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Abstract

We show how a graphical model learning problem can be presented as a purely combinato-
rial problem. This allows us to analyze the computational hardness of the learning problem,
and devise global optimization algorithms with proven performance guarantees.

Markov networks are a class of graphical models that use an undirected graph to cap-
ture dependency information among random variables. Of particular interest are Markov
networks over low treewidth graphs, under which many operations are tractable. We study
the problem of finding a maximum likelihood distribution among Markov networks over
graphs of bounded treewidth.

We define the maximum hypertree problem, which is the problem of finding an acyclic
hypergraph of bounded width, that maximizes the weight of hyperedges it covers (or equiv-
alently, a triangulated graph of bounded clique size maximizing the weight of its cliques).
We show that the maximum likelihood Markov network problem can be formulated as a
maximum hypertree problem, and in fact the two problems are equivalent. This extends the
work of Chow and Liu (1968) who considered the case whetel (i.e. trees).

We show that the maximum hypertree problem is NP-hard eveh foR and give the
first constant factor approximation algorithm for it. More precisely, for any fixed treewidth
objectivek, we find ak-hypertree with ary (k) fraction of the maximum possible weight
of any k-hypertree graph.

Thesis Supervisor: David Karger
Title: Associate Professor
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Chapter 1

Introduction

In this thesis, we demonstrate a rigorous combinatorial and algorithmic treatment of a ma-
chine learning problem. The machine learning problem we are concerned with is learning
a maximum likelihood Markov network of bounded “complexity” (specifically, bounded
treewidth, from an empirical sample. We show how this problem corresponds to a combi-
natorial optimization problem on hypergraphs, which we formulate as a “maximum hyper-
tree” problem. We establish that the problems are equivalent by bidirectional reductions,
i.e. from the maximum likelihood problem to the maximum hypertree problem and vice
versa. We then use the maximum hypertree problem to prove the hardness of the maxi-
mum likelihood problem, and provide a constant-factor (for fixed “width”) approximation
algorithm for it.

In 1968, Chow and Liu [CL68], provided such an analysis for the limited case in which
the Markov network is restricted to trees. To the best of our knowledge, this is the first
generalization of such treatment to the more general case. It allows us, for the first time, to
provide hardness results and provable approximation algorithms for the learning problem.
The approximation algorithm is of “global” nature, solving and rounding a linear problem,

as opposed to local search heuristics which have been suggested before [Mal91].

The presentation here is also, as far as we know, the first formulization of the maximum

hypertree problem. In this problem, given some target widdnd a weight function on

9



10 CHAPTER 1. INTRODUCTION

candidate cliques of size up to+ 1, one seeks &reewidthk graph (i.e. a triangulated
graph with maximum clique sizé + 1) that maximizes the total weight on its cliques.
The problem of finding the treewidth of a graph (and its associageddecompositionr
triangulation) has been extensively studies. Finding the treewidth, and tree decomposition
and triangulation, of a graph issaipergraptproblem— we seek to find a triangulated graph
containing our desired graph. However, the maximum hypertree problem can be viewed as
asubgraphproblem.

The approximation algorithm we present is an initial step to providing good algorithms
for learning maximum likelihood Markov networks. We hope that further study of the
combinatorial problem we present will yield better algorithms. Such algorithms could then
be applied to the learning problem.

We hope this thesis will be of interest both the machine learning and to the algorithms
communities. We aim to give enough background so as the thesis will be approachable to

readers of both disciplines.

1.1 The Learning Problem

We briefly outline the maximum likelihood Markov network problem. A more complete
description is given in Chapter 2.

One of the important areas of machine learning is the development and psabef
abilistic modelsfor classification and prediction. One popular probabilistic model is the
Markov networkwhich uses a graph to represent dependencies among the variables in the
probabilistic model. Given the graph, a probability distribution on the variables can be
succinctly represented by tables (called potential functions) of possible outcomes for each
set of variables that forms a clique.

In order to avoid over-fitting the model, it is important that the model’s graph have
no large cliques. At the same time, for efficient use of the model, the graph needs to be

triangulated, i.e. have no minimal cycles of more than three vertices. Combining these two
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objectives yields the actual requirement: that the underlying graph havetseeatidth

Treewidth will be defined formally later; for now we note that only trees have treewidth
one, while a small treewidth means that the graph is quite like a tree. Treewidth is closely
related to triangulated graphs: in a triangulated graph the treewidth is equal to the maximum
clique size minus one. More generally the treewidth of a graph is the minimum over all
triangulations of it, of the maximum clique size in the triangulation, minus one.

In some applications, the graphical model is specified in advance. But in others, the
goal is to generate a graphical model that “best fits” some observed data (samples from an
unknown distribution). Chow and Liu [CL68] show how the bestwidth 1model (that
is, tree) for the data can be found via a maximum spanning tree computation on a graph
whose weights are determined by the values of the observed data. But sometimes a higher

treewidth is needed to get a good fit to the data.

1.1.1 Our contribution

We consider the more general problem: to learn, given some observed data, the maximum
likelihood treewidthk Markov network of the data. This is the maximum likelihood trian-
gulated Markov network with clique size at mdst# 1.

As with the simpler case, we show how to reduce this problem to a pure graph problem.
But unlike the simple case, weights on edges are no longer enough. Instead, we show
how to assign weights to every subset of vertices of size up+tol. These weights are a
generalization of the Chow and Liu weights and capture the information in beyond-pairwise
interactions. We formulate a combinatorial problem using these weights, and through it

show that:

e Finding a maximum likelihood Markov network of bounded treewidth (and so also

triangulated network of bounded clique size) is NP-hard.

e For any fixedk, a Markov network of treewidth at most(a triangulated network of

clique size at most + 1) can be found such that the gain in log likelihood versus an
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fully independent model is within a constant multiplicative factor to the maximum

possible gain in log likelihood.

1.1.2 Projections

A maximal likelihood distribution is a distribution minimizing the information divergence
to the empirical distribution. Finding a maximum likelihood distribution can thus be seen as
an instance of the more general problenpadjectinga target distribution onto a distribu-
tion class, i.e. finding the distribution from within the class that minimizes the information
divergence to the target. Such projections have applications beyond finding the maximal
likelihood distribution.

Throughout the thesis, we discuss such distribution projections, and work with this

framework.

1.1.3 Related work

The problem of finding a maximum likelihood Markov network of bounded tree width has
been investigated before and discussed in [Pea97]. Malvestuto [Mal91] discussed the con-
nection between this problem and maximal acyclic hypergraphs (which wieygattrees

here), and suggested a local search heuristic on hypertrees.

Several other extensions to the work of Chow and Liu [CL68] for tree-shaped Markov
networks have recently been proposed. Meila [MP99] suggested modeling distributions as
mixtures of tree-shaped Markov networks. Dasgupta [Das99] suggested polytree Bayesian
networks (trees with oriented edges).

There is also work odirectedgraphical models known &ayes NetworkDagum and
Luby have results that focus on the problem of, given a specific graphical model, learning
the appropriate setting of the joint probability distributions. They show that even achieving
good approximations for this problem is NP-hard in the general case [DL93], but also give

approximation algorithms that work well on a large class of instances [DL97].
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1.2 The Algorithmic Problem

Given a candidate graph with weights on edges, and also on larger cliques of size up to
k + 1, we would like to find the maximum weight treewidihsubgraph of the input graph.
For k > 1, this problem is NP-complete. We develop approximation algorithms for it. For
ann-vertex graph with goal widtl, in timen®®*), we find a treewidthe graph containing

at least ary (k) fraction of the maximum possible weight.

The running time of our algorithm is unsurprising, since the input problem size can (and
will often in practice) ben©®): a weight may be need to be specified for every clique of
size up tok. Itis not clear whether the dependence of our approximation factor on the goal
treewidthk is necessary, but we do in any case get a (weak) constant factor approximation

for every fixedk, which is the case that is dealt with in practice.

Our approximation algorithm is based on two main observations. The first is the iden-
tification of a structure called &-windmill. While treewidth% graphs can have quite a
complicated structuré;-windmills are easier to work with. We show that any treewigth-
graph places at least a constant fraction of its weight in disjeinindmills, and thus set-
tle for approximating maximum weight disjoigtwindmills. To find these windmill, we
develop a linear-programming-based approximation algorithm. The linear program bears
some faint resemblance to those in recent algorithmdafaility location [STA97]. Our
rounding scheme is quite different, however, and has an interesting “iterative” approach
similar to Jain’s algorithm for network design [Jai98]: after solving the LP, we randomly
roundsomeof the fractional variables; we thea-solvethe linear program to make it fea-

sible again before we proceed to round other variables.

Treewidth has been defined in many different contexts and using various equivalent
definitions. We present some of these in Chapter 3, but the setting we use throughout the

thesis is that of acyclic hypergraphs.
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1.2.1 Related work

Finding maximum-weight subgraphs meeting some property is of course a broad field; a
recent good example is the maximum planar subgraph workabh€scu et al. [CFFK98].

Most recent work on treewidth has been concerned with showing, given some input
graph, that the grapmassmall treewidth, and on finding an appropriate tree decomposition
[SG97, Bod97, Bod96]. Here, we focus on a different problem. We would like to find
a graph of treewidth at mogt that captures the greatest weight. We do not expect to be
able to include all the edges of the graph, but rather aim to maximize what can be included.
While finding a tree-decomposition of a given graph might be viewed as a covering problem
(finding a low-treewidth graph containing the target graph), our problem is a sub-graph

problem—finding a maximal small-treewidth graph inside a given graph.

1.3 Structure of the Thesis

This thesis is contains two main threads: a purely combinatorial analysis of a combinato-
rial optimization problem (the maximum hypertree problem), and an analysis of the equiv-
alence between a learning problem (maximum likelihood, or projected, Markov networks)
and the combinatorial problem, and the consequences of this equivalence.

The rest of this thesis is structured as follows:

¢ In Chapter 2 we introduce the notions of a maximum likelihood Markov network and
Markov network projections. We motivate the general learning setting and formulate

the specific learning problem which we tackle in this thesis.

The chapter serves mostly as an introduction and tutorial for readers unfamiliar with

unsupervised machine learning and graphical models.

e Chapter 3 serves as a tutorial on treewidth and the related concepts of tree decom-
positions and acyclic hypergraphs. It provides several equivalent definitions of these

concepts, and presents some known results which are used later in the thesis.
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¢ in Chapter 4 we formally define the maximum hypertree problem, and prove its hard-
ness. We also present some properties of hypertrees that might be of use in solving

the problem, but that we do not use in this work.

e Chapter 5 is the core of the second thread, and the links between them. It presents
the equivalence between the learning problem and the combinatorial problem. The
first sections present known results about decompositions of Markov networks over
acyclic hypergraphs (or equivalently, triangulated graphs). Sections 5.3 and 5.4

present new results, proving the bidirectional equivalence.

e Chapters 6 and 7 hold the core algorithmic content of the thesis. In Chapter 6 wind-
mills, and the “maximum windmill forest” problem are presented, and it is shown
that a maximum windmill forest serves as an approximation to the maximum hy-
pertree. Chapter 7 presents an approximation algorithm for the maximum windmill
forest problem, which translates to an approximation algorithm for the maximum

hypertree problem

A reader interested only in the algorithmic thread and in the presentation of a new
combinatorial optimization problem, may choose to skip Chapters 2 and 5, without loss of
understanding of the combinatorial issues presented in the other chapters.

A reader interested only in the learning thread, may focus only on Chapter 2, parts of
Chapter 3 and Chapter 5. The relevant implications on the machine learning problems are
presented in these chapters.

Chapters 2, 3 and Sections 5.1 and 5.2 contain background material and review of
known results. The results in Section 4.2, 5.3, 5.4 and Chapters 6 and 7 are new results first
presented in this thesis.

Some of the results presented in this thesis are to be published in [KS01].
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Chapter 2

Introduction to Density Estimation,
Distribution Projections, Maximum

Likelihood, and Markov Networks

In this chapter we introduce and motivate the notion of a maximum likelihood Markov
network and Markov network projections, and formulate the learning problem which we
tackle in this work.

The chapter is intended mostly for readers unfamiliar with unsupervised machine learn-
ing and with graphical models. It provides all the necessary background about the under-
lying machine learning issues, the motivation for the algorithmic problem, and for under-
standing the rest of this manuscript, particularly Chapter 5. It can, however, be skipped,
together with Chapter 5, without loss of understanding of the combinatorial and algorithmic
details in the other chapters.

The chapter also serves to set the basic framework, and clarify the learning scenario ad-
dressed by this work, emphasizing the differences from other unsupervised machine learn-
ing problems.

Some well known properties of Markov networks are presented in this chapter without

proof. Most are proved, sometimes in a different formulation, in Chapter 5.

17
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2.1 The Machine Learning Setting: Density Estimation

and Maximum Likelihood Distributions

2.1.1 Density estimation

One of the challenges of unsupervised learning, given a sample of observations, is to deter-
mine the distribution law from which the samples were drawn. The predicted distribution
can be used to make predictions about future, partially observed data. Often, each observed
data point is taken to be expressed as a vector of variablegzy,... ,z,). Acommon
approach in probabilistic machine learning is to assume each data vector is drawn indepen-
dently at random from the same unknown probability distributitSrover possible vector
values. One then aims tearn P° from the samples.

We will use the following notation: Random variables are generally represented by

uppercase letters, and their outcomes by lower case letters. We denotadypumber of
random variables in a single sample® is a distribution over random vectors of length
We denote byl" the number of observed samples, ... 27, wherez! = (zf,...  z¢).
We assume each’ ~ PY independently. Note that the variabl&¥, ... | X! within a
single sample vectak® arenot necessarily independent, but the sampled veckdrare
independent of each other. Based on the observafidns !, we would like to estimate
PY. That is, we would like to learn a distributid?, such that”* is “close” to P°.

By “close” we mean thaf® and P* assign similar probabilities to events. This can

be quantified by various measures, the most natural of which is perhaps the information

divergenceH (P°||P*) = Epo [log %ﬂ].

The empirical distribution and overfitting

One possible candidate fdt* is the empirical distributiohof the samplesP. However,

this is usually a very bad choice #swill grossly overfit the data and will not generalize

1The distribution which assigns to each outcome its frequency in the observed samples
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well to unobserved outcomes. In most scenarios, especially when the dimensilange,

it is not likely that every possible outcome vectowill be encountered, as the number of
possible outcome vectors is exponentiahirBut P associates a probability of zero to any
unencountered outcome, concentrating too much on the encountered outcomes, which are

usually but a small sample of all possible outcomes.

Without making any assumptions, or speculations, about the nature of the distribution
P° not much further can be done— if we assume nothing about the behaviSraf dif-
ferent outcomes, there is no way to generalize from the observed values to yet unobserved
ones. In order to make such generalizations, we must use prior knowledge, speculations, or
assumptions, about’, e.g. that it is smooth in some way, that similar values are related,

or that it has only limited internal dependencies.

Limiting the distribution to prevent overfitting

A possible approach is to choose a distribution from within a limited class of distributions
D. This limited class represents our prior assumptions, or speculations, about the true

distribution P°, or its properties.
Focusing on a specific clagy a reasonable choice it to choose the distribufitbre D

which maximizes the probability of observing the data:

P! =argmax P(X' =z', ... XT =2 (2.1)

pPeD

The distributionP? is called themaximum likelihood distributigrwhere thdikelihood of

a distribution is the probability of observing the data under that distribution.

Note that the maximum likelihood distribution is also the distribution from within
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that minimizes the information divergence with

Pt = argmaxP(X1 =zl ... 7XT — xt)
PeD
= arg r}glea%( P(z") X" are independent
t
= arg r]]_ge;a%cz log P(z

replacing summation over observed outcomes with a sum over all possible outcomes,

counting the number of times they were observed using the empirical distribution,

—argr}rjlee%c TP(z)log P(x)

= arggle%l—ZP x)log P(x

The distribution?, and so also any function of it, is constant, and adding it does not change

the minimizing distribution:

:argglelg <ZP( logP ZP )log P(x ))

P
= arg mln Z P ) log mg
P(x

= arg IglelIDlH <P||P> (2.2)

(2.3)

Since the information divergence can be viewed as a “distance” méaaaeefer toP*
as theprojectionof P ontoD. More generally grojectionof a some target distribution
(not necessarily an empirical distribution of some sample) onto a class of distributions, is

the distribution from with in the class minimizing the information divergence to the target.

2Although it is not a metric.
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2.1.2 Estimation error and generalization error

Limiting to a restricted clas® can reduce the risk of overfitting. For example, we might
limit to the classD, of distributions in which the variableX; in the observed vector are
independent. In this case, to estimate the maximum likelihood distribijoa D, one
need only estimate the marginals over each variable separately. Since these marginals have
only a few possible outcomes (compared to the total number of outcome combinations), a
good estimate can be attained with a relatively small number of samples.

However, if there are significant dependencies between variables in the true distribution
P°, as may well be the case, théﬁl will not approximateP? well, because no distribution
in D, approximates”’ well.

We distinguish here between two sources of “error”, i.e. discrepancies between the

estimated distributio®? and the true distributio:

The approximation error is the discrepancy betweét and the clas®, i.e. the differ-

ence betweer® and the distributiorP* € D that is closest to it.

The estimation error is the difference betweeR* and our estimate of it based on the

observed sample$)’.

The estimation error is essentially caused by not having enough samples. Had we an
infinite number of samples (and infinite time), we could fiddexactly. The fewer samples
we have, the greater the estimation error is likely to be. The estimation error also depends
on the size of the clasB: intuitively, the smaller, and simpler, the class, the easier it is to
“focus in” on P*, and fewer samples will be needed to reduce the estimation error.

The approximation error does not depend on the number of samples, but only on the
distribution clas®. The bigger the clasB, and denser it is in the space of all distributions,
the more conceivable it is that there will be a distributidhc D that will approximateP®

well. Of course, not only the size is important, but perhaps more important is choosing a
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classD which correctly captures the expected propertieBYfand so ensures that will

lie within the class, or at least not far from it.

We see a tradeoff between the estimation error and the approximation error, controlled
by the size of the clas®. A bigger and more comple® might captureP’ better and
reduce the approximation error, but at the same time make it harder to esfithated
increase the estimation error. We would like to choose a distribution class that is simple and
small enough to be estimated using the samples we have, yet as large and comprehensive
as possible to allow for a good approximation/df. The more samples we have, the better

we can estimate even in more complex classes, and the larger the class we will aim to use.

2.1.3 Limiting to Markov networks

Earlier we described one possible, rather simple, distribution class— thelgjadslistri-
butions with no dependencies between random variables. Finding the maximum likelihood
distribution from this class is straightforward. But the class is very limited and often one

would like to allow some dependencies in the distribution.

We might like to use larger, more complex, classes, when we have enough samples
to support estimation in those classes. It is convenient to use a parameterized family of
distribution classes, which gradually become larger and more complex. We can then use

the distribution class from the family that is appropriate for the sample size at hand.

A possible more general family of distributions aviarkov networkswhich will be
described in detail in Section 2.2. Markov networks allow a limited dependency structure,
as imposed by a graph (loosely speaking, dependencies are only allowed along edges in
the graph). The denser and “wider” the graph, the less restricted the distribution. In this
work, we consider the problem of finding a maximum likelihood distribution from within

the classD,. of Markov networks of width at mogt (as will be defined in Chapter 3).
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2.1.4 Density estimation, not model selection

It is important to note that the problem we concentrate on is density estimation, and not
model selection or hypothesis testing. We discuss model selection problems briefly, in
order to emphasize what we dotdo.

In model selection problems, we aim to discover the underlying distribution model. For
example we might want to decide which random variables are independent. Since a more
complex model (e.g. with more dependencies) will always predict the data better, and have
a higher likelihood, a pure maximum likelihood approach is not suitable in this scenario.
Instead, we wish to balance likelihood and simplicity, and find a model that is both simple
(e.g. assume as few dependencies as possible) and predicts the data well.

But in this thesis we doot consider the problem of model selection. In the scenario
we are concentrating on, we are merely trying to estimate a distribution, and our output is
a distribution. The quality is measured by how well the distribution itself, i.e. the proba-
bilities assigned to possible outcomes, resembles the true distribution. We are limiting to
a class of simple distributions only to overcome overfitting— had we more samples, we
would allow ourselves to choose from a wider, more complex, class of distributions, since
this will always decrease (or at least, not increase) the approximation error. This is in sharp
contrast to model selection, where even if we have an infinite number of samples, we would

still prefer a simple model.

2.1.5 Tractable models

Despite our emphasis on thestributionrather then thenode| there is one sense in which

we are concerned also with the underlying model, or representation of the distribution. To
be of any practical use, the resulting distribution must be representable in some compact
form that allows efficient computation of marginal (and thus also conditional) probabili-
ties. Recording the probability value associated with each possible outcome is almost al-

ways infeasible, because of the huge (exponentia) inumber of possible outcomes, and



24 CHAPTER 2. LEARNING INTRODUCTION

calculating a marginal probability with such a verbose representation requires excessive
computation.

Existence of a compact, but not necessarily tractable, representation is tied to the size
of the distribution class, since the length of the minimal representation is logarithmic in the
size of the class. Since we restrict the size of the class to avoid overfitting, we also implicitly
restrict the size of its minimal representation. In fact, from the information theoretic point
of view, the length of the representation of the distribution surely cannot be more than the
sample size, since this is our only source of information about the distribution.

However, although such a compact representation is guaranteed to exist, computations
using it, perhaps even point probability calculations, might be intractable. We will proba-
bly need to limit our distribution clasP only to tractable distributions, i.e. distributions
that have a representation supporting efficient marginal probability calculations. Note that
this restriction is imposed as a practical necessity of being able to make efficient use of
the resulting distribution, and not as part of the mathematical framework of distribution
estimation.

Other than tractable computation of marginal probabilities, we might be interested in

other representation or computational properties of the distribution, such as factorizability.

2.1.6 Other approaches

We consider an approach to density estimation by limiting the distribution to a class of
Markov network distribution®,.. This is of course not the only approach to density esti-

mation.

Other families of distributions

Many of the common methods for density estimation, and its closely associated problems
of regression and classification, follow a similar approach, but with different families of
distribution classes. Some of the common families used are Bayes networks and mix-

ture families, e.g. mixtures of Gaussians, or even mixtures of limited Bayes-networks or
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Markov networks.

Using a prior over distributions

Instead of restricting to a class of equally permissible distributions, while totally disallow-
ing any other distribution, one might choose to make a “softer” limitation. This can be
done using a prior distribution over the possible distributionX ofVe can then select the
distribution of X with the highesa posterioriprobability: the a posteriori probability is the
probability of X having a certain distribution given the observed samples, i.e. the product

of the likelihood of the distribution and its prior probability.

The prior distribution reflects our belief as to which models are a priori more or less
likely. For example, we might assign simpler models a higher prior than more complex

models.

A true Bayesian would argue that restricting to a class of distribution, and seeking the

maximum likelihood in the class, is just assigning a unifdprior over that class.

Learning the parameters of a specific structure

It is also common to impose a specific structure, determined beforehand by external prior
knowledge about the distribution, and fit the distribution within this model structure. For
example, a specific perceptron architecture may be specified, or a specific directed graph

for a Bayes network.

This is also often done with Markov networks, where a specific graph is predetermined,
and the most likely Markov network on it is sought. This requires extensive prior knowl-

edge about the distribution. This problem is well studied, and discussed in Section 2.3.

Swith respect to some parameterization
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Regularization

Other approaches suggested by modern developments in statistical learning theory, aim to
balance the approximation error and estimation error dynamically. Instead of pre-limiting
the level of complexity and searching for the maximum likelihood distribution within those
limits, a “regularization penalty”, proportional to some measure of the distribution’s com-
plexity, is combined with the likelihood, seeking a model that is both likely and non-

complex. These approaches are not discussed in this work.

2.2 Markov Networks

In this section we give a brief introduction to Markov Networks. We formally define this
family of distributions, and describe some known results about the family. We do not prove

these results here, but most are proved, in a slightly different formulation, in Chapter 5.

2.2.1 Definition

We first formally define the family of distributions we refer to as Markov Networks. In
the discussion belowX is a random vector, anelis a possible outcome value fof. X,
is an element ofX, i.e. a random variable corresponding to the valu&oh one of its

coordinatesz, is a possible outcome of,,.

Definition 2.1. We writeA L B | C if for variable setsA, B, andC', conditioned on any

values of the variables i@, the variables inA are independent of those 8.

Definition 2.2 (Markov Network). A random vectorXy,, indexed by vertex sét, is a

Markov networkover an undirected gragtG(V) iff each random variabléX,,, conditioned

4A graphis a collection ofedgesbetweernvertices Theneighborsof a vertex are the vertices to which it
has edges. See Chapter 3 for complete definitions
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on its neighbors, is independent of all other element¥ pf

(Vv eV) (2.4)
Xo LA{Xu [u#v,(u,0) ¢ G} [ {Xu|(v,u) € G}

It follows that if C' separates! and B in G, then for the corresponding sets of random
variables, X4 | Xp|Xc.

Every distribution is a Markov network over the fully connected graph (a graph in which
every two vertices are connected by an edge), since then the independence requirement is
satisfied vacuously. In a Markov network over the empty graph, all the variables are in-
dependent. As a more interesting example, any finite length Markov chain is a Markov
network whose underlying graph is a path: each variable is dependent on only its predeces-

sor and successor.

2.2.2 Hammersley-Clifford clique factorization

The Hammersley Clifford theorem characterizes the distributions which follow the Marko-
vian independencies given by a graph, for distributions without so-called “forbidden com-

binations” [Bes74]:

Definition 2.3 (Strictly Positive Distribution). A random vectorX is distributedstrictly
positivelyiff for each vector of outcomes= (zy, zs, ... , z,) for which each element has
positive marginal probability?(X; = x;) > 0, thenP(z) > 0. That is, the support of the
distribution is a cartesian product of the supports for each element, meaning there are no

forbidden combinations of values.

Theorem 2.1 (Hammersley-Clifford Theorem). A strictly positively distributed random

vector X is a Markov network specified b¥(X) if and only if its distribution can be
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factored to the cliques ifv:

Px(z)= ]  onlxn) (2.5)
reCliquea)

for some set otlique factors{¢}, such thaty,, is a function of the outcomes of random

variables indexed by the cliqug, = {z,|v € h}

For each cliqué, the factor functionp, assigns a value to each combination of possible
outcomes of variables in the clique.

The sizes of cliques in the Markov network determines the complexity of both ex-
pressing and learning the distribution. For a given Markov network, the description of the
distribution, and thus also the sample size needed to estimate it, is exponential in the clique
sizes. For each cliquk, we need to specify the value of its factor functionfor every
possible argument. A clique dnvariables, even if they are only binary variables, takes on
2% compound values. We need to record (and to estimate) the valiefof each of those

2% input values.

2.2.3 Triangulated Markov networks

While equation (2.5) provides an explicit formula for using the clique factors to calculate
the probability of an outcome, calculating marginal probabilities using this representation
is not necessarily easy, and might require summation over all outcomes of nuisance vari-
ables. Similarly, there is no direct way of calculating the appropriate factors for a given
distributions.

In a certain class of graphs, however, such calculations are possible.

Triangulated graphsire graphs with no minimal cycles of more than three nodes. They
are discussed in detail in Section 3.3.4. Over such graphs, marginal, and hence also condi-
tional, probabilities can be calculated directly from the clique factors in linear time [WL83],

i.e. linear in the size of the tables used for computing the factors, and hence exponential in
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the clique sizes. Conversely, for triangulatédthe clique factoring can be given explicitly

as a function of the marginal distributions over the cliques (proven in Theorem 5.1):

Ph(ZL'h)

) 2.6
[ovee b0 (@c) (2.6)

on(zn) =

Note that this representation requires a product over all cliques in (2.5), including non-
maximal cliques. Factors corresponding to non-maximal cliques can of course be sub-
sumed into some containing maximal clique factor. However this leads to clique factors
which are dependent on the graph structure. The factors given by (2.6) are unique in that a

clique’s factor does not depend on the gr&plexcept the fact that it include the clique.

Local dependence on marginals Other than the efficient and explicit calculations, it is
also important to note that the dependence between the clique factors and the marginal
distributions islocal. That is, a clique factor dependsly on the marginal distribution of

the clique, and the marginal distribution of a clique depemraly on factors of the clique

and its sub-cliques. This is contrary to the non-triangulated case in which a change in a

marginal distribution can propagate to factors of far away cliques, and visa versa.

If G is triangulated, the Hammersley Clifford theorem holds for any distribution, in-

cluding distributions with forbidden combinations. This will be shown in Section 5.1.

The explicit factoring also allows for simple calculation of the maximum likelihood
Markov network over a specified triangulated graph. Following (2.6), it can be shown (see
Corollary 5.3) that the maximum likelihood Markov network over a given graph structure

G is given by:

n ph(xh>

xp) = = 2.7
" Mo dortrcr) -0

WhereP, are the empirical marginal distributions over the cliques—that is, the fraction of

the observed data points that took on given values.
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2.3 Maximum Likelihood Markov Networks

When the triangulated graph is specified in advance, (2.7) makes it simple to assign the
maximum likelihood factor functions. In some cases, however, the structure of the depen-
dency graph is unknown, and we would like to determine both the best grajihe best

parameter settings for it based on the empirical data. This is the main problem with which
we are concerned: find a graph and a Markov network over the graph, which maximizes

the likelihood of the data.

The complete graph always has maximum likelihood

Lack of edges in the graph represent independencies which must hold. Thus, adding edges
to a graph relaxes the constraints on Markov networks defined by iX i a Markov
network over graplt, then it is also a Markov network over a supergr@gh> G, and
in particular also a Markov network over the fully connected graph (in which every two
vertices have an edge between them). In fae¢ryrandom vectorX is a Markov network
over the fully connected graph. And so, the empirical distribution of the data, which is
always the maximum likelihood distribution, is a Markov network over the fully connected
graph. Thus, the fully connected graph can always be used to maximize the likelihood.

In most cases the fully connected graph will be the only graph which achieves the
maximum likelihood. Even if the real distribution from which the data is sampled is a
Markov network over a sparser gragh the empirical distribution will almost surely

deviate slightly from the true distribution, and wilbt be a Markov network oveg.

Limiting the space of admissible models

As discussed in Section 2.1.1, the empirical distribution is in most cases a vast overfitting

of the data.

SStrictly speaking, for a continuous distribution, with probability one it will not be a Markov network over
G. If the distribution is not constant, then as the number of samples increases, the probability of the empirical
distribution being a Markov network will go to zero
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Instead, we would like to limit the space of admissible models, as represented by the
number of parameters allowed. As discussed above, the number of parameters is essentially
exponential in the clique sizes. We would thus like to limit the sizes of the cliques in the
graph.

A simple way of doing so is bounding the maximum clique size of the graph. We will
choose a clique size bouhd-+1. and search for a maximum likelihood distribution among
those which are Markov networks over a graph where all cliques are of size at praist

Bounding the clique size bounds the number of parameters, however it is not equivalent
to bounding the number of parameters. A graph that contains a single clique-of
nodes, and no other edges would not be admissible. However, a graph which contains
many cliques of sizé + 1 might have more parameters (if the number of values a variable
can take is low, e.q. if all variables are binary).

In many ways, it might be more “correct” to bound the actual number of parameters,
and not the maximum clique size, in order to allow for such non-uniform graphs. This
would roughly mean bounding the sum of exponents of the clique sizes.

However, the uniform requirement of a bounded clique size yields substantially simpler
combinatorial properties, and is independent of the number of possible outcomes for each

random variable.

Limiting only to tractable models

For a non-triangulated graph, even if the graph structure is known, finding the maximum
likelihood parameters is hard. It is conceivable that finding the maximum likelihood struc-
tureandthe parameters is easier, especially if it is true that the maximum likelihood graph
always has some restricted structure. However, we do not know that this is the case, and
S0 we cannot expect that finding the maximum likelihood structure and parameters will be
easier. Additionally, a triangulated model is more useful as a predictive model since calcu-

lations (e.g. conditional and marginal probabilities) on it are feasible (linear in the number

6The choice of + 1 and notk will be motivated in Section 3.
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of parameters), whereas in a general graph they are difficult, as discussed before.

Because of this, we choose to limit the acceptable models to only triangulated graphs
with cliques size at most some bouhd- 1.

Triangulated, bounded clique size, graphs also have a more “regular” number of param-
eters then general bounded clique-size graphs. The number of cliques éf-sizas at
mostn — k and the number of parameters is at mast((n — k)(m — 1) + 1) — 1 (where
n is the number of variables and is the number of possible outcomes for each varfable
and both of these bounds are attained by every maximal graph of the family. This regularity
provides for a better approximation to our underlying desire to directly bound the number

of parameters.

2.3.1 Summary: our learning goal

Our goal is thus to find a maximum likelihood Markov network over a triangulated graph
G with clique size at most some boukdt+ 1. As will be discussed later, this is equivalent
to requiring the graph haveee widthat mostk.

This is an extension of the work of Chow and Liu [CL68], which showed how to find
the maximum likelihood Markov network over a tree. A tree is a triangulated graph with

clique size at most 2, and so the Chow Liu algorithm solves the above problém-fadr.

2.3.2 The learning goal as a projection problem

As was shown in Section 2.1.1, the maximum likelihood distribution in a distribution class
is the projection of the empirical distribution onto the class. Thus, we can view the problem
of finding a maximum likelihood distribution as a projection problem. In this thesis, we
take this approach and discuss the problem of projecting a distribution onto the class of

Markov networks over a triangulated graghwith clique size at most + 1.

7If the number of outcomes is not the same for all variabbess the bound on the number of outcomes,
but the bound is not attained by maximal graphs, and different maximal graphs will have a different number
of parameters
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This more generalized setting has applications beyond maximum likelihood estimation.
We might have a target distribution that is specified in some other way, perhaps through a
more complex model, as we would like to realize it as best we can using a simpler Markov

network.

2.3.3 Learning a distribution versus learning a structure

One of the common uses of graphical models, including Markov networks, in unsupervised
machine learning, is to understand the dependency structure of a sampled distribution. That
is, given samples from an unknown distribution, learn the true, minimal, structure of its
dependency grapfi, such that the distribution is a Markov network overFor example,

for two variables, we would like to decide if they seem to be dependent or independent (i.e.
if their dependency graph is empty, or includes the edge between them).

This type of application is model selectioproblem, as described in Section 2.1.4, and
the straightforward maximum likelihood approach is not suited for it— adding edges will
always increase the likelihood.

We emphasize again that this work concerns learning a distribution, with the graphical
model being a convenient way to represent the learned distribution. The methods discussed
are generally not appropriate for learning the structure of a distribution.

In this sense too, this is an extension of Chow and Liu [CL68]. There too, the maximum

likelihood tree is found, even though some of its edges may be superfluous.
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Chapter 3

Treewidth and Hyperforests

In this chapter we introduce the conceptshyberforestsand thetreewidthof a graph,
and review the relevant background about them. We also formally define the maximum
hypertree problem — the subject of this thesis.

All of the material in this chapter is based on previously known results. However,
some of the definitions, formulations of theorems, and proofs vary from those in the cited
sources.

We first recall the basic definitions of graphs and hypergraphs and present the terminol-
ogy we use. In Section 3.1 we introduce hyperforests (also known as acyclic hypergraphs),
hypertrees, and the related measure of the treewidth of a graph. In the rest of the chapter
we review relevant known results about hyperforests and treewidth of graphs. In Section
3.2 we present some basic properties which we use throughout the thesis. In Section 3.3
we discuss several equivalent characterizations of hyperforests and treewidth. Section 3.4

points the interested reader to further work about, or using, hyperforests and treewidth.

Preliminaries: Graphs and Hypergraphs

We give the basic definitions of graphs and hypergraphs, and present the terminology used
in this thesis.

A graphG(V) is a collection of unordered pairedge$ of the vertexsetV: G(V) C

35
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(‘;) A pathin a graphG(V) is a sequence;, vs, ... , v, of distinct vertices, such that
Vicier{vi,viz1} € G.

A hypergraphH (V) is a collection of subsets (edges, or sometimes explibiglyer-
edges of the vertex set: H(V) c 2V. If W’ C h € H then the edgé’ is coveredby H.

We slightly abuse set-theory notation and deridte H even ifh’ is just covered byd. A

hypergraph (or graph)y’ is covered by iff V,..y:h’ € H (all edges ind’ are covered by
H,i.e. are a subset of an edge@j; if so we write H' C H. Another way of viewing this
notion of a hypergraph is requiring that a hypergraph include all subsets of its edges.

A hypergraph in which all maximal edges have the same &igell be called ak-
edge-regular hypergraphA graph is simply a 2-edge-regular hypergraph. To emphasize
the distinction between covered edges (which will have smaller size) and the maximal,
regularly-sized, edges, these edges will be referred tecadar edges

If a vertex is contained in (hyper)edge, the edge is said tmtidenton the vertex.
Two vertices both belong to a common (hyper)edge are said &oljaeent Theneighbors
of a vertex are all vertices to which it is adjacent.

For a (hyper)graptH (V) and vertex set”’ C V, we denote byH[V’] the induced
sub-(hyper)-graptdefined byH [V'] = {h N V'|h € H}. Note that for hypergraphs, the
induced sub-hypergraph includes also hyperedgesredby the original hypergraph. For
example, ifH = {{a, b, c},{c,d}} thenH[{a,b,d}] = {{a, b}, {d}}.

For setsl; and V%, we use the notatioil; \ V, = {v € Vi|v € V,}. For a set and
an element € V, we denote/ — v = V' \ {v} and for an element ¢ V' we denote

V+o=VUi{v}

3.1 Hyper Trees and Tree Decomposition

Hypertrees generalize trees (here referred to explicitly as 1-trees) to hypergraphs. It will be
simpler to introduce hypertrees by first introducing hyperforests, which generalize forests.

Recall that a forest is an acyclic graph, i.e. a graph with no cycles. The generalization of
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acyclicity to hypergraphs is somewhat more complex. There are several equivalent defi-
nitions for hypergraph acyclicity, which will be discussed in Section 3.3. Here, we define

acyclicity using the notion of a tree structure:

Definition 3.1 (Tree Decomposition).A hypergraphH (V) is said to haveree structure
T(H) iff T'is a tree over all the hyperedges Bfand the followingdlecomposition property
holds:

o If (hy, ho,... , h;)is apath ofH-edges ifl’, then(V1 < i < k) hy N hy. C h;.

Definition 3.2 (Acyclic Hypergraph). A hypergraph isacycliciff it has a tree decompo-

sition. An acyclic hypergraph is also referred to akyperforest

A 1-treeH (V) has the following tree structuf®( H ): if a vertex inv has degree 2 i#/,
then the two edges incident on it il are neighbors ifT. If a vertexv has degree higher
than 2, choose one of its incident eddgesc H arbitrarily— all other edges incident an
in H neighborh, in T. Note that if H is not a path, the tree structurenst unique, and
depends on the choice of the arbitrary mapping h,.

Two hyperforests?; (V;) and H,(V5), over disjoint vertex setd/; NV, = (), with tree
decomposition§7 (H,) andT,(Hs), can be joined to form a hyperforedi U H,, with tree
decompositior?; U 7> U {(h4, ho)}, created by adding an arc between any two arbitrary
hyperedge#, € H, andh, € H,. Thus, a 1-forest, being a union of disjoint 1-trees, is a
hyperforest.

Unlike adding edges to a regular graph, adding hyperedges to a cyclic-hypergraph might
make it acyclic. In fact, a hypergraph containing the complete hyperedge (the hyperedge
containing all vertices) is always a hyperforest. The tree structure of such a hyperforest is

a star, with the complete hyperedge in the center.

Definition 3.3 (Width of a Hyperforest). Thewidth of a hyperforest (V') is the size of

the largest edge, minus onetaxcy |h| — 1.

INote that it is essential that the vertex sets be disjoint. Even for 1-forests, joining two paths might create
a cycle. In Section 3.2.2 we relax the disjointness restriction somewhat.
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Thus, the width of a standard tree is 1. We will refer to a hyperforest of width at most

k as ak-hyperforest.

Definition 3.4 (Hypertree). A hyperforest that is maximal among hyperforests of width at

mostk (i.e. nok + 1-edge can be added to it) is said to bé-dypertree

Since we are concerned with maximum structures, we will be interested mostly in hy-

pertrees.

Definition 3.5 (Tree Decomposition of a Graph).A tree decompositionf a graphG (1)

is a covering hyperforest (V') © G(V') with tree structurel’(H).
Recall thatH coversG if every edge ofr is contained in some hyperedge/éf

Definition 3.6 (Treewidth). The treewidthof a graph is the width of its narrowest tree

decomposition, i.e. the narrowest hyperforest covering it.

Every graph can be covered by the hyperforest containing the complete hyperedge, so

every graph has treewidth at most- 1.

A word about nomenclature To try to minimize confusion and ambiguity in the expo-
sition, we will take advantage of the common parallel nomenclatures for graphs: we will
use the termsertexandedgeor hyperedgevhen discussing graphs such@snd H, and

reserve the termsodeandarc for the tree structure of hyperforests.

3.2 Basic properties of hyperforests and tree decomposi-

tions

We present here some basic properties of hyperforests and tree decompositions, that we use

throughout the thesis.



3.2. BASIC PROPERTIES OF HYPERFORESTS AND TREE DECOMPOSITIONS 39

3.2.1 Cliques
Lemma 3.1. The treewidth of &-clique is TreeWidth; = k£ — 1.

Proof of Lemma:

Clearly TreeWidthK;, < k — 1. Suppose that TreeWidtlk', < k£ — 1, and letH
be a minimum-width covering hyperforest with tree decomposifig#/). Since H has
no hyperedge of sizg, it does not have a single hyperedge covering all vertic&s, iso
there exist three vertices v, w € G that are not all included in a single hyperedge of
H. Since all edges must be covered Hy for each pair of the three vertices, there must
be a hyperedge containing both of themy € hy;y,z € ho;x,2z € hsg;hy,hy, hs € H.
Consider the location ok, hs, hs in the treeT'(H), and the three paths between them.
SinceT is a tree, there must be a nodeTni.e. hyperedgé’ € H, in which the three
paths inT meet. The nodé’ might be one ofhy, hs, h3 or a different hyperedge. By
the separation property @f(H), {u} = hy N hy C K’ and similarly also forn andw, so
u,v,w € h', contrary to the earlier argument.

O
Moreover, following this argument, any covering hyperforésof a graphG must

cover all the cliques .
Lemma 3.2. If GG is a subgraph o’ (G C G’), then TreeWidtltz < TreeWidthG'.

Proof of Lemma:

Any covering hyperforest of’ also cover<s.

Corollary 3.3. TreeWidthG > max Clique(G) — 1

3.2.2 Joining hyperforests

In Section 3.1 we noted that the union of two hyperforests is a hyperforest if their vertex
sets are disjoint, but may not be a hyperforest otherwise. We now extend this to a more

general situation:

Lemma 3.4. Let H,(V;) and Hy(V5) be hyperforests with respective tree structufegd, )
andT»(H,). If s = ViNV; is covered by botli/; and H,, thenH; U H, is also a hyperforest.
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Proof of Lemma;

Lets C hy € Hy ands C hy € H, be hyperedges coveringand consider the tree
structurel’; U Ty U {(hq, ho)}.

O

Since every clique in a graph must be covered, we also have:

Corollary 3.5. If G1(V;1) andG4 (V%) both have treewidth at mokt andV; N V4 is a clique
in bothG; and Gy, thenG; U G4 also has treewidth at most

3.2.3 Maximal hyperedges in hyperforests

We now show that it is enough to concentrate on the tree structure of the maximal hyper-

edges in a hypergraph.

Theorem 3.6. If a hypergraph has a tree decomposition, that might include maximal as

well as covered edges, then there is also a tree decomposition over the maximal edges only.

Proof of Theorem:

Let H(V') be a hyperforest with tree structut® /). We will show that any non-
maximal hyperedge aoff can be removed from the tree structure, i.e.foC h € H we
will show how to modifyT into 7"(H'), a tree structure oveii’ = H \ {h'}.

Examine the path ifi’ from 4’ to h. All hyperedges on this path must contaim h =
h’, and in particular this is true for the first hyperedge, on the path, which is adjacent
to A’ in T. We will removeh’ from 7" by diverting all arcs incident of’ in 7', to go toh,
instead inZ”. T’ remains a tree, and paths that before contaiflemw contain,; instead.
But sinceh’ C hy, the decomposition property still holds.

(]
A tree structurél” over the maximal edges of a hypergraph can always be extended to
all the subset edges, by connectind/ireach subset hyperedge to a hyperedge containing
it. For this reason, we freely refer to subsets of edges as being part of the hyperforest, and
are concerned only with the tree structure over the maximal edges.
This theorem allows us to discuss hyperforests as if they consisted only of maximal
hyperedges, but freely add their covered hyperedges to the tree decomposition where nec-

essary.
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3.2.4 Minors

We have already seen, in Lemma 3.2, that taking a subgraph of a graph can only reduce the
treewidth. Taking aminor of a graph is a more general operation than taking a subgraph,
permitting investigation of more global structures in the graph. In addition to removing
vertices and edges, edgentractionsare also allowed when taking a graph minor. Whereas
subgraphs can ignore the global structure and concentrate on the local structure in some
part of the graph, contractions can ignore some of the local structure and concentrate on

higher-level structure.

Definition 3.7 (Graph Minor). A graphG’(V’) is aminor of a graphG if G’ can be ob-

tained fromG by a sequence of any number of operations from the following:

e Edge removal.
¢ \ertex removal (together with all incident edges).

e Edge contraction: an edge, v2) can becontractedy replacing both vertices with
a new combined vertex that is incident on any edge on which either v, were

incident.

We will extend this standard definition also for hypergraph minors. In this case, con-
traction is allowed for any edge covered by the hypergraph. That is, we do not need to
contract all vertices of a hyperedge, and are allowed to contract only some of them. Note
that any contraction of multiple vertices can be seen as multiple contractions of pairs of

vertices, or 2-edges.
Lemma 3.7. A hyperedge-contracted hyperforest is a hyperforest

Proof of Lemma:

It is enough to study contraction of a 2-edge. E&tl) be a hyperforest and’ (V') be
the result of contracting the vertices, v, into v15. The new combined vertex, replaces
either of the contracted vertices in any hyperedge in which either one appears.

We show that the tree decomposition éhis still valid for H’. The decomposition
property holds for all vertices other thar. We need to show that it holds also fgs. Let
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vz € hy, Y, which correspond té,, iy in H. If both 2, andh, contained the same vertex

v; Or vy in H, then the path between them also contained this vertex, and now contains
v12. Otherwise, without loss of generality, € h; andv, € hy. Let h,2 be the hyperedge
covering(vy, v2) in H, and consider the possibly backtracking “patfidbm &, throughh, 2

to h, in the tree structure. All hyperedges along this path must contain eitloer,, and

so in H' they will containu;,. Since this path covers the path frémto &/, we have shown

the decomposition property with respectte.

Note that some hyperedges might become identical, requiring modification to the tree
structure (as it is now over fewer nodes). 7lf, h, € H become identical, then their
intersectionk; N hs, and thus also all hyperedges in the path between them, must contain
h1Uhs — v —v9. Following the argument above, the path must also inclygemaking all
hyperedges on the path betwggrandh, identical, and allowing us to collapse the path.

U
The tree structure of the minor of the hyperforest is therefore the minor of the hyper-
forest’s tree structure formed by contracting hyperedges that differ only in which of the
contracted vertices they include.
Edge removals may turn a hyperforest into a non-hyperforest, but if a hypergraph has a
covering hyperforest, then the same hyperforest will still cover it after any edge or vertex

removals. Combined with Lemma 3.7, we can conclude that:

Theorem 3.8. A minor of a graph of treewidth has treewidth at mosk, i.e. the class of

graphs of width at most is closed under taking minors.

This property is especially useful for proving high treewidth by proving the existence

of a high treewidth minor, such as a clique.

3.3 Equivalent characterizations of hyperforests

In this thesis, we have chosen to define treewidth and tree decompositions through the for-
malization of tree structures of hyperforests. However, this is only one of many equivalent
views (and definitions) of treewidth and the decomposition concept that appeared in previ-

ous work. In this section we present other characterizations and prove their equivalence.

2Since we allow backtracking, this is not formally a path, as defined earlier
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Presenting these equivalent characterizations serves several purposes: First, we will use
some of the alternate characterizations, and properties derived from them, in later sections
of the thesis (See below for details). Second, we hope that through these alternate views,
the reader will become more comfortable with the notions involved, and will get a better
intuition for these concepts. Each reader might find a different characterization appealing
to his intuition or background. Last but not least, through the presentation of these various
characterizations, we hope to demonstrate the tight connection of hypertrees to many graph-

theoretic concepts.

Characterizations on which later chapters depend Graham reductions, defined in Sec-

tion 3.3.1, are used extensively in the proofs in Chapter 5. This is essentially the only

characterization used in later sections. Triangulations (Section 3.3.4) were first discussed
in Chapter 2, since they are the most common characterization used in work on Markov
networks. They are referred to in later sections, but only to make connections with the

presentation in Chapter 2 and the machine learning literature.

3.3.1 Graham reduceability

A 1-forest always has a vertex of degree one, sometimes calkaf’a Removing a leaf

from the 1-forest yields a new 1-forest, which again has a leaf (i.e. a different vertex of
degree one). The 1-forest can thus be reduced to an empty graph by iteratively removing
vertices of degree one. In fact, a 1-forest can be characterized as a graph that can be reduced
to an empty graph in such a way.

A very similar characterization applies for hyperforests:

Definition 3.8. A hypergraphH (V') is Graham reduceabié it is empty, or if it has some
vertexv € V such that is incident on only one maximal hyperedgebfand the induced
sub-hypergraph o \ {v} is Graham reduceable. The vertexs called aleafof H and

the maximal hyperedge containing it is called twig.

3In fact, it always has at least two such vertices.
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Note that a twig of a leaf is a maximal hyperedge at the time of removal, but it might
be a non-maximal hyperedge in the original hypergraph. Twigs will be discussed in greater

detail in Section 3.3.2.
Theorem 3.9. A hypergraph is acyclic iff it is Graham reduceable

Proof of Theorem:

Every hyperforest is Graham reduceable It is enough to show that every hyperforest
has a vertex that is incident on only one maximal hyperedge. Since every induced sub-
hypergraph of a hyperforest is also a hyperforest, removing this vertex yields a hyperforest,
and the argument can be applied iteratively.

For a hyperforest{ (V') with tree structuré’(H) over its maximal edges, lét; be a
leaf (i.e. node of degree one) 6f and leth, be the only node adjacent tq in 7. Any
vertex not unique t@,; must also be included if,. Thus sincer; is a maximal hyperedge,
it cannot be contained if,, and therefore must have some unique vertex.

Every Graham reduceable hypergraph is acyclic Similarly, it is enough to show that

if H'(V U {v}) is reduceable td{ (V") by removingv, andH is a hyperforest, the#l’ is

also a hyperforest. Lét = h U {v} € H' be the unique maximal hyperedge coverinig

H'. The hypergrapf#’ is the union ofi and{%’}, which we will view as a one-hyperedge
hyperforest. The intersection of the vertex-sets of these two hyperforests is covered by
in {r'} and byh in H, so following Lemma 3.4 the union hypergraphis acyclic.

Ul

3.3.2 Twig sequences

An approach similar to Graham reductions is thatvafy sequencesTwig sequences rep-
resent a reduction ordering of hyperedges, rather than of vertices as in Graham reductions.
Twigsin 1-trees are “outer” edges, connecting the tree to leaves. If done at the proper
order, from the outside inwards, all edges of a 1-tree can be removed such that every edge
is a twig at the time of removal. In a hypergraph a bit more care must be taken in defining

such “outer” hyperedges:

Definition 3.9 (Twigs and Twig Sequences)A hyperedgé: of hypergraph/ is atwig iff
there exists another hyperedfjec H that contains the intersection afand the rest of{:

hN (U(H — h)) C k. The hyperedg#’ is calleda branch toh.
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A series of hyperedgéé,, hs, ... , h,,) is atwig sequencédf every hyperedgé; is a
twig in the hypergrapH iy, h, ... , b}, i.€.0 V30 Vihi N hy C by

Twig sequences are presentedsaguenceand not as recursive reductions, like Gra-
ham reductions. However, these two methods of presentation (reduction sequences and
recursive reductions) are essentially the same, and do not represent a real difference be-
tween Graham reductions and twig sequences. As discussed above, the real distinction
is that twigs are hyperedges, whereas Graham reductions refer to vertices. The choice of
method of presentation (recursive versus sequence) is based on the common presentation

in the literature.

Theorem 3.10. A hypergraphH is a hyperforest iff there is an ordering of its hyperedges

that forms a twig sequence.

Proof of Theorem:

Every hyperforest has a twig sequence We will show that every hyperforest has a twig,
and that removing this twig yields a new hyperforest. For a hyperfdfesith tree struc-
tureT'(H), leth be a leaf ofl" (a 1-tree always has leaves). We claim thé a twig of H:

as a leafj has only one neighbar’ in T'. The path inl" between, and any other hyper-
edge must pass through soh’ must contain the intersection bfand any other hyperedge
of H. Furthermore, note that sinéds a leaf of7’, it can be removed fror’ leaving a new
tree, which is a tree structure féf \ {#}. Thus, removing: yields a hyperforest.

Every twig sequence is a hyperforest We will show how a twig sequence can be Graham
reduced. Leh; be a twig ofH; = {h, ... , h;} with branchh;. Every vertex ofh is either
unique toH; (incident on no other hyperedge ify) or included ink;. The unique vertices
can be Graham-reduced, leaving a hyperedge that is completely contaibgchird thus

is not maximal and can be ignored. The resulting hypergraphiis .. , h;_1}, which is a
twig sequence. We can proceed recursively.

O
Note that the branches of a twig sequence correspond to the edges in the tree structure
of the hyperforest.
A useful feature of twig sequences is that any prefix of a twig sequence represents all

the connections between vertices included in it:
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Lemma3.11.Let H = (hy,...,h,) be a twig sequence anl; = (hy,...,h;) be a
prefix of H. Then any hypereddg€é C UH, that is covered by is also covered by/;.

Proof of lemma:

Consider a hyperedgeé C UH; such thath’ C h; € H, i < j. We will show thath’
is covered byH, for everyi < r < 7, by induction on- from 5 down toi. Assumingh’
is covered byH,: if it is covered byh,, s < r, then it is also covered by, in H,_;. If
it is covered byh,., then leth, be the branch to the twify, in H,. Sinceh’ C h, N UH;,
according to the definition of a twig, must be covered b, which is part ofH,_;.

O
Thus, every hyperedge in the twig sequences introdatteébe connections between
the new vertices in it and the vertices already covered by the previous hyperedges in the

sequence.

3.3.3 Recursive separators

Hyperforests and tree decompositions relate directly to separators in graphs. First recall

the definition of a separator:

Definition 3.10 (Graph separator). Let G(V') be a graph. A vertex sét C V' separates
between vertices, v € G \ S iff every path betweenandu in G passes throughy'.
A vertex setS C V separateswo disjoint vertex set&’;, U, C V' \ S iff S separates

everyu; € Uq andu2 e U,.

If S'is a separator id/(1), then the induced grapfi|y s is not connected, and thus
there is a partitioning o¥ into V' = S U U; U U, such thatS separate§/; andU,. We say
thatS separates&: (V) into Uy, U; (this is not necessarily a unique partitioning).

In a standard tree, every vertex separates the tree into the subtrees radiating out of the
vertex. We will see how this can be generalized to hyperforests.

First note that the removal of an arc from a tféseparateg’ (not exactly in the same
sense) into two subtrees, are on each side of the arc. In a grajittn a covering hyperfor-

estH and tree decompositiofi( H ), every arc in the tree decomposition corresponds to a



3.3. EQUIVALENT CHARACTERIZATIONS OF HYPERFORESTS 47

separator irG: let (hy, hy) € T separatd’ into Hy, H,. Then the intersection = hy N hy
separate§’ into (UH,) \ s and(UH>) \ s.

Note that the separator it the hyperedge, but rather the intersection of two hy-
peredges, corresponding to an arc in the tree decomposition. Being intersections of two
non-identical hyperedges of size at mbst 1, the separators are thus of size at mo<Df
course, since the hyperedges include the intersection, the hyperedges themselves are also
separators.

Consider the two induced subgraphstobverV; = UH; and overl, = UH,. These
two induced subgraphs are coveredibyand H,, which are bottk-hyperforests. Thus, the
separation can be continued recursively, separdtifigrther and further, up to subgraphs
of k+1 vertices or less. A covering-hyperforest thus corresponds to a recursive separation
of G(V), with separators of size at mdstNote that, at each recursive stage, the separator
is part of both of the resulting subgraphs.

The converse is also true: given such a recursive separation using separators of size at
mostk, a coveringc-hyperforest can be constructed. We will formalize this in the following

definition and theorem:

Definition 3.11 (Recursive Separability). A graphG (V') isrecursively separablgith sep-
arators of size at most iff either: (1) |V'| < k + 1 or (2) there exists a separat¢f| < k
that separates:(V) into V4, V, and the induced subgraphs 6fonV; U S and onl, U S

are both recursively separable.

Theorem 3.12. A graphG has a covering:-hyperforest iff it is recursively separable with

separators of size at mokt

Corollary 3.13. The treewidth of a graph is the minimuinfor which it is recursively

separable with separators of size at mbst

This provides an alternate characterization of treewidth, which might demonstrate the

decomposability of the graph more vividly. The graph can be decomposed into small com-
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ponents, the “glue” between the components being small in each level of the decomposi-

tion.

Connectivity

The recursive separability shows that no part of the graph is very highly connected. This
property is much stronger than the connectivity of a graph. A graph is said fe be
connected if the minimal separator is of size Clearly, the treewidth is at least equal

to the connectivity of the graph. However, a graph with low connectivity may have a small
separator separating two large cliques. Low treewidth, through the recursive separation

property, guarantees a uniformly low degree of connectivity, throughout the graph. In fact:

Theorem 3.14. A graph has treewidth at mostiff every induced subgraph of it is at most

k-connected.

Proof. If G has a covering:-hyperforestH, every induced graph af is covered by the
corresponding induced sub-hyperforestrof guaranteeing a separator of size at most
If every induced subgraph aF is at mostk-connected, thed: is recursively separable,
since after each separation we can use the separator over the new subgraphs to continue the

recursion. O

3.3.4 Triangulations

Perhaps the most common essentially equivalent form of hyperforests found in the literature

is triangulated graphs.

Definition 3.12 (Triangulated Graph). A graphG(V') istriangulatedff it has no minimal

cycles of more then three vertices.

In a triangulated graph, every cycle of four or more vertices must hatew i.e. an
edge connecting two non-consecutive vertices of the cycle. Because of this, triangulated

graphs are sometimes referred to alsatawdal graphs
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Definition 3.13 (Triangulation). Atriangulationof a graphG(V') is a triangulated super-
graphG'(V)) D G(V).

Hyperforests and tree decompositions are tightly associated with triangulated graphs

through a structure calledjanction tree

Tree decomposition of a triangulated graph

Theorem 3.15 (Junction Tree Theorem).For any triangulated grapl@=(V/), letC be the
set of maximal cliques it/(V'). ThenC is a hyperforest, i.e. it has a tree decomposition
J(C).

The tree decomposition over the maximal cliqu&g;) is called thgunction treeof the
triangulated grapli.

The Junction Tree Theorem shows that the the widtl,ofe. max Clique(G) — 1
is an upper bound on the treewidth@f But this upper bound matches the lower bound

obtained in Corollary 3.3, showing that:
Corollary 3.16. The treewidth of a triangulated gragh is max Clique(()G) — 1.

Moreover, since any covering hyperforéstof G must cover all ofG’s cliques, it also
coversC. The hypergrapli is thus the unique minimal covering hyperforest of the triangu-
lated graph. Note that non-triangulated graphs do not necessarily have a unique minimal
covering hyperforest— different triangulations Gfcorrespond to different covering hy-
perforests.

The junction tree/ itself is notunique—there may be several tree structures Gvier

which the decomposition property holds.

Hyperforests as triangulated graphs

We showed that a triangulated graph has a natural hyperforest associated with it. This

correspondence is bi-directional. A hyperforéstan be seen as a triangulated graph:
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Definition 3.14 (Infrastructure graph of a hypergraph). The infrastructuregraph of a
hypergraphH is the graphG that contains all the possible 2-edges covereddhyG =
{(u,v)|3penu, v € h}

In the infrastructure graph, every hyperedge becomes a clique.
Theorem 3.17. The infrastructure graph of a hyperforest is a triangulated graph.

Proof of Theorem:

Let H be a hyperforest with tree decompositibnand letG be its infrastructure graph.
Assume(G is not triangulated, and let= (vy, vs, ... , v, v, 1) be a chordless cycle i.

Every edge in the cycle must be covered by a hyperedd# ibut no non-consecutive
vertices can lie in the same hyperedge (otherwise the edge between them is a chord). This
implies there aré distinct hyperedges,, . .. , hy € H, each containing the corresponding
edgé (v;,v;41) € hy, but not other vertices from. Note that there may be several hy-
peredges that cover each edgejmnd we choose only one covering hyperedge for each
edge.

Consider the hyperedges, . . . , h;, as nodes if” and the paths i’ between them. Let
p; be the path betweely_, andh; in T. From the decomposition property, all hyperedges
in the pathp; must contaim;_; N h;, which includesy;, so no two non-consecutive paths
can intersect (or else the hyperedges in their intersection contain non-consecutive vertices
of ¢, forming a chord).

We now argue that by choosing the covering hyperedgegppropriately, we can as-
sume without loss of generality that consecutive pathg; . ; do not intersect (except at
the endpoint;). If the paths do intersect, all hyperedges in their intersegtiorp; . ; must
include bothv; (because they are i) andv;,, (because they are in,,). Thus, every
hyperedge i; N p;.1 covers the edgéy;, v;11) and is a candidate fdr;. To eliminate any
intersection, we can choose the hyperedge in the intersection that appearsfirasiour
“new” h;, truncatingp; andp, |, appropriately.

Thereforepy, po, ... , pr, p1 @arek-connected, but not intersecting, pathginforming
acycleh, = hy 22 hy -+ hy_1 =% hy in T, contrary tol” being a tree.

L]
We see that the correspondence between triangulated graphs and hyperforests is very
tight. In fact, there is a one-to-one correspondence between triangulated graphs and hy-

perforests in which all hyperedges are maximal (i.e., in which no hyperedge is covered by

“Here, and later in the proof, we omit the implied modulo on the index
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another hyperedge). In such cases Theorems 3.15 and 3.17 give the two directions of the
one-to-one correspondence.

Moreover, a grapli- is covered by a hyperforest if and only if G is a subgraph of the
infrastructure graph off. Combining this observation with the above paragraph, we see
that a graptts is covered by a hyperforeét if and only if the infrastructure graph df is

a triangulation ofz. This leads us to the following theorem:

Theorem 3.18. For a graphG, the treewidth of7 is equal to the minimum over all trian-

gulationsG’ of G, of the maximal clique size i&’, minus one:

width(G) =  min  max Clique(()G") — 1 (3.1)
trlang ¢oG
This theorem provides an alternate definition of treewidth that does not use the notions

of a hypergraph or tree decompositions.

3.4 Further Reading

We point the interested reader to further topics related to concepts discussed in this section.

These topics are beyond the scope of this thesis and are not used in the following chapters.

3.4.1 Algorithms for calculating treewidth and finding tree decompo-

sitions and triangulations

Calculating the treewidth of a graph is NP-hard in general [CP87]. However, for a constant
k, deciding if a graph is widtl:, and even finding a coveringhyperforest, can be done

in linear time [Bod96]. However, the dependencekois so extreme that the linear time
algorithms are impractical even for very smal(as low as 4 or 5). Several approxima-
tion algorithms [BGHK95] and heuristics [SG97] have been suggested for finding narrow
covering hyperforests (or equivalently, triangulations) with better dependente See

[Bod97] for further references.
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3.4.2 Graph minors

Robertson and Seymour show that classes of graphs which are closed under taking minors

can be characterized by “forbidden minors”:

Theorem 3.19 (Wagner’s “conjecture”). If a classG of graphs is closed under taking
minors, there exists a finite set of grapfscalled theobstructionof G, such that for every

graphG, G € ¢ iff there is no graph inF that is a minor ofG'.>

Since graphs of bounded treewidth are closed under taking minors, we can characterize
them, for any bound, by their obstruction. This characterization is sometimes useful. For
example, the first quadratic time algorithior deciding if a graph has tree width at most

k, for fixed k, was based on the obstruction characterization [RS95].

3.4.3 Applications

Tree decompositions are useful in many applications in which it is beneficial to decompose
the graph into simple elements on which computation can be done independently, propa-
gating information along the tree structure. The main application of interest in this thesis is
Markov networks, which were introduced in Chapter 2. The connection between Markov
networks and tree decompositions will be discussed in detail in Section 5.1.

In this section we mention several other applications which may be of interest to the

reader. For more applications see [Bod93].

Sparse matrix inversion

If the rows and columns of a sparse matrix can be partitioned such that each group of
rows has non-zero entries only in one group of columns, and vice versa, the matrix can be
inverted by inverting each such block separately. If the non-zero blocks overlap, this can

still be done as long as the blocks form a hyperforest. Note that in this application, the

SMore formally, no graph ofF is allowed to be isomorphic to a minor 6f
6And in fact, first poly-time algorithm where the exponent does not deperid on
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dependence on the clique sizes is cubic, or even slightly sub-cubic, and not exponential as

in most other application.

Combinatorial queries on graphs

Many combinatorial problems on graphs, which in general are hard (NP-hard and even
PSPACE-hard) can be decided in polynomial, and sometimes even linear, time on graphs
of bounded treewidth, using the covering hyperforest’s tree decomposition [AP89]. More
generally, any predicate that can be expressed in (generalized) monadic second order logic
over the graph can be solved in linear time for graphs of bounded tree width [Cou90]. The

dependence on the treewidth is, of course, exponential.
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Chapter 4

Hypertrees and the Maximum

Hypertree Problem

We are now ready to state the central combinatorial optimization problem this work is
concerned with— the maximum hypertree problem. In this chapter we present the problem
(in Section 4.1) and its variants and prove that, even in a very restricted form, it is NP-hard
(4.2).

In Section 4.3 we present some properties of hypertrees that might be used in approach-
ing the maximum hypertree problem, but that are not used in our algorithms. This last

section can be skipped without loss of understanding of the rest of the thesis.

4.1 Problem Statement: The Maximum Hypertree Prob-

lem

As we will see, we would like to find a maximum weight hypertree. When working with
standard graphs, a weight function assigns a weight to each potential edge, i.e. pair of
vertices, and the weight of the graph is the sum of the weights of its edges. However, for

our applications, as will be described in Section 5.3, it is essential to assign weights also to

55
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larger subsets of edges. A hyper-weight function assigns a weight to subsets of vertices of
arbitrary size, and the weight of a hypergraph is the sualldhe weights of edgesovered
by it: w(H) = >, cqw(h).

The maximum hypertree problem is:
Given as inputs:

e An integer treewidtlk.

|4

e Avertex sefi” and a weight functiom : (,

) — % on hyperedges of size uf

to and includingk + 1.

Find a hyperforest! (V) of width at mostk that maximizesv(H) = >, ., w(h).

For a non-negative weight function,kahyperforest can always be expanded tb-a
hypertree with at least as much weight. And so a maximum weight hyperforest can always
be taken to be a hypertree. If some candidate edges have negative weight, this might not be
the case.

However, we limit our attention only to weight functions which are monoton&-on
hyperforests, i.e. such that for akyhyperforestdd and any sub-hyperforest éf’ of H,

w(H) > w(H’). The maximum weight hyperforest will thus be also maximal with respect
to covering, and so will be &-hypertree. It is enough to limit our attention to hypertrees,
and we refer to this problem as the maximum hypertree problem and not the maximum
hyperforest problem.

In practice, in the algorithms presented here, we will use only a weaker property, re-
quiring monotonicity only on cliques of at most+ 1 vertices. Since such cliques are
hyperforests, monotonicity on cliques follows from monotonicity on hyperforests.

Whenk = 1, the maximum hypertree problem is simply the maximum spanning tree
problem, which is equivalent to the minimum spanning tree problem, and can be solved in
polynomial time [CLR89].

Since a weight can be specified for each possible hyperedge of sizekup g the

input can be of siz®(n**!), meaning any algorithm will, at best, have an exponential
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dependence oh. As most uses of tree decompositions are exponentially dependént on
this is not an overly exaggerated input size.

The weight function assigns a weightegerysubset of at most + 1 vertices. Every
such vertex set will be referred to asandidate edge

We will also discuss variants in which there are only zero/one weights, and in which

the weights are only on edges of a specific size.

4.2 Hardness of Maximum Hypertree

We show that the Maximum Hypertree problem with nonnegative weights (and so also with
monotone weights) is NP-hard, even for a constast 2 (for &£ = 1 this is the maximum
spanning tree problem, which can be solved in polynomial time). Furthermore, it is hard
even when the weights are only on 2-edges, and the weights are only zero or one. Under
this restrictions, the problem can also be formulated as: given a gfaphd a subgraph
G' C G of treewidth at most 2, maximizing the number of edge&'in

We first relax the zero/one weight restriction, and show a reduction from 3SAT to the

2-maximum hypertree problem, with integer weights on 2-edges.

Theorem 4.1. The maximum hypertree problem is NP-hard, even for treewidth two, and

weights only on 2-edges.

To prove the hardness, we show a reduction from 3SAT.

Overview of the (integer-weight) reduction

Given a 3CNF formulap over n variablesz, ... ,z, andm clauses,, ... , ¢, we will
construct a vertex sét and a weight functiom overV, such that is satisfiable iff there
exists a 2-hypertree ovéf with weight above some specified threshold.

The construction will consist of three layers:

e A core structure with high weight that must be included in any hyperforest that passes

the threshold. The core structure by itself has treewidth two.
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e Two “assignment” edges for each variable, corresponding to the two possible truth
assignments. The core structure combined with both edges has treewidth three, guar-
anteeing that only one “assignment” edge is chosen per variable. The weights of
these edges are such that at least one per variable must be included to reach the
threshold.

e For each literal appearing in a clause, a “satisfaction” edge of weight one. The core
construction, together with an “assignment” edge and a disagreeing “satisfaction”
edge have treewidth 3, guaranteeing that only correct literals can satisfy a clause.
Additionally, the core structure combined with two or more “satisfaction” edges for
the same clause has treewidth three. This is needed to prevent counting the satisfac-

tion of the same clause twice.

We will show that if a satisfying assignment exists, then a graph consisting of the core
structure, the “assignment” edges corresponding to the assignment, and one correct “satis-
faction” edge for each clause, has a covering 2-hyperforest, and weight exactly equal to the
threshold. On the other hand, we will show that any treewidth 2 graph with weight equal to
or exceeding the threshold must include the entire core structure, exactly one of each pair of
“assignment” edges, and a correct “satisfaction” edge for each clause, thus demonstrating

a satisfying assignment.

Details of the reduction

The vertices ol are:
e Two verticesO and A.
e Three vertices;, 27, 2" for each variable.

e Avertexc; for each clause.

The weights are as follows:
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Figure 4-1: The “core” structure

e The following “core” edges will have weight. = 10nm:

— The edggO, A).
— For each vertex, the edgés;, 21), (z;, 21, (2, 2, (x;, O), (24, A).

i

— For each clause, the ed@@, ¢;).
The “core” structure is illustrated in Figure 4.2.

e For each variable, the two “assignment” edge§, O) and(z!, O) will have weight

we = 4m.

e For each literak; = « in clausec;, the “satisfaction” edgéz?, c;) will have weight

one.

¢ All other candidate edges have weight zero.

We will require a threshold of = 5nw.+w.+nw, +m = (5n+1)10nm+4nm-+m.
We now show thab is satisfiable iff there exists a hypertr&&1”) such thatv(H) > T.
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If ¢ is satisfiable, therdy v yw(H) =T
Consider the hypergrapt which includes the following hyperedges:

e For each variable; the hyperedgegA, O, z;) and(O, z;, =), corresponding to the

valuea assigned ta; in the satisfying assignment.

e Each clause; has at least one correct literal. Choose one such litgrat « and

include the hyperedg@, c;, z¢).

This hypergraph covers all the “core” edges, one of each pair of “assignment” edges, and
one “satisfaction” edge per clause, exactly attaining the required threshold. To sék that
is acyclic, consider the following tree-structufeover its maximal hyperedges, and the

non-maximal hyperedge), A):

e The neighbors of hyperedd®, A) in T" are the hyperedgds!, O, z;), for all vari-

ablesz;.

e For each variable; which is assigned value, the hyperedg€O, z;, =) is adjacent
to (A, O,x;)inT.

e Each hyperedge of the for(, ¢;, z¢) in H, is adjacent tdO, z;, z5) in T..

If IgHyw(H) > T, then ¢ is satisfiable

First note that{ must cover all “core” edges: the threshold is greater than the total weight
of core edges, and the combined weight of all non-“core” edges is less then a single “core”
edge, and so no “core” edge can be ignored.

Similarly, since the total weight of all “satisfaction” edges is less than a single “assign-
ment” edge, at least “satisfaction” edges must be covered. But if the two “assignment”
edges for the same variableare covered, then together with “core” edges, the four-clique
{0, x;, xF', xI'} is covered, contrary té being a 2-hyperforest. Thus, exactly one “as-

signment” edge is covered for each variable. The covered “assignment” edges imply an

assignment. We will show that this assignment satigfies
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................. Satisfaction edge

\ \ — — — _ Assignment edge

e — Coreedge

Figure 4-2: Subgraph of width three resulting from inconsistent clause satisfaction

After accounting for the “core” edges, andassignment” edges;, more “satisfaction”
edges are required to reach the threshold. We will first see that if a satisfaction edge is
covered, the corresponding clause is indeed satisfied. If a satisfactiofvédgg(w.l.0.g.)
is covered, and the “wrong” assignment edgé, O) is also covered, then the subgraph
shown in Figure 4.2 is covered. Contracting the e@g®) yields a four-clique minor,
contrary toH being a 2-hyperforest. Thug;”, O) must be covered; be assigned’, and
the clause: satisfied.

To see that all clauses are satisfied, we will show that each of dowvered “satisfac-
tion” edges satisfies a different clause. If two “satisfaction” edg€sc) and (=5, c) of
the same clauseare covered, the subgraph shown in Figure 4.2 is covered. Contracting

(c, xg, x9, A) yields a four-clique, contrary t& being a 2-hyperforest.

Zero/one weights

We now show how to extend the reduction to zero/one weights:

Lemma 4.2. The 2-maximum-hypertree problem, with integer weights on 2-edges, can be
reduced to the the 2-maximum-hypertree problem, with zero/one weights on 2-edges. The

reduction is pseudo-polynomial, i.e. polynomial in the value of the weights.
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................. Satisfaction edge

— — — _ Assignment edge

Core edge

Figure 4-3: Subgraph of width three resulting from covering two “satisfaction” edges to
the same clause

Proof. Given a weight functionv over candidate 2-edges in vertex §gtwe show how to
construct a graph’(V'), representing a zero/one weight functiohoverV’, such that the
maximal hypertree with respectid is a constant additive distance away from the maximal

hypertree with respect to.

Overview of reduction We would like to replace each candidate edge v») overV,
with w(vq, vy) parallel edges id’. Because we are seeking a simple graph, we cannot do
that directly. Instead, we will replade;, v,) with w(vy, v9) parallel paths.

The straight-forward approach of adding adding, v;) intermediate points, with a
path of length two through each one of them, does not work. One can collect half the
weight, without suffering any consequences, by covering only the edges incidentor
not completing any path to,.

To prevent this possibility of eating the cake while leaving it whole, we make the edges
from v, to the intermediate points mandatory, regardless of whéther, ) is covered. The
collectible weights are only between the intermediate verticesvgnand covering even

one of them is enough to guarantee a minor in whichndwv, are adjacent.
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Figure 4-4: The subgraph replacing a single edge of weight four betwesmd v,

We create mandatory edges betwegrand an intermediate vertex by adding yet
another level of intermediate points. But this time so many intermediate points, in fact
more then the whole weight in, that any maximal hypertree must cover nearly all of them
(see Figure 4.2). In any case at least one path feorto « must be covered, for every
intermediate vertex on every edgév;, v,). The weight on these mandatory edges causes
an additive constant between the weight of maximal trees with respecatmlw’.

Any 2-hyperforestd over V, can be extended to a 2-hyperforést over I/, which
covers all mandatory edges, and all additional edges corresponding to 2-edges covered by
H. The weightw'(H’) is thus equal tav(H), plus the weight of all mandatory edges,
which is a predetermined constant.

We constructively show how the maximal hypertiéewith respect tav’, has a minor
H which covers weight of at least’(H’) minus the weight of all mandatory edges. As
discussed above]’ must cover at least one pair of eddes, ¢), (¢, u) for every interme-

diate vertexu on every edgéuv;, v,). For everyv, v, u, contract those two edges, and
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delete any other second level intermediate vertices. The resulting mihbr @onsider a
non-mandatory edge:, v,) covered byH'. This edge was part of a path corresponding to
an edggvy, v9), butv; andu have now been contracted together(sov,) is covered by
H. For every(v, vq), there are onlyv(vy, v9) such intermediate vertices, and so thgf)
contains all the non-mandatory weight fraifi.
SinceH is a minor of H’, it has treewidth at most 2, i.e. covered by a 2-hypertree, the

weight of which is at least the weight &f.

(]

Corollary 4.3. The maximum hypertree problem is NP-hard, evenkfor 2, zero/one

weights, and weights only on 2-edges.

Proof of Corollary:

Although the reduction in Lemma 4.2 is pseudo-polynomial, note that the weights in
the reduction of Theorem 4.1 are polynomial in the size of the 3CNF formula.

]
Note that both reduction presented have a significant additive constant, and are thus not

L-reductions, and do not show hardness of approximation.

4.3 Properties of Hyper Trees and Maximal Hyper Trees

We present, without proof, some combinatorial properties of hypertrees. We discuss how,
like 1-trees, hypertrees display a rather regular structure, with a constant number of hyper-
edges, and a balance between acyclicity and connectedness. This regular structure allows
for equivalent alternate characterizations of hypertrees, which can be used in setting the
constraints of optimization algorithms. However, we are yet unable to leverage these con-
straints for efficient algorithms to solve, or at least approximate, the maximum hypertree
problem. We present the properties for reference only; they are not used in subsequent

sections or chapters.
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For a vertex set” with at mostk + 1 vertices, the hypergrapti’} consisting of the full
hyperedge (the hyperedge containing all vertices) is a hyperforest of width at n®istce
this hypergraph obviously covers any other hypergraph, it is also thekelmjypertree. In
the discussion that follows, we will always assume there are atAeasdtvertices.

We would like to investigate what properties of 1-trees extend to hypertrees. Recall the

following equivalent definitions for a 1-tree:

¢ A maximal acyclic graph.

An acyclic graph withn — 1 edges.

A minimal connected graph.

A connected graph with — 1 edges.

An acyclic connected graph.

The definition we have used so far is a generalization of the first of these definitions. We
will see that all of these equivalent characterizations can be generalized to hypertrees, if
“connectedness” is generalized properly.

We first note that a hypertree is always a regular hypergraph, i.e. all maximal hyper-
edges in &-hypertree are of size exactty+ 1. Furthermore, &-hypertree oven vertices

hasexactlyn — k regular (i.e. sizé& + 1) edges. We get the second equivalent definition:

e a hypergraph with maximum edge-size- 1 is ak-hypertree if it is acyclic and has

exactlyn — k edges of sizé + 1.

It is also useful that the number of covered hyperedges of each size is constant. The
number of edges of size< k covered by &-hypertree is exactl{(’j) (n —k—-1+ %)

In order to generalize connectivity, we introduce the following definitions:

Definition 4.1. Two hyperedges of a hypergraph, h, € H, both of size: + 1, are said

to be strongly adjacentff the size of their intersection i&: |hy Nhy| = k. A series
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of hyperedgesh, ho, ... ,h,) is said to be astrongly connected edge paitha regular
hypergraph H iff consecutive hyperedges are strongly adjacent. A regular hypergraph
H(V) is said to bestrongly connectedf for every two vertices,, v € V, there exists a
strongly connected edge path i, such that, appears in the first hyperedge of the path,

andwv appears in the last.
Hypertrees are always strongly connected, and the following hold:

e A hypergraph is a@-hypertree iff it is minimal strongly-connected+ 1-regular
hypergraph.

e A hypergraph is &-hypertree iff it is a strongly-connectéd+ 1 regular hypergraph
with exactlyn — k regular (size: + 1) edges.



Chapter 5

Equivalence of Markov Network

Projections and Maximum Hypertrees

In this chapter we describe how the Markov network projection problem can be reduced to a
combinatorial problem of finding the maximum weight hypertree. That is, how the learning
problem can be solved using the combinatorial problem. We also describe the reverse
reduction and its implications about the hardness of the learning problem, and discuss the
connections between approximate solutions of the two problems.

In Section 5.1 we set the ground for the reductions by establishing the connection be-
tween the decomposition of Markov networks and the covering hyperforest of their un-
derlying graph. This connection was first alluded to in Section 2.2.3, where triangulated
Markov networks were discussed. In particular we prove the factoring specified in equation
(2.6). Section 5.1 is based on previously known results [WL83], although the presentation
here is different in that it uses the notion of hyperforests to discuss the cliques of a triangu-
lated graph.

The rest of the chapter presents original results, relating the Markov network projection
problem to the maximum hypertree problem.

The connection between hypertrees and Markov network projections was previously

addressed by Malvistutu [Mal91]. However, hyperedge weights were not discussed in that

67
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work, and to the best of our knowledge this is the first formulization of the maximum
hypertree problem in terms of sum-of-hyperedge-weights. This formalization leads to a
purely combinatorial problem (finding maximum hypertrees) which, as we show here, is
equivalent to the Markov network projection problem. To the best of our knowledge, this is
the first demonstration of a combinatorial problem proven to be equivalent to the Markov
network projection problem. This equivalence facilitates analysis of the hardness and of

the approximability of finding Markov network projections.

5.1 Decomposition Over Hyperforests

In this section we show how a Markov network is factorizable over a covering hyperforest
of its dependency graph. As we will define shortly, a distribution is said fatterizable
over a hypergraplif it can be written as a product dactorscorresponding to the hyper-
edges of the hypergraph. For Markov networks, we present an explicit factorization and
prove it. We also discuss the converse, i.e. whether a factorizable distribution is a Markov
network.

The factorization presented here is essentially the same as the factorization over cliques
for a triangulated graph, given but not proved in equation (2.6) of Section 2.2.3. In fact,
since the cliques of a triangulated graph form a hyperforest (Theorem 3.15), we essentially

prove (2.6) and the Hammersly-Clifford Theorem (Theorem 2.1) for triangulated graphs.

Definition 5.1. A distribution P over a random vectoX, is factorizable over a hyper-

graphH (X) if the distribution can be written as:
P(z) = [ én(zn) (5.1)

for some se{ ¢, },cp Of factors, one factor for each hyperedgefdf A factor ¢;, corre-
sponding to hypereddeis a function only over the outcomes of the variablgq(i.e. those

indexed by vertices in).
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Note that it is enough to specify factors only over maximal hyperedges, since sub-edges
can always be “swallowed” inside them. However, in many cases, it is convenient to give a
factorization in terms of all covered, not necessarily maximal, hyperedges.

We will see how Markov networks are tightly connected with factorizations over hy-

pergraphs, and especially hyperforests.

Theorem 5.1. Let X be a Markov network over a grapgh(X') with covering hyperforest

H(X). Then the distribution ok is factorizable ovetd, with the following factors:

Pr (%h)

_ 5.2
Hh’ch On () (5:2)

On(xn) =

Note that a product of factors of all covered, not necessarily maximal, hyperedge should
be taken. Similar to equation (2.6) in Section 2.2.3, the factors (5.2) are recursively defined,

factors of larger hyperedges being based on the factors of their sub-edges.

Proof. By Theorem 3.9,H is Graham reduceable. We will prove by induction on the
reduction, that the factors given by (5.2) multiply out to the correct distribution. For an
empty graph, the factorization is empty, and trivially true. We will show thdf ihas a
leafv and the factors for the induced subgrapfi’” — v] given by (5.2) multiply out to the

marginal distribution ofXy,_:

Pr(zv_,) = H on(zn) (5.3)

heH[V —v]

then multiplying all the factors fof{ yields the complete distribution.
SinceX is a Markov networkX,, only depends on its neighborsdh SinceH covers
G, all neighbors inG are also neighbors if. But v is a leaf, and so there is a unique

maximal hyperedgé € H that includes it, and so also all its neighbors:

Pr(z) = Pr(xzy_,)Pr(z,|zv_y)

= Pr(zy_,)Pr(x,|xp)
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Using the factorization (5.3) ok _,:

= H On () Pr (4| 2h) (5.4)
heH[V —v]
We now have to show that the factors of the new hyperedfjgsH [V — v| multiply out
to Pr(z,|x,). The only new hyperedges are those containingnd the only maximal
hyperedge containingis h, and so the new hyperedges ardself, and the its sub-edges

containingu:

H P (Tw) _% H O (n)

h':weRh/ Ch Hh’Ch O ( xh R weR Ch
B Pr (zy)
[Lcn On(zw)

(5.5)

Using the induction assumption d¥,_, with its induced hypergrapH [h — v] = {h — v},

we know thatPr (2;,_,) = [], ,_, &w (2 ). Inserting this in the denominator of (5.5)

yields:
Pr (xh)
on(Tn) H On () = m = Pr (z|zh-y). (5.6)
h’:weh'Ch
Combining equations (5.4) and (5.6) yields the desired factorizatiof,of O

The converse

Theorem 5.1 shows that factorization over a covering hyperforest is a necessary condition
for a distribution to be a Markov network. Is this also a sufficient condition ? The straight-
forward converse of the theorem is not always true. In the theorem statement we required
that H be any covering hyperforest éf. A complete hyperforest (a hyperforest with

the complete vertex set as an edge) covers any graph, and any distribution, even those
incompatible withG, trivially factorizes over it.

Even if H is a minimal covering hyperforest, the converse does not necessarily hold.
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Figure 5-1: A graph on which the converse of Theorem 5.1 does not hold.

Consider the four-cycle in Figure 5.1. A possible minimal covering hyperforekt is
{{a,b,c},{b,c,d}}. Adistribution over the binary random vectoX,, X, X., X,;) where

If 2, = 2.

el

P(2q,xp, Tc, Tq) =
0 otherwise

is clearly factorizable ovef, but is not a Markov network over the four cycle, sinkg
and X, are dependent even givef), and X,;. To “fix” this, the edge(b, ¢), which is part of
the infrastructure graph d, would need to be added to the four-cycle. The edge) is

covered byH, and so distributions that include this dependency are factorizablethver

The failure of the converse that we saw for a four cycle resulted from the covering
hyperforest covering “too much”, i.e. covering edges not in the original dependency graph.
If, however, the graplz includesall edges covered by a hyperforest i.e. G is the
infrastructure graph off, then the converse is true and every distribution factorizable over
H is a Markov network ove€. !

As shown in Section 3.3.4, the class of graphs that are infrastructure graphs of hyper-
forests is exactly the class of triangulated graphs, for which we discussed factorization in
Section 2.2.3. Thus, for a triangulated gragha distribution is a Markov network over

G if and only if it is factorizable over its minimal covering hyperforest, which is its clique

Note that the converse is true f6rif and only if G is an infrastructure graph df. This condition is
also equivalent tdZ being theuniqueminimal covering hyperforest af.
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hypergraph. If it is factorizable, a possible factorization is given by equation (2.6). Note

that there are many equivalent factorizations, (2.6) being only one of them.

5.2 Projection Over a Specified Graph

Even for a pre-specified gragh, projecting a distribution to a Markov network ov@r is
not necessarily straight-forward. df is non-triangulated, calculating the Markov network
X overG which is closest to the target distribution might require iterative calculations and

cannot be specified explicitly [Pea97].

However, as indicated in Section 2.2.3, if the gr&pis triangulated then the bidirec-
tional correspondence between Markov networks évand factorizations over its clique-
forest can be used to specify the projection explicitly. We will show that the projection
of a distributionPT onto distributions factorizable over a specified hypergrapis the
unique distribution that agrees wifPi' over all marginals corresponding to hyperedges in
H. Because of the bidirectional correspondence, Markov networks over a triangGlated
form such a class (being exactly those distributions factorizable over the clique-forest of
(7), and so this characterization of the projected distributions applies. We will then show

the factors of the this projected distribution can be explicitly calculated.

Theorem 5.2. For a specified hypergrapli, the projection of any distributio®™ onto
the class of distributions factorizable ovAr, is the unique distributio® that agrees with

PT on all marginals corresponding tf:

Vien PT(Xn) = P(X)) (5.7)

Note that we do not require thaf be a acyclic. However, this class of distributions

corresponds to a Markov networks over some graph onty i acyclic.
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Proof. The projected distribution is the one minimizing the information divergence:

arg min H(PT||P) = arg mpin (EPT [log PT} — Epr [log P])

P factorizable oveir{

But Epr [log PT] is constant (does not depend Bi), and so:

= arg max Epr [log P] (5.8)

P factorizable oveir{

whereP is limited to distributions factorizable ovéf, i.e. P is any distribution that can

be written as:
P() = - [T ontan). 59)
h

for any non-negative factorg, and an appropriate normalizing constant Previously,

we discussed factorizations which do not require an explicit normalizing constant. This

requires the factors to multiply out to a valid distribution, and so introduces constraints

on the possible sets of factors. However, we are now about to maximize over the factors,
and so would prefer eliminating such constraints, and instead introducing a normalization

factor that depends on all the factors:

To solve the maximization problem (5.8), we shall set to zero the partial derivatives of
Epr [log P] with respect tap;(;), the value of the factop; on the outcomer;, for all

$ € H and for all possible outcomas of the variablesX;:
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0— OEx.pr [log P(X)]

_ OExpr [log (C TThen 0n(Xn))] .
= Db (¥5) [using (5.9)]
_ O (X pem Ex~pr [log ¢n(X3)] — Ex.pr [log 2])

Ops(Ts)
(5.11)

We will take the derivatives of the two terms separately:

0 ZheH Ex~pr [log ¢n(Xy)] N dlog on(Xp)
Os(Z3) a Z St { ]

Forh # 3, log ¢, (X}) does not depend oty (Z;) and the derivative is zero. Accordingly,

the only relevant term in the sum/is= s:

— Ey_pr {Eﬂog ¢S(Xs):|

0¢s(5)

Similarly, ¢:(X;) will only depend onp;(;) if Xz = ;. This happens with probability

PT(i;), and in all other cases the derivative is zero:

dlog ¢s(5)
0¢s(T5)
- P (5.12)

= P (i)
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As for the other term of (5.11), note thats constant with respect t&, and scE [log z] =

log z and we have:

OEx.prllogz]  dlogz 1 0z
Oos(Es)  O¢s(Ls) 2 0¢s(Es)
10X 1 on(n) _ }ZM
- O Thps On(wn) - Ps(ws)
N Z Dos(is)

Hh;ﬁs@t p) O3 (s)
ST G

Again, ¢;(z;) depends om;(%;) only if z; = %z, while in all other cases the derivative is

Zero:

_ Z Hh;ésébh(lﬂh)aqﬁs Ts

== (5.13)
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Substituting (5.12) and (5.13) in (5.11):

0= PT(jjé) . P(js)
OHEF OHEF
PT(i5) = P() (5.14)

This holds for alls ¢ H and for all:z, meaning thaf’™ and the distribution maximizing
(5.8), which is the projected distribution, must agree on all marginals corresponding to

hyperedges irH. O

Corollary 5.3. For a specified triangulated grap&f with clique-forestH, the projection
of any distributionPT onto Markov networks ovef, is given explicitly by the following

factorization overH:
P(z) =[] on(xn) (5.15)

where the product is over atloveredhyperedges, and the factors are given recursively by:

On(an) = M (5.16)
Hh’ch on(wn)

Proof. The class of distributions which are Markov networks ogers exactly the class

of distributions factorizable oveH, and so by Theorem 5.2, the projectidhonto this

class agrees witl®T over all marginals corresponding f&*. By Theorem 5.1, the fac-

torization of a distribution ove, and in particular?, is given by (5.2). Note that only

marginals corresponding to hyperedgediirappear in (5.2), and so we can replace them

with marginals ofPT, yielding (5.16). O
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5.3 Reducing Markov Network Projection to Maximum

Hypertrees

In the previous section we saw that the projecting a distribution onto Markov networks
over aspecifiedriangulated graph can be found explicitly, and in a straight-forward way.
We are now concerned with the true problem of this thesis— projecting a distribution onto
Markov networks over any graph of treewidth at mést That is, finding both a graph
G and a Markov network ovefr, that minimizes the divergence to the target distribution.
Note that finding theprojected graphG is enough, since we already know how to find
the closest distribution among the Markov networks over it. For a g€apWe call the
minimum information divergence to a Markov network o¢grtheinformation divergence
to the graphG.

A possible approach to finding the projected graph might be to enumerate over all
graphs of tree width at most, calculating the information divergence to each one, using
the explicit specification of projection onto the graph. However, the exponential number of

possible graphs makes this approach infeasible even for a fairly small number of variables.

5.3.1 Accumulating relative entropy using weights

A possible alternative approach, that might be more efficient, is to analyze the contribution
of local elements in the graph to reducing the information divergence. Adding edges to
the graph increases the space of admissible distributions, and thus reduces the information
divergence. We would like to decompose the reduction in the information divergence due
to “local elements”, e.g. edges, or small cliques. We might then be able to find a graph
which includes many such local elements with a high contribution.

Chow and Liu [CL68] analyzed the case in which the graphs are limited to be trees.
They showed that the reduction in information divergence, relative to the empty graph, can
be additively decomposed to edges. The contribution of each edge of the tree is the relative

information between its nodes. If a weight equal to the relative information is associated
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with each edge, the maximum weight tree is thus the minimum information divergence

tree. Such a tree can be found efficiently.

We show here that fok-bounded treewidth graphs, edges are not enough% but -
sized local elements are enough. We will specify weightbyperedgesstead of edges,
and show that the weight of a hyperforest is exactly the reduction in information divergence
of its infrastructure graph (versus the empty graph). Therefore, by maximizing the weight

of a hyperforest, the projected Markov network structure can be attained.

The minimum information divergence to a triangulated graph is:

T o .
H(PT|G) = glilsl';EXNpT {log

Markov net ovelG

o)

which using the explicit factorization of the projected Markov network:

T
= EXNPT [log P <X)A ]
HheCquue(c) &n(Xn)
= Epr [log PT] — Z Ex.pr [log éh(Xh)}
reClique)

and setting the weight for each candidate cliqueto= E pr [log gbh} :

=-H(P") - > w, (5.17)
reCliquec)

An important point is that the weights, dependonly on the target distributio®™, and

not on the structure of the graph (as long as it is triangulated). This is because on a
triangulated graph the projected factors are given by (5.2), which, unrolling the recursion,
depends only on marginals @tT inside 2, and nothing else. Taking the weightg =

Epr [log gzﬁh} the minimum information divergence tmy triangulated grapld- is given

by (5.17), summing over all cliques covered®@y
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As discussed, a weight, depends only on the marginal 8fF overh, and is given by:

_ ] _ PT(X5)
wy, = Expr [log ¢h<Xh)} = Ex.pr llog m]
= Expr [log PT(X3)] = 3 Exopr [log th/Xh/}
h'Ch
= —H(P"(X))) = ) ww (5.18)

This provides for a simple recursive specification of the weights. Unrolling this recursion,

the weight of a candidate hyperedge can also be written as a sum:

wy ==Y (=) H(PT (X)) (5.19)
h'Ch

5.3.2 Negative, but monotone, weights

Note that some of the weights might be negative. For example, weights corresponding to
singletons{v} have no sub-cliques, and therefarg,, = —H (X,) < 0. In fact, returning

to the derivation of (5-17)ZheCquue(G) wp, = Epr [log ]5] < 0, and so the sum of the
weights is always negative. However, as more edges are added to the graph, the admissi-
ble distributions are less limited and projected distribution can become more similar to the
target distribution, thus increasitgyr [log 15} (i.e. pulling it closer to zero). This means

that weights of edges beyond singletons should generally have a positive contribution, rep-
resenting the reduction in the information divergence, or equivalently the gain in negative
cross-entropy.

There might still be multiple-vertex cliques with negative weights. For example, con-
sider a Markov chain over three variabl&s — X, — X3. The candidate hyperedge
(1,2, 3) has negative weight, equal to minus the mutual information betwgeand X ;.

However, it is important to note that the weight is monotoné: dryperforests. I.e. the
weight of ak-hyperforest is greater or equal to the weight of any sub-hyperforest, and so

the weight of the difference between two nested hyperforests is non-negativ@. tet:
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be nested hyperforests, then:

YRR ST S

heG\G heG heG!
= Z EX;LNPT [108; Qgh(Xh)} - Z EXhNPT [108; Ggh(Xh)}
heG heG!
= Z Ex,~ps [log Qgh(Xh)} - Z Exv,~pg [log Cgh(Xh)}
hea heG!
log n (X
=Ex.p, llog L ngbh( h)]
HheG’ ¢h(Xh)
p
e EﬁG ].Og AG]
PGH
= H (Pgl|Per) = Hpr (G]IG') > 0 (5.20)

where H (-||-) is the, always non-negative, information divergence between distributions,
and we usepr (G||G’) to denote the information divergence between the projection of

P7T on the respective graphs.

As suggested before, this monotonicity is not surprising, since by (5.17), the difference
in the weights of the hyperforests represents the difference in their minimum information
divergence from the target distribution. But any distribution that is a Markov network over
(' is also a Markov network over, and so the projected distribution ov@must be closer
to PT than the projected distribution ovéY, yielding a smaller information divergence to

G, and so by (5.17) requiring the weight to be higher.

Note that these arguments hold only if bathand G’ are acyclic. Otherwise (5.17)
does not hold, and the weight of the graph does not represent any meaningful information
guantity as the product of the factors does not multiply out to a valid distribution function,

let alone the projected distribution.

Negative weights may pose a problem to many algorithm, and this monotonicity helps
resolve this problem. The algorithms we present do not work well with general negative

weights, but we show that they work properly with weight functions which are monotone
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H (PT)|G)

—H(P)

> W

Negative Cross Entrggy(/]jﬁ))g Likelihood

Figure 5-2:H (P"||G) = (Epr [log0] — H(PT)) — > neCliquac) n>1 Wh

on k-hyperforests.

Overall picture of the decomposition

In any graph, all single vertices will form cliques, and these would be taken in any case.
The sum of these weights correspond to the negative cross entropy of the empty graph
Epr [log 0] and represent the base negative cross entropy, from which we only climb up.
This is represented in Figure 5.3.2. We would like to minimize the information divergence,
and so to maXimiZQheCquue(G),mm wy, = Hpr (G||0), which is the gain in negative

cross entropy relative to the empty graph.
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5.3.3 The reduction

We have shown how the problem of projecting a distribution onto Markov networks of
bounded treewidtlk (i.e. onto triangulated graphs of bounded clique gize 1) can be
reduced to finding a maximum weighthyperforest for a weight function which is mono-
tone on acyclic hypergraphs. If we knew how to find such a maximum weight hyperforest,
we would choose a weight function assigning to each possible cligué more then a

single vertex, the weight
w(h) = —H(PT(X))) = Y ww (5.21)

defined recursively on all sets of vertices, including singletons. This weight can be calcu-
lated immediately from the empirical marging}. The infrastructure graph of the maxi-
mum weight hyperforest would then be the projected graph.

As discussed in Section 2.3.2, the problem of finding the maximum likelihood Markov
network for a given sample can be formulated as a projection problem of the empirical

distribution, and so can be reduced in the same way.

5.3.4 The complexity of the reduction

n

The reduction yields a maximum hyperforest problem of ¢iZe“*!), as (kJrl

) weights
must be specified. As we have not considered the representation of the target distribution,
we cannot discuss the complexity of the reduction in terms of the problem ’size’, as this
of course depends on the representation. We do not want to go into the issues of input
representations of the distribution, except for one special case which originally motivated
us: when the distribution is an empirical distribution of some sample.

The “input representation” in this case is the sample itself, of GigEn log m), where
T is the sample size and is the number of possible outcomes for each random variable.
And so, if £ is part of the input, the reduction ot polynomial in the sample, as it is

exponential ink while the sample is independent of it. Afis constant, then the reduction
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is polynomial.

As the number of parameters in the resulting model, and so also the complexity of
calculations on the resulting distribution, is also exponentia,irt is tempting to hope
that the reduction is at least polynomial in the resulting number of parameters. This is
essentially the output size of the learning problem, and practically also a bound on the
input size, as one would generally not have less data then there are parameters to learn.
However, this isnot the case. The number of parameters is c@l{mm’““). Thus if

n >> m, the reduction is supper-polynomial even in the resulting number of parameters.

5.4 Reducing The Maximum Hypertrees Problem to the

Maximum Likelihood Markov Network Problem

It is also interesting to note that for every non-negative weight function of candidate hy-
peredges of a fixed size, there exists a distribution that yields weights proportional to this
set of weights. l.e. the problem of finding a maximum hyperforest, at least for a non-
negative weight function, can be reduced to projecting a distribution to Markov networks
of bounded treewidth. Furthermore, a “small” sample can be constructed, with an empiri-
cal distribution yielding weights which are close enough to these weights, conserving the
exact structure of the projected graph. Il.e. the problem of finding a maximum hyperforest
(for non-negative weights) can also be reduced to finding a maximum likelihood Markov

network for empirical data.

This reduction is weak, in the sense that the sample size needed to produce specific
weights is polynomial in th@alue of the weights (and so exponential in the size of their
representation). Still, using hardness results from Chapter 5, this pseudo-polynomial re-
duction is enough in order to show NP-hardness of finding a maximum likelihood Markov

networks of bounded treewidth, even for treewidth two.
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5.4.1 A distribution yielding desired weights

v

For a given weight functiom : (.,

) — [0,1) on candidate edges of size exactly- 1,
we will consider each vertex as a binary variable, and construct a distribdtioner these
variables. The distribution will be such that using it as a target distribution in (5.21) will

yield weightsw’ proportional tow.

We will assume, without loss of generality, th&tw(C) < 1.

n

The distributionP,, will be a uniform mixture of(kJrl

) distributionsP”, one for each
h e (k‘jl) Each such”” will deviate from uniformity only by a bias of(h) in the parity

of the variables irh. We show below how to seleefh) according taw(h). Explicitly:

L) 4f 32, cp 0 IS 0dd

1—7r(h) :
s 1D en 7o iSeven

Py(r) = (5.22)

This results in a mixed distributio#,, in which all marginals over at mogt variables

are uniform (and therefore have zero corresponding weight), while the marginal over a

n

k+1

hyperedge: of size exactlyk + 1 has a bias ob = (T(h)). The corresponding weight is

therefore

w'(h) = —H(Xn) = > _ w(h)

h'Ch
= —H(Xp) = Y veh(-H(X,))
= |h| x 1 — H(X))

= (k+1)+ Y _ Py(xn)log Py(xs)

Th

1+0 1+0b
_ k k
=(k+1)+2 et 108 i T2 or

=(k+1)+1((1+b)log(l+b)+ (1 —0b)log(l—b)) — (k+1)

= 1((1+ B)log(1 +b) + (1~ b) log(1 — b)) (5.23)

1-b 1-0b
log i
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Using the natural logarithm and taking the Taylor expansion:

=1 ((1 +0) > b (1 - b)Z%(—by)

i=1 i=1

=L L O(bY) = ——r () + O(r(h)") (5.24)

(5.25)

Choosingr(h) to be approximately/w(h) (or more precisely, the inverse function of
(5.23)) yields weights proportional to.

5.4.2 A sample yielding desired weights

We have shown a distribution that produces weights proportional to any desired non-
negative weight function. However, since this the biases in this distribution might be ir-
rational (and in fact if the weights are rational, the biases must be irrational, being the
inverse of (5.23)), there is no finite sample that has such a distribution as its empirical

distribution.

However, we will show a finite sample that results in weights which are close enough
to the desired weights, such that the optimal structure is conserved. Given a rational weight
function w, we will show a sample with empirical distributiafi, that produces weights
w"(h) = w'(h) + e(h) such thatw' are proportional tav, and), |e(h)| < 6 where) =
MiN,, by w (h) 2w (he) [W'(h1) — w'(h2)] is the granularity of the weights. This is enough,
since thew’ and w” weights of the optimal hypergraph will be withiy less then the

possible difference due to taking edges with differing weights.
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Constructing a sample with rational biases

We first show how to construct a sample which yields an empirical distribution similar
in structure toP,,, with rational biases ot + 1 candidate edges. l.e. for any mapping
h — % < 1 (we assume a common denominator) we construct a saf'b’%plrdth empirical
distribution ]5% such that for anyh| < k, the empirical distribution is uniform, and for

|h| =k + 1:

~

14+ —ko— 2= IVIf >, x, is odd
G

k+1

(5.26)

i
Q

1— Q(”’,; ] 2-VIf Y L, x, is even
k+1

Unlike the exactP,, parities of larger sets might be very biased. However, these do not
effect the resulting weights when searching for widthlarkov networks.

We will build the sample as a pooling cQLil) equisized sample§%, one for each
candidate edge of size+ 1. Each suchS‘% will be constructed front) equisized blocks
of (k + 1)-wise uniformly independent sample vectors. . Butfaf these blocks, we will
invert the elements of appropriately so as to set the parityxgfto be odd for all sample
vectors in the block. Note that this can be done without disrupting the uniformity of any
other set of vertices of size at mdst- 1. The resultings% will be uniform on all subsets
of size up tok + 1, except for a bias o?% on h. Pooling these together yields the desired
empirical distribution.

Using [AS91],k + 1-wise independent blocks can be created of 8iz€?, yielding a
total sample size o(kil)Q%"f“ = 0(Qn?**2), whereQ is the common denominator of

the rational weights.

Approximating the weights with rational biases

We now know how to construct a sample with specifiational biases. However, the
biases corresponding to rational weights are not rational. We first show how to achieve

approximate weights (i.e. with total error less then their granularity) with biases which
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are square roots of rationals, and then show how these can be approximated with actual
rationals.

We saw in 5.25 that the biases of the mixture components should be approximately
the square root of the desired weights. Using bia&gs = m yields the following

weights (wheré' = @ < 1):

(1)

=2 even
b? 1,
Loy Ly
2 =4 evenz(Z N 1)
< v + ) Ly
2 i(i —1)
i=4 even
. f In4 ]_b,4
2 2
1
= ———w(h) +e(h) (5.27)
2(:11)
(5.28)
Where:
D e = e(h)
h h
_ ( n )ln4— 1 (max w)?
n 4
U2 ()
1
0 93 max w? (5.29)
(k+1
(5.30)

Recall that we would like)_, [e(h)| < ¢ whered is the smallest difference between
weights. Since) scales linearly with the weights, by scaling the weights down we can
achieve this goal.

But since the weights might not be square rationals, taking their square root might
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produce irrational weights. This can be overcome in a similar fashion, by using a rational

approximation to the square root.

5.4.3 The reduction and hardness

We saw how to reduce the maximum hypertree problem to the maximum likelihood Markov
network problem, with the sami, and even if the variables are all binary. Note that
our reduction is only pseudo-polynomial, as the sample size needed is polynomial in the
value of the weights. However, since in Section 4.2 we show that the maximum hypertree
problem is NP-hard, even with zero/one weights, this is enough to show NP-hardness of the
maximum likelihood Markov network problem. The hardness result holds even$op

(1-hypertrees are regular trees, for which the problem is tractable).

5.5 Approximating the Maximum Likelihood

In this thesis, we show that although finding the maximum weight bounded tree width graph
is hard, an approximate solution can be found in polynomial time. That is, a graph with
weight within a constant multiplicative factor of the optimal graph. We discuss how this
type of approximation for the combinatorial problem translates into a sub-optimal solution
for the maximum likelihood learning problem, as well as the general projection problem.

Recall the decomposition of the information divergence that was presented in Figure
5.3.2. When the target distribution is the empirical distribution, the negative cross entropy
relative to it is exactly the log likelihood. Figure 5.3.2 can be viewed as representing the
maximum log likelihoods of Markov networks ovér(i.e. fully independent models),
Markov networks ovelz and and the maximum attainable log likelihood (the negative
entropy of the empirical distribution). The weight of the graph is then the gain in maximum
log likelihood versus the fully independent model. A constant factor approximation on
the weight of the graph translates to a constant factor approximation on the gain in log
likelihood.
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As can be seen in Figure 5.3.2, a constant factor approximation for the weight of the
graph doesot provide for a constant factor approximation on the information divergence
itself, but only for the reduction in information divergence relative to the fully independent
model. Although approximating the likelihood itself is usually not of great interest (since it
is usually of very high magnitude, and so even the fully independent model might be within
a small factor of it), approximating the information divergence might be interesting, even
when the target is an empirical distribution. For example, if the empirical distribution is
“almost” a narrow Markov network, then approaching the optimal information divergence

to within a small factor is much stringer then approximating the gain.

5.6 Discussion

The reductions we have shown between the maximum likelihood Markov network problem
and the maximum hypertree problem are quite satisfactory in many ways. Both reductions
are L-reductions, and are sufficient for studying approximation algorithms and hardness.
Neither reduction, however, is strictly a polynomial reduction. Reducing Markov networks

to the maximum hypertree problem produces a number of weights which is exponential
in k, though the reduction is polynomial for a fixed width. The reverse reduction is only
pseudo-polynomial. This pseudo-polynomiality does not prevent us from attaining hard-
ness results, though it is interesting to see if the dependence on the value of the weights can
be reduces.

Perhaps the more interesting gap is that we only show a reduction for the maximum
hypertree problem with non-negative weights. Showing a reduction for monotone weight
functions is an interesting open problem. Such a reduction is not necessary for showing
the hardness results, but rather addresses a different interesting question: is the monotonic-
ity constraint the true constraint on the weight function ? Or is there perhaps a stronger
constraint that might aide in approximating the maximum hypertree.

Another interesting question is whether these techniques can be extended also to other
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measures of quality, beyond maximum likelihood, that incorporate in them also structural

penalties.



Chapter 6

Windmills

Hypertrees are complex to work with and maximize. This is mostly due to the global
nature of the characterization of hypertrees. There is no ’local’ criterion for hypertrees
or even hyperforests. By a local criterion we mean some constant-size prgpever a

finite number of vertices, such that a graph is a hypertree (or hyperforegthdfds for all
subsets of vertices i (V).

As was discussed in Section 3.3, hypertrees can be defined using several criteria, in-
volving decomposition, strong connectivity and the number of hyperedges. But all three of
these properties are global and cannot be decomposed into local properties. We now intro-
duce a simpler graph structure that can be used to capture much of the weight in hypertrees,
and has a more local nature.

Let 7(V') be a rooted tree on the verticks with rootr and depth at most (i.e. the
longest path beginning atis of lengthk edges). The tre& (1) defines the following
hierarchy of verticesr is at level zero. For any other vertexc V, consider the path from

r tov. Vertexv is said to be on thievelequal to the edge-length of the path.

Definition 6.1 (Windmill). A k-windmill based on a rooted tré€(1") with depth at most
k is a hypergraph whose edges are the paths radiating fram{’, i.e.

HWV)=A{h,={r,... ,v}isapathinT}.

91
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Figure 6-1: A 2-windmill

If all maximal paths radiating from in 7" are of lengthk edges, thert is said to be a

regulark-windmill.

A k-windmill is a hyperforest with tree-structuf&( /) where the hyperedges, re-
place each vertexin T, i.e. T(H) = {{hy, hy }|{v,v'} € T}. Its Graham reduction fol-
lows the Graham reduction of leaves of the tfedn particular, a&-windmill has treewidth

at mostk.

1-windmills are star graphs, and in some ways windmills are hyper-generalizations of
star-graphs. Figure 6 shows a 2-windmill (which resemble physical windmills). Note that
in a weighted 1-tree, there is always a disjoint set of stars that captures at least half of the

weight of the tree. We will show that this can be generalized also for hypertrees.

Definition 6.2 (Windmill Farm). A k-windmill-farmis a hypergraph that is a disjoint col-

lection ofk-windmills.

Since each windmill is a hyperforest of width at masta windmill-farm is also a

hyperforest of width at mosi.
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6.1 The Windmill Cover Theorem

In this section, we show that a hyperforest always has a windmill farm that captures a cer-
tain fraction of its weight. For simplicity, we first concentrate on the case of nhon-negative

weights.

Theorem 6.1 (Windmill Cover Theorem). For any hyperforest? (V') of widthk and non-
negative weight functiom(-), there exists &-windmill-farm F (V') such thatw(H) <

(k + 1)lw(F).

Proof. We use a labelling scheme followed by a random selection scheme in which each
hyperedge “survives” to be included in the windmill with probability at leg&t + 1)!.

This means the total expected surviving weight is at legdt) /(k + 1)!, as desired. We

then show that the surviving edges form a windmill.

The scheme is based or{/a+ 1)-coloring of the vertices, such that no two vertices in
the same hyperedge have the same color. The existence of such a coloring can be proven
by induction on the Graham reduction of the hyperforest: V') be a hyperforest with
leafv, and recursively colof (V' — v). The leafv has at moskt neighbors (other members
of its unique maximal edge) i/ (V' — v), leaving a color available far. This inductive
proof specifies an order in which the vertices get colored. This is the reverse of the order in
which vertices were Graham reduced. The order of coloring imposes on each hyperedge a
(possibly partial) permutation of the colors used—namely, the order in which those colors
were applied to vertices of the hyperedge.

From this ordering we construct our windmill farm. Choose a random permutation
(ordering)~ of the colors. We define a windmill farrf,. to contain all hyperedges whose
color permutation (ordering) is consistent with For hyperedges witlk + 1 vertices,
consistent simply means equal; for a hyperedge with fewer vertices, consistent means that
the colors thatlo appear in the hyperedge form a prefix of the permutation

The permutationr of colors can be interpreted as a mapping between the colors and

the k£ + 1 levels of the windmill-farmF’,; each vertex now goes to the level of its color.
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Each vertex of the first colar(1) is the root of a windmill. Each vertexof color (i + 1)
is at leveli, with its parent being the vertex colored:) in v's twig (the unique maximal
hyperedge containingwhenv was removed). Note that if the twig does not have a vertex
of color 7 (i) then no hyperedge containings in F;: if v € h € F}, then the partial color
permutation imposed anis at least an+ 1-prefix of r and so must have a vertexcolored
7(i) which was colored before. But if « was colored before, then it was reduced after
v, SO it should appear in's twig.
To show thatF is indeed a windmill-farm over this tree structure, it is enough to show
that for everyv € h € F; of color n(i + 1), the vertex of colotr(7) in A is the parent of
v in the windmill's rooted tree. Since the permutationiofgrees withr, a vertexu of
color (i) exists inh and is colored before. The vertexu is thus inv’s twig, and so i’s
parent.
The windmill-farm F, might cover additional edges that were not explicitly selected
by the scheme above, but since these have non-negative weight, the weight is at least the
weight of the edges selected. A hyperedge of simeselected to be i, if it is consistent
with the permutation; this happens with probability+ 1 — »)!/(k + 1)! > 1/(k + 1)!.
Since the weight of edges is non-negative, the expected value contributed by any edge of

weightw to F, is at leastv/(k + 1)!. O

In fact, windmills can achieve the/d! approximation “simultaneously” for every edge

of sized:

Corollary 6.2. For any hyperforest (V') of width%, and non-negative weight functian
let wy be the total weight of hyperedges of sizéso that the total weight of the hypertree

is > wy). Then there exists &windmill-farm contained ind of weight at leasd _ w,/d!

Proof. We perform the above coloring and random selection, but include an edgeifin
its colors appear in the same ordetrriras a prefix or as an arbitrary subsequence. Then the
probability that we include an edge @fvertices isl /d!. The parent ob of colorw(i + 1)

is selected to be the vertexirs twig of color 7 (), for the maximumy < i, for which the
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twig includes such a vertex.

Note that under this selection criterioh; does not cover any additional edges not

explicitly selected, and sB [w(F})] = > wy/d! exactly. O

Recall that we are actually interested in weight functions that are not necessarily non-
negative, but rather are monotone on hyperforests. Even for such weight functigf¥s;a

1)! fraction can still be achieved:

Corollary 6.3. For any hyperforest (V') of width £ and monotone weight functian(-),
there exists &-windmill-farm F'(V') such thatw(H) < (k + 1)lw(F).

Proof. Perform the same selection process as in Theorem 6.1, but analyze the weight of the
resulting windmill farm differently. Instead of considering the weights of individual edges,
consider the weighg(v) gained when un-reducing That is, the difference in weight of

the hyperforests before and after reducingsince every edge will be “gained” at exactly

one reduction) |, ¢(v) = w(H). Furthermore, the gain is a difference in weight between

two hyperforests, and so non-negative.

To analyze the expected weight Bf, start from an empty hypergraph and add vertices
according to their coloring (reverse reduction) order, keeping track of the weight of the
sub-windmill-farm induced by, on vertices colored so far. Each colored vertex adds
some non-negative gain. If the color permutation of a vertex’s twig is a prefixtbien the
complete twig and all its subedges are covered by the farm, and the gained weight is exactly

g(v). Since this happens with probability at leastk + 1)!, E [F] > w(F)/(k+1)!. O

In Chapter 7 we will devise an approximation algorithm for finding a maximum weight
windmill farm, and use the above result to infer that the maximum weight windmill farm,

which is a hyperforest, is competitive relative to the maximum weight hypertree.
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6.2 Hardness of Approximation of Windmill

We now show that the maximum windmill forest problem is also NP-hard. In fact, we show
that it is max-SNP-hard, implying that there exists saime 0 such that it is NP-hard to
find a windmill forest with weight within a multiplicative factdr+ ¢ from the maximum
windmill forest. Unfortunately, this does not imply any hardness of approximation for the

maximum hypertree problem.

Theorem 6.4. For fixedk > 1, the maximum weight-windmill problem (and even the

maximalk-windmill problem for unit weights) is max-SNP hard.

Proof. A reduction from max-2SAT OJ

6.3 Discussion

We introduced a family of graphs, windmill farms, and showed that there always exists
such a windmill farm that capturdg (k + 1)! of the weight of a hyperforest. Is this figure
tight, or is the true approximation ratio of windmill farms to hyperforests tight ?kFerl
the ratio is indeed tight, but the answer is unknown for wider hyperforests. Note that even
for k£ = 1, a weighted tree is necessary in order to show the tightness, as for uniformly
weighted trees there is always a disjoint set of stars that captyiBesf the weight.

Another interesting problem is using the hardness results on windmills to show hardness

of approximation for hypertrees.



Chapter 7

Approximation Algorithms

In this chapter we present approximation algorithms for the maximum windmill-farm prob-
lem. As a consequence of the Windmill Cover Theorem (Theorem 6.1), these algorithms
are also approximation algorithms for the maximum-hypertree problem.

In order to gradually introduce the reader to our approximation techniques, we first
present, in Section 7.1, an approximation algorithm for a restricted case of the maximum
2-windmill-farm problem. In particular, we give an integer program whose solution is the
maximum 2-windmill-farm. We then show how to round the solution of the correspond-
ing relaxed linear program. In Section 7.2 we generalize the techniques and describe an

algorithm for a windmill-farm of any width.

7.1 An Approximation Algorithm for 2-Windmills

In this section, we present some of our basic ideas in an algorithm for the 2-windmill
problem. Recall that a 2-windmill is based on a tree with a root, a child layer, and a
grandchild layer. We assume that there are weights only on triplets (not pairs or singletons),
but this assumption can be made w.l.0.g. by adding an additional vertexfor every pair
(v1,v2) and settinguo(vy, va, Uy, +,) = w(vy, v2) While all other weights involving the new

vertexu,, ,, are set to zero.

97
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7.1.1 Guessing Levels

For simplicity, we reduce to the case where the level of each vertex (root, child, or grand-
child) is fixed. We do so by assigning each vertex to a random level (probability 1/3 for
each). Any triple that appears in ordet v, v5 in the optimal solutions will have its 3 ver-

tices given the correct layers with probability/3)® = 1/27. Thus in expectation at least
1/27 of the weight of the optimum solution will fit the random level assignment, so we
expect there will be a solution that obeys the level assignment and has 1/27 of the optimum

weight.

7.1.2 An Integer Program

Given the levels, we specify an integer linear program corresponding to the maximum 2-

windmill problem. The variables in the IP are as follows:

e Avariablex,, ,, for every first-level node, and second-level nodg, which will be

set to 1 ifv, is a child ofv,.

e A variablez,, ,, ., for every triplet of first-, second- and third-level nodes, respec-

tively, which will be set to 1 ifv; is a child ofv,, andw, is a child ofv,.

The integer program is then:

max : : IULU%USU}ULU%US
v1,vV2,V3

(Vvg) Zl’vl v = 1
(Vv3) val vowy = 1

V1,02

(Vvl, V2, US) xvl,vg,’l)g S CC’l)l Vo
(vvlu Vg, U3> Ly ,v2,03 Z 0
(Vo1,v2) Ty > 0
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The first two equalities specify that each vertex is only on one path from the root, and the
first inequality specifies that; cannot be on path;, vy, v3 unlesswv, is descended from
v;—we will refer to this as requiring consistency of the paths.

Solving an integer program is not a straight-forward task. However, if we relax the
requirement that the variables be integers, and allow them to be fractional numbers, we get
a linear program, described by the same inequalities. All feasible solutions to the integer
program are also feasible solutions to the linear program, and so the optimal solution to
the linear program is at least as good the solution to the integer program. Such an optimal
fractional solution (to a linear program) can be found in polynomial time. We would now

like to round the fractional solution, without loosing too much of its value.

7.1.3 Rounding

We now show how to round a fractional solution, giving up a factor of less than 2 in the
objective function value. Our rounding uses the natural probability distribution arising from
the LP constraint tha} |, =, ., = 1; this suggests that, can choose a parent vertex by
selectingv; with probabilityz,, ,,. However, this does not show how to choose parents for
the third level vertices. We will, however, show that a simple two-step process works: first
we round the second-level vertices, and then we let each third-level vertex make a greedy
choice based on the previous level's rounding.

More precisely, the rounding to an IP solutiorfrom an LP solutionz will be per-

formed in two steps:

e For eachw,, assign on&,, ,, = 1 at random according to the distribution given by

T, 0p- The rest will receive value zero.

e Foreachy, assignon€,, ,, ., = 1 with the maximumw,, ,, ,, among thosév;, vs)

for which z,, ,, = 1. The rest will receive value zero.

Note that the above rounding outputs a feasible IP solution. To analyze its value, we
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will consider each third-level vertex, and its contribution to the integer solution value, sep-

arately.

Lemma 7.1. Consider a set of items such that iterhas weightw,. Suppose that each
item: becomes “active” independently with probability where> " p; < 1. LetV be the

maximum weight of any active item. Then

EW) > (1/2) Y wp,

Proof. By induction. Assume there areweights ordered such thaty > w; > - - w,.

Note that with probabilityp, item O becomes active and we gét = w,, while with
probability1 — p, we get the maximum of the “subproblem” involving the remaining items.
By induction, the expected maximum active weight not including item O has value at least
(1/2)>,.0wip;. Observe also tha},_,w;p; is (at worst, since_ p; < 1) a weighted

average of items less than, so has value at mos,. It follows that

E[W] = powo + (1 — po)(1/2) Zpiwi

>0

= powo + (1/2) sz‘wz‘ —po(1/2) Zpiwi

>0 >0
> powo + (1/2) sz‘wz‘ —po(1/2) (ZPz) wo
1>0 1>0
= (1/2)powo + (1/2) sz'wz‘
>0
as claimed. N

This lemma can be applied to our rounding scheme. Fix a particular third-level vertex
v3. Its contribution to the fractional LP objective valueEvm Ly vy 03 Wor vg,05- NOW
consider the rounding step. Vertexis permitted to choose parent péir, v,), contribut-
ing weightw,, ., .., t0 the objective, ifv, chooses parent;, which happens with proba-

bility z,, v, > Ty, 0.0s- This almost fits the framework of the lemma with the variables
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p; settox,, ., ,. There are two differences but they only help us. First, we may have
Tuy s > Loy wmwss NOWEVeET, this can only increase the odds of choosing a large weight.
Second, the variablesare not independent. However, they are negatively correlated: the
failure to choose some pair, v, can onlyincrease the chance that we instead choose some
other pair. This again only increases the expected contribution above the independent case.
It follows from the lemma that we expect a contribution of at |€85t., v, vs Ty .05 /2

from vertexuvs.

This analysis holds for all third-level variables, and combining over all of them yields
an approximation ratio af between the rounded solution and the LP solution. The weight

of the farm is thus:

w(rounded IP farm > w(LP fractional farm/2
> w(maximal farm conforming to imposed levelg
> w(maximal farm) /27 /2
> w(maximal hypertreg/6/27/2 = w(maximal treg/324

7.2 The General Case

Now we turn to the algorithm for general treewidth. We formulate a more general integer
program, for any widtht, and weights which are monotone on cliques, which does not
assume that the assignment to levels is known. Then we give a more general rounding
scheme—one that essentially applies the technique of the previous section one layer at a
time. Some care must be taken to re-optimize the LP after each layer is rounded so that

rounding can be applied to the next layer.
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7.2.1 A General Integer Program

Consider a variable, for each simple path it/ of length between andk. Settingz, to
one corresponds to havingas a rooted path in a tree corresponding to a windmill in the
solution (in particular, the first node ir), is a root). We use the notatigp| for the length
of (humber of nodes in) a path apd ¢, or p - v to denote the concatenation of two paths,
or a path and vertex.

The weightw, of a path is the gain in weight of adding the last vertexpdb the
windmill. Thatis, forp = g-v, w, = >, w(h) = >_,, w(h). Since the weight function
is monotone on cliques of size at mas# 1, it follows that the weights of paths are non-
negative.

We first investigate the following integer program for the problem:

max Z TpWp
p
(vpa U) Lpwv S Lp

(7.1)
(Vo) ) mg, <1

(Vp) € {0,1}

Both p in the first inequality and in the second inequality vary over simple paths of
length up tok, including the empty path. The first inequality requires consistency of paths,
i.e. that every prefix of a path in the windmill is also in the windmill, as we did in the
2-windmill case. The second inequality constrains that there is only a single path from the
root to any vertex, i.e. that paths do not converge, but rather form a tree.

We would now like to relax the integer program (7.1) to a linear program, so that we
can solve the linear program and try to round the solutions. But instead of just relaxing the
variablesrz, to non-negative real values, we replace the two inequalities with a single uni-
fied inequality. The unified inequality agrees with (7.1) for zero-one values, but is stronger

(more constrained) for fractional values. This constrains the fractional feasible polytope to
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be smaller, and so closer to the integral polytope, while still containing it. This reduces the
integrality gap, and will aid us in rounding.

The linear program has a single equation for each simple path 0 < [p| < k.
The variablez, (for the empty path of length 0) appears in the linear program only for

uniformity of structure, but is set to one:

(7.2)

Both p andq in the inequality vary over simple paths of length upktin the graph,
including the empty path. Since we are only concerned with simple paths of length up to
k+1,v € pis not allowed, and the sum is only over paths of length at rhestp| that
are disjoint fromp - v. Note that since only simple paths of length ugte 1 have positive
weight, allowing additional variables and equations for non-simple or longer paths will not
affect the optimal solution.

The key constraint of (7.2) requires that the total fractional quantity of paths that share
a prefixp and terminate at is less than the fractional quantity of pathThis is a stronger

inequality than the inequalities in (7.1):

e For anyv and|p| > 0, since all variables are non-negative, and focusing ene,

the inequality implies:,,., < xz,, the first inequality of (7.1).

e Forp=¢, wegety_ z,, <1, the second inequality of (7.1).

For integer valueq0, 1}, there can only be a single path leading to each vertex. Thus
for anyp, v, there can only be ongwith non-zeroz,.,.,, and so the inequality reduces to
Zp.qo < T, Which follows from the path consistency. Therefore, on such values, (7.1) and

(7.2) are equivalent.
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7.2.2 A Rounding Scheme

Suppose now that we relax the integrality constraint and find a fractional solution. We

propose to round each level iteratively, in a fashion similar to the previous section.
e Start with a solution:® to the LP, and no rounded variables
e Fori =1tok:

1. For each node, the LP constrains thasz —1 < 1. So choose a single

pv
path ending irv, or perhaps no path, such that each path is chosen with
probabilityx;;}. If pis of lengthi — 1, setz,., < 1. In any case, for all other

pathsp of length: — 1, setz,,.,, < 0.

2. Re-solve the LP, fixing all variables corresponding to paths of length uifpto
be constants equal to their rounded valiieJakez® to be the solution to this

1th modified LP.

Note that since, ,_, , ;. may be less than one, it may be that no path ending at
vertexv will be rounded to 1 at some iteration. This corresponds to deciding that the vertex
is at a higher level, or perhaps does not appear in the farm at all.

After the k iterations, only variables corresponding to length 1 paths remain. The
optimal solution to this LP is integral and can be found greedily, just as the last layer was
found greedily in the 2-windmill algorithm.

This rounding method is a generalization of the rounding presented in the previous
section fork = 2 and predetermined level assignments. The first iteratien) is trivial
for predetermined levels, since all first-level vertices have only a single choice of ancestor
(the unique level O vertex). The greedy assignment of the third level vertices in the second
stage of rounding in the previous section exactly re-solves the linear program after rounding
the second level nodes.

Note that the rounding step (1) itself preserves the expected value of the solution, but it

might make the present solution infeasible. We show that after each step of rounding there
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is still a reasonably good feasible solution. To show this, we present an explicit solution to

the ™ modified linear program.

Theorem 7.2. Thei' rounding iteration decreases the optimum LP value by a factor of no

worse thanl /8(k + 1 — 7).
Proof. At the ith iteration, consider the following solutian? to the modified LP:

e For each variable,,., with |p| = 14, if Z, = 0, setx% — 0 (this is mandated by the
LP). If z, = 1, set

1—1
() Lpq 73
ST (7-3)

o For each node: if 3~ ., > 1, then set all variables for paths in whictappears
to zero (i.e. for allp, ¢ setz'’),., — 0). We say that the nodeverflowedand so all

the paths it appeared on wegrerged

We claim that the solution presented satisfies the LP constraints (since we purge any
variables that violate the constraints) and that its value is at @gﬁt:) of the value
before the iteration. The optimum LP value can only be better. Before proving this claim
rigorously, let us present the intuitive reasoning for % of the value is retained.

Consider a particular path- ¢, where|p| = i. The rounding scheme above rounds
the prefixp to 1 with some probabilityy, and to 0 otherwise (also zeroing the path), but
it also scales the path- ¢ by 1/4(k + 1 — i)« if it does not zero it, so thexpected
valueof z,., after rounding is just,.,/4(k + 1 — 4). If that path has weight,.,, we
would hope that it continues to contribute a4(k + 1 — ) fraction of its contribution to
the starting solution. This will be truenlessit is purged—that is, participates in some
infeasible constraint. This happens if one of the verticeg ehds up with too large an
“incoming value” on the fractional paths ending in it. To bound the probability of this
event, conditioned on rounding, to one, we analyze the total incoming path-values into

vertices ofq. If this value is less than one, then surely no vertex overflows. We show
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that the expected value of this total, conditioned on roundintp one, is less than half,
and so with probability at least half there is no overflow.

To overcome the conditioning on rounding, for each vertexv on ¢, we partition
paths ending i into those that shaneas a prefix and those that do not. For those that do
sharep, the LP constraint fofp, v) guarantees an incoming value of at mm;stl before
scaling, and sa/4(k + 1 — ) after scaling. For paths not sharipgthe conditioning just
decreases the expected contribution, and the LP constraiatif@uarantees an expected
total incoming value of at most/4(k + 1 — i) (after the scaling). Summing these two
contributions over alk + 1 — i vertices ofg yields an expected total incoming value of one
half. l

It follows by induction that the value of the (integer valued) LP optimum in the final
step is no worse thah/8*k! times the original LP value. We therefore solve the windmill
forest problem with an approximation ratio Qéfg and the hypertree problem with a ratio

1
Of srreeny-
We return to proving that the explicit solutiaff’ to the rounded LP, is in fact a feasible
solution retainingm of the value, in expectation:

For any: > 1, let 2'~! be a solution of theé — 1th linear program, and® be the
solution of theith linear program as specified in Theorem 7.2. For uniformity and brevity
of notation, we will include in these solutions also variables substituted as constants from

7. We will show thatz(® is a feasible solution and that:

E [Z a:](f)wpkzz(i_l)] > Z:El(f_l)wp (7.4)
p

p
Feasibility of solution

We investigate the LP constraints for every, and show that they are all satisfied:

e For|p| > i andv, writep = r - s where|r| = i:
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— If 2, = 0 or one of the vertices op overflowed, then all variables in the con-

straint are nulled:

Zmpqv: <0 z(j)

— Otherwise, the constraint is a rescaled version the corresponding constraint in

the (i—1)th LP, with some of the variables on the left-hand-side possibly nulled:

Dot = D g
q q
i—1

T .
< rsqh
- g 4k +1—d)xi!

i—1
Ly

Ak +1— i)zl

= o=

IN

e Forp = ¢, purging overflowing nodes guarantees that:

I
q

e Forl < |p| < i: the value ofr, is already rounded, and so the constanappears

in the LP.

— If , = 1 then using the constraint env, which we already saw is satisfied:
S s Tt <1

—If 7, = 0 and|p| < i then this constraint already appeared in the previous

iteration’s LP, and since zero-valued variables do not get their values increased
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in the rounding process, it is still true that:
Zaz%m =0=ux,
q

If z, = 0 and|p| = ¢ then we have just set ait(ﬂ] to zero and the above still
holds.

Expected value of solution

We will show that for every:

xz—l

E [xg)w—l} > m (7.5)

For |p| < i,z = 2%~ and (7.5) holds. Fojp| = i:

E [+ Y] = E [£,]2"] = o
and (7.5) holds.

We will denote byz(®) the value assigned tel) before possible purging, i.e. in the
first step of the explicit rounding. All the expectations and probabilities in the following
discussion are implicitly conditioned ari—:. We will analyze the expected value for any

2 such thatp| = i:

E[z()] = Pr(i, =1)Pr(qisnotpurgetii, = 1)E |2{")|z, = 1 A g is not purge%i
1—1
= 2" 'Pr(qis not purgefs, = 1) o
p TP

_ Pr(gisnotpurget, = 1)z, 6
B 4(k+1—1) (7.6)

To bound the probability of purging consider a vertex € ¢, and analyze the expected
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value of paths ending in, before checking for overflow. We will partition all such paths
to paths which have as a prefix, and paths which do not havas a prefix. For paths that

havep as a prefix:

i—1

. xT
E [ () 17, — 1] < prv__ 7.7
Z xp~T-U|IP — zr: 4(k' + 1 — 7;)1?;1 ( )

r

r Ty
A(k 4+ 1 —d)ai-t
ai—1), 1

< =
= Ak +1—d)zit T Ak + 1)

(7.8)

To bound (7.8) we used the linear program constrainpfor

For all other paths, not that conditioning &= 1 can only decrease the probability of

their prefix to be chosen in the rounding step:

Y E [xg%;)y:z»p — 1} < S E [xg%’g]
s wio prefixp s wlo prefixp
Ly
- Z Ak +1—1)
it 1

- 4(ki1;¢)§4(k+1—z‘) (7.9)

The last inequality follows from the linear constraint fQp.

Combining (7.8) and (7.9) we get:

, 2 1
E (@) 5 =1 < —
[;x” & ] “4k+1—d) 20k+1—4)

To show that with reasonable probabilitgnof the vertices iy overflow, we will sum
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the above over all vertices in [p - ¢| < k+ 1 and|p| =i and sojg| < (k+ 1 —i):

/ k+1—i 1
E g =1 < T2 77 _ =
[E:E:%WWP ]‘—%k+1—w 2

veq t

We can now use Markov’s inequality to bound the probability of purging

Pr(qis not purge¢lz, = 1) = Pr(no vertex on; overflowgz, = 1)
. i 1
> Pr (sz'g”) <1z, = 1> > 5
veq t
Combining (7.6) and (7.10) to prove (7.5):
(i i Thq
Sl me Wy (7.10)

24(k+1—1i) 8(k+1—1i)

7.3 Discussion

We presented an integer program for the maximum windmill farm problem, and showed
an iterative rounding algorithm for obtaining an integer solution from a fractional solution,

retianingw of the value of the fractional solution. Whether this ratio reflects the

1
k+1)!
true integrality gap, or can be improved on, is an open question.

7.3.1 Iterative rounding

We suggested re-optimizing the LP after each iteration. But in the proof, a feasible (but
not necessarily optimal) LP solution is explicitly constructed at each step. Thus, it is not
technically necessary to re-solve the LP at each step—one can achieve the approximation
ratio after just a single LP solution.

Note that there is a fundamental difference between the LP re-solving rounding, and



7.3. DISCUSSION 111

the explicit rounding for which we prove the approximation ratio: The explicit rounding
takes the optimal fractional solutiar?, and using only this solution, constructs an integer
solutionz. After initially solving the LP, the input to the problem (the weights) are no
longer needed, andis determined solely by°. It follows that for any fractional solution
to the LP, there exists an integer solution such thaef@ryset of non-negative weights, it
is within 5 of the fractional solution. This is achieved by haviagz] = Si—(;,
However, in the iterative LP re-solving method, the weights are used each time the LP is
re-solved. The rounded solutianmight be different, even though the fractional optimum
2V isidentical. This is, in fact, what we did for the cdse- 2, when the values for the third
layer were rounded according to their weights, so as to maximize the weight. £az,
rounding the third level according to the values themselves, disregarding the weights, we
would be able to prove an approximation ratio (for the IP) of anfly, instead of the /2
we achieved using the weights.
Is is conceivable that a better approximation ratio can be proven also in the general case,
when the LP is properly re-solved at each iteration, using the knowledge of the precise

objective function.
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Chapter 8

Conclusions and Discussion

In this thesis, we have presented a graph algorithmic problem, the maximum hypertree
problem, that is equivalent, in a rather strict sense, to the maximum likelihood Markov net-
work problem. Hardness and approximability results on the maximum hypertree problem
extend also to the maximum likelihood Markov network problem,

We believe that the maximum hypertree problem is an interesting and important com-
binatorial optimization problem, worthy of further study and analysis. We show how maxi-
mal hypertrees can be approximated by windmill-farms. We analyze the hardness of finding
maximal windmill-farms, and present an approximation algorithm that achieves a constant
approximation ratio for constant tree-width. But a wide gap remains between our hardness
results for the maximum hypertree problem, and the approximation algorithm we suggest.

As was argued above, the exponential dependence of our algorithm’s running time on
the target tree-width is unavoidable and non-problematic. However, an important open
guestion is whether, given that we are willing to spend this much time, we can achieve an
approximation factor that is a constantlependentf k. We believe that the analysis of
our algorithm’s performance can be improved, but that the explicit rounding method will
have an undesirable dependence on the tree-width. A direct analysis of the value of the

iterative linear programs might yield a qualitative better approximation ratio.
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