18) with (17) we get
∥

∥ŵ
(i) − ŵ

∥

∥ ≤ 4L/(λn).
Finally from Lipschitz continuity, for anyz ∈ Z:

∣

∣

∣f(ŵ, z) − f(ŵ(i), z)
∣

∣

∣ ≤ 4L2

λn (19)



Claim 6.2. If the stability bound(15) holds, then for any
δ > 0, with probability1 − δ over the sample,

F (ŵ) − F (w?) ≤ βn

δ
. (20)

A similar result that is not specific tôw, but yields only a
√

βn + 1
n rate appears in [RMP05, Theorem 4.4]. The faster

rate is important for us here.

Proof of Claim 6.2: Since the samples withzi and with
z′i are identically distributed, andzi is independent ofz′i, we
have:

E [F (ŵ)] = E

[

F (ŵ(i))
]

= E

[

f(ŵ(i); zi)
]

where the expectation is overz1, . . . , zn, z′i. This holds for
all i, and so we can also write:

E [F (ŵ)] =
1

n

n
∑

i=1

E

[

f(ŵ(i); zi)
]

. (21)

We also have:

E

[

F̂ (ŵ)
]

= E

[

1

n

n
∑

i=1

f(ŵ; zi)

]

=
1

n

n
∑

i=1

E [f(ŵ; zi)]

(22)
Combining (21) and (22) and using (15) yields2:

E

[

F (ŵ) − F̂ (ŵ)
]

=
1

n

n
∑

i=1

E

[

f(ŵ(i), zi) − f(ŵ; zi)
]

≤ βn

We also have thatE [F (w?)] = E

[

F̂ (w?)
]

≥ E

[

F̂ (ŵ)
]

,

where the equality is just equating an expectation to an ex-
pectation of an average, and the inequality follows from op-
timality of ŵ. We can therefore conclude:

E [F (ŵ) − F (w?)] ≤ E

[

F (ŵ) − F̂ (ŵ)
]

≤ βn. (23)

Using Markov’s inequality yields (20).

We suspect that the dependence onδ in the above bound
can be improved tolog(1/δ), matching the dependence onδ
in the online-to-batch guarantee (8) and the gurantees for the
generalized linear case. For more details, see Appendix A.

5.2 But Without Uniform Convergence!

We now turn to ask whether the convergence of the empirical
minimizer in this case is a result of uniform convergence.

Consider augmenting the objective functionf(12) of Sec-
tion 4 with a strongly convex term:

f(24)(w;x, α) = f(12)(w;x, α) +
λ

2
‖w‖2

. (24)

The modified objectivef(24)(·; ·) is λ-strongly convex and
(1 + λ)-Lipschitz over the domainW = {w : ‖w‖ ≤ 1}
and thus satisfies the conditions of Theorem 6.

Consider the same distribution overZ = (X, α) used
in Section 4:X = 0 andα is an i.i.d. sequence of uniform

2This is a modification of a derivation extracted from the proof
of Theorem 12 in [BE02]

zero/one Bernoulli variables. Recall that almost surely we
have a coordinatej that is never “observed”, i.e. such that
∀iαi[j] = 0. Consider a vectortej of magnitude0 < t ≤ 1

in the direction of this coordinate. We have thatF̂(24)(tej) =
λ
2 t2 butF(24)(tej) = 1

2 t+ λ
2 t2. HenceF(24)(tej)−F̂(24)(tej) =

t/2.
In particular, we can sett = 1 and establish

supw∈W(F(24)(w) − F̂(24)(w)) ≥ 1
2 regardless of the sample

size. We see then that the empirical averagesF̂(24)(w) donot
converge uniformly to their expectations, even as the sample
size increases.

5.3 Not Even Local Uniform Convergence

For anyε > 0, consider limiting our attention only to predic-
tors that are close to being population optimal:

Wε = {w ∈ W : F(24)(w) ≤ F(24)(w
?) + ε} .

Settingt = ε we havetej ∈ Wε (focusing for convenience
onλ < 1) and so:

sup
w∈Wε

(F(24)(w) − F̂(24)(w)) ≥ λ
2 ε2 (25)

regardless of the sample size. And so, even in an arbitrar-
ily small neighborhood of the optimum, the empirical values
F̂(24)(w) do not converge uniformly to their expected values
even asn → ∞. This is in sharp contrast to essentially all
other results on stochastic optimization and learning thatwe
are aware of.

5.4 Bounding Population Sub-Optimality in term of
Empirical Sub-Optimality

A practical question related to uniform convergence is
whether we can obtain a uniform bound on the population
sub-optimality in terms of the empirical sub-optimality, as
in Theorem 2. We first note that merely due to the fact that
the empirical objectivêF is strongly convex, any approxi-
mate empirical minimizer must be close tôw, and due to
the fact that the expected objectiveF is Lipschitz-continuous
any vector close tôw cannot have a much worse value than
ŵ. We therefore have, under the conditions of Theorem 6,
that with probability at least1 − δ, for all w ∈ W :

F (w) − F (w?) ≤
√

2L2

λ

√

F̂ (w) − F̂ (ŵ) +
4L2

δ λn
(26)

It is important to emphasize that this is an immediate con-
sequence of (14) and does not involve any further stochastic
properties ofF̂ norF . Although this uniform inequality does
allow us to bound the population sub-optimality in terms
of the empirical sub-optimality, the empirical sub-optimality
must be quadratic in the desired population sub-optimality.
Compare this dependence with the more favorable linear de-
pendence of Theorem 2. Unfortunately, as we show next,
this is the best that can be ensured.

Consider the objectivef(24) and the same distribution over
Z = (X, α) discussed above and recall thattej is a vector of
magnitudet along a coordinatej s.t.∀iαi[j] = 0. We have
that F̂(24)(tej) − F̂(24)(ŵ) = λ

2 t2 and so settingt =
√

2ε/λ,
we get anε-empirical-suboptimal vector with population
sub-optimalityF(24)(tej) − F(24)(0) = 1

2 t + λ
2 t2 =

√

ε
2λ + ε.



This establishes that the dependence on
√

ε
λ in the first term

of (26) is tight, and the situation is qualitatively different than
the generalized linear case.

5.5 Contradiction to Vapnik?

At this point, a reader familiar with Vapnik’s work on nec-
essary and sufficient conditions for consistency of empirical
minimization (i.e. conditions forF (ŵ) → F (w?)) might be
confused.

In seeking such necessary and sufficient conditions
[Vap98, Chapter 3], Vapnik excludes certain consistent set-
tings where the consistency is so-called “trivial”. The main
example of an excluded setting is one in which there is one
hypothesisw0 that dominates all others, i.e.f(w0; z) <
f(w; z) for all w ∈ W and allz ∈ Z [Vap98, Figure 3.2].
When this is the case, empirical minimization will be consis-
tent regardless of the behavior ofF̂ (w) for w 6= w

0.
In order to exclude such “trivial” cases Vapnik defines

strict (aka “non-trivial”) consistency of empirical minimiza-
tion as (in our notation):

inf
F (w)≥c

F̂ (w)
P→ inf

F (w)≥c
F (w) ≥ c (27)

for all c ∈ R, where the convergence is in probability. This
condition indeed ensures thatF (ŵ)

P→ F (w?). Vapnik’s
Key Theorem on Learning Theory [Vap98, Theorem 3.1]
then states thatstrict consistency of empirical minimiza-
tion is equivalent to one-sided uniform convergence. “One-
sided” meaning requiring onlysup(F(24)(w)−F̂(24)(w))

P→ 0,

rather thensup
∣

∣

∣
F(24)(w) − F̂(24)(w)

∣

∣

∣

P→ 0. Note that the

analysis above shows the lack of such one-sided uniform
convergence.

In the example presented above, even though Theorem
6 establishesF (ŵ)

P→ F (w?), the consistency isn’t “strict”
by the definition above. To see this, for anyc > 0, consider
the vectortej (where∀iαi[j] = 0) with t = 2c. We have
F (tej) = 1

2 t + λ
2 t2 > c but F̂(24)(tej) = λ

2 t2 = 2λc2.
Focusing onλ = 1

2 we get:

inf
F (w)≥c

F̂ (w) ≤ c2 (28)

almost surely for any sample sizen, violating the strict con-
sistency requirement (27). The fact that the right-hand-side
of (28) is strictly greater thenF (w?) = 0 is enough for ob-
taining (non strict) consistency of empirical minimization,
but this is not enough for satisfying strict consistency.

We emphasize that stochastic convex optimization is far
from “trivial” in that there is no dominating hypothesis that
will always be selected. Although for convenience of analy-
sis we tookX = 0, one should think of situations in which
X is stochastic with an unknown distribution.

We see then that there is no mathematical contradiction
here to Vapnik’s Key Theorem. Rather, we see a demonstra-
tion that strict consistency is too strict a requirement, and
that interesting, non-trivial, learning problems might admit
non-strict consistency which isnot equivalent to one-sided
uniform convergence. We see that uniform convergence is a
sufficient, but not at all necessary, condition for consistency
of empirical minimization in non-trivial settings.

6 Regularization

We now return to the case wheref(w, z) is Lipschitz (and
convex) w.r.t.w but not strongly convex. As we saw, empiri-
cal minimization may fail in this case, despite the guaranteed
success of an online approach. Our goal in this section is to
underscore a more direct, non-procedural, optimization cri-
terion for stochastic optimization.

To do so, we define a regularized empirical minimization
problem

ŵλ = min
w∈W

(

λ
2 ‖w‖2

+ 1
n

n
∑

i=1

f(w, zi)

)

, (29)

whereλ is a parameter that will be determined later. The
following theorem establishes that the minimizer of (29) isa
good solution to the stochastic convex optimization problem:

Theorem 7. Letf : W×Z → R be such thatW is bounded
by B andf(w, z) is convex andL-Lipschitz with respect to
w. Let z1, . . . , zn be an i.i.d. sample and let̂wλ be the

minimizer of(29)with λ =
√

16L2

δ B2 n . Then, with probability
at least1 − δ we have

F (ŵλ) − F (w?) ≤ 4

√

L2B2

δn

(

1 +
8

δn

)

.

Proof. Let r(w; z) = λ
2 ‖w‖2 + f(w; z) and letR(w) =

Ez [r(w, z)]. Note thatŵλ is the empirical minimizer for
the stochastic optimization problem defined byr(w; z).

We apply Theorem 6 tor(w; z), to this end note that
sincef is L-Lipschitz and∀w ∈ W , ‖w‖ ≤ B we see that
r is in factL + λB-Lipschitz. Applying Theorem 6 now we
see that

λ
2 ‖ŵλ‖2

+F (ŵλ) = R(ŵλ) ≤ inf
w

R(w)+
4(L + λB)2

δλn

≤ R(w?)+
4(L + λB)2

δλn
= λ

2 ‖w?‖2
+F (w?)+

4(L + λB)2

δλn

Now note that‖w?‖ ≤ B and so we get that

F (ŵλ) ≤ F (w?) +
λ

2
B2 +

4(L + λB)2

δλn

≤ F (w?) +
λ

2
B2 +

8L2

δλn
+

8λB2

δn

Plugging in the value ofλ given in the theorem statement we
see that

F (ŵλ) ≤ F (w?) + 4

√

L2B2

δn
+

32

δn

√

L2B2

δn

This gives us the required bound.

From the above theorem and the discussion in Section 4
we see that regularization is essential for convex stochastic
optimization. It is interesting to contrast this with the on-
line learning algorithm of Zinkevich [Zin03]. Seemingly,
the online approach of Zinkevich does not rely on regular-
ization. However, a more careful look reveals an underlying
regularization also in the online technique. Indeed, Shalev-
Shwartz [Sha07] showed that Zinkevich’s online learning
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Figure 1: Lipschitz-continuous convex problems (triangle)
are all learnable, but not necessarily using empirical min-
imization. Lipschitz-continuous strongly convex problems
(dotted rectangle) are all learnable with empirical minimiza-
tion, but uniform convergence might not hold. For bounded
generalized linear problems (starred rectangle), uniformcon-
vergence always holds. Our two separating examples are
also indicated.

algorithm can be viewed as approximate coordinate ascent
optimization of the dual of the regularized problem (29).
Furthermore, it is also possible to obtain the same online
regret bound using a Follow-The-Regularized-Leader ap-
proach, which at each iterationi directly solves the regu-
larized minimization problem (29) onz1, . . . , zi−1. The key,
then, seems to be regularization, rather then a procedural on-
line versus global minimization approach.

6.1 Regularization vs Constraints

The role of regularization here is very different than in famil-
iar settings such as̀2 regularization in SVMs and̀1 regular-
ization in LASSO. In those settings regularization serves to
constrain our domain to a low-complexity domain (e.g. low-
norm predictors), where we rely on uniform convergence. In
fact, almost all learning guarantees for such settings thatwe
are aware of can be expressed in terms of some sort of uni-
form convergence. And as we mentioned, learnability (under
the standard supervised learning model) is in factequivalent
to a uniform convergence property.

In our case, constraining the norm ofw does not
ensure uniform convergence. Consider the examplef(12)

of Section 4. Even over a restricted domainWr =
{w : ‖w‖ ≤ r}, for arbitrarily small r > 0, the empir-
ical averagesF̂ (w) do not uniformly converge toF (w)

and Pr
(

lim supn→∞ sup
w∈Wr

∣

∣

∣
F̂ (w) − F (w)

∣

∣

∣
> 0
)

=

1. Furthermore, consider replacing the regularization term
λ ‖w‖2 with a constraint on the norm of‖w‖, namely, solv-
ing the problem

w̃r = arg min
‖w‖≤r

F̂ (w) (30)

As we show below, we cannot solve the stochastic opti-

uniform convergence:sup |F̂ (w) − F (w)| → 0
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Figure 2: Relationship between different properties of
stochastic optimization problems.

mization problem by settingr in a distribution-independent
way (i.e. without knowing the solution...). To see this, note
that whenX = 0 a.s. we must haver → 0 to ensure
F (w̃w) → F (w?). However, ifX = e1 a.s., we must set
r → 1. No constraint will work for all distributions over
Z = (X, α)! This sharply contrasts with traditional uses
of regularization, were learning guarantees are actually typi-
cally stated in terms of a constraint on the norm rather than in
terms of a parameter such asλ, and adding a regularization
term of the formλ

2 ‖w‖2 is viewed as a proxy for bounding
the norm‖w‖.

7 Summary

Following the work of Zinkevich [Zin03], we expected to
be able to generalize well established results on stochas-
tic optimization of linear functions also to the more general
Lipschitz-convex case. We discovered a complex and unex-
pected situation, where strong convexity and regularization
play a key role and ultimately did reach an understanding of
stochastic convex optimization that does not rely on online
techniques (Figure 1).

For stochastic objectives that arise from supervised pre-
diction problems, it is well known that learnability, i.e. solv-
ability of the stochastic optimization problem, is equiva-
lent to uniform convergence, and so whenever the problem
is learnable, it is learnable using empirical minimization
[ABCH97]. Many might think that this principal, namely
that a problem is learnable iff it is learnable using empirical
minimization, extends also the “General Setting of Learn-
ing” [Vap95] which includes also the stochastic convex opti-
mization problem studied here.

However, we demonstrated stochastic optimization prob-
lems in which these equivalences do not hold. There is no
contradiction, since stochastic optimization problems that
arise from supervised learning have a restricted structure,
and in particular the examples we study are not among such
problems. In fact, for reasonable loss functions, in order to
makef(w;x, y) = `(pred(w,x), y) convex for both posi-



tive and negative labels, we must essentially make the pre-
diction function pred(w,x) both convex and concave inw,
i.e. linear. And so stochastic (or online) convex optimization
problems that correspond to supervised problems are often
generalized linear problems.

To summarize, although there is no contradiction to the
work of Vapnik [Vap95] or of Alonet al [ABCH97], we see
that learning in the General Setting is more complex than we
perhaps appreciate. Empirical minimization might be con-
sistent without local uniform convergence, and more surpris-
ingly, learning might be possible, but not by empirical mini-
mization (Figure 2).
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A High Confidence Bounds
The bounds in Theorems 6 and 7 have polynomial rather than
logarithmic dependence on the confidence parameterδ. This
leads to the question of whether these bounds can be im-
proved to depend just onlog(1/δ), matching the dependence
on δ in the online-to-batch guarantees (7) and (8). While we
suspect this might be the case, the question remains open.

We emphasize that the question here pertains to the
bound on the convergenceof the empirical minimizer. The
online-to-batch guarantees apply only to a specific procedu-
rally defined predictor, which is not the empirical minimizer.
Another simple way to achieve a logarithmic dependence
on 1/δ is to use empirical minimization combined with a
generic boosting-the-confidence method [HKLW91]. Again,
this leads to a high-confidence bound for a different learning
rule, based on the empirical minimizer, but is not the empir-
ical minimizer.

As for results regarding the empirical minimizer itself,
we note that it is possible to get high-confidence bounds,
with only a logarithmic dependence on1/δ. However, these
bounds come at the price of worse dependence on the other
parameters of the learning problem. For instance, ifF (w)
is twice continuously differentiable, with a uniform upper
boundλmax on the eigenvalues of its Hessian, and the con-
ditions of Theorem 6 hold, we get that with probability at
least1 − δ:

F (ŵ) − F (w?) ≤ O
(

L2 log(1/δ)λmax

λ2 n

)

. (31)

Also, under the conditions of Theorem 6 and without any ad-
ditional assumption, Bousquet and Elisseeff [BE02] provide
arguments for a bound of the form

F (ŵ) − F (w?) ≤ O
(

L2

λ

√

log(1/δ)

n

)

. (32)

Unfortunately, neither of these two bounds is sufficient for
obtaining a version of Theorem 7 which matches the online-
to-batch guarantee (8) or the bound of Theorem 1 for the
generalized linear case. Optimizing for the value ofλ as
a function of the sample size, we get that the bound on the
unregularized objective function in Theorem 7 is replaced by

F (ŵλ) − F (w?) ≤ O
(

(

B4L2 log(1/δ)λmax

n

)1/3
)

if we use (31), or

F (ŵλ) − F (w?) ≤ O
(

(

B4L4 log(1/δ)

n

)1/4
)

if we use (32). In particular, the dependence on the sample
sizen is significantly worse thann−1/2.


