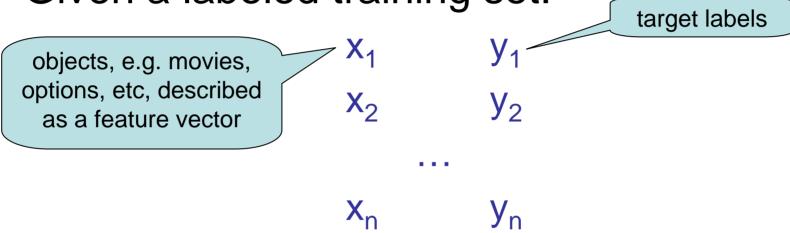
Loss Functions for Preference Levels: Regression with Discrete Ordered Labels

Jason Rennie
Massachusetts Institute of Technology

Nati Srebro
University of Toronto

Supervised Learning Setting (Regression)

Given a labeled training set:



Learn a mapping

$$f(x) \mapsto y$$

in order to predict labels on future data:

Target Labels

- Common types of target labels:
 - Binary (positive/negative; ⊗ ⊚)
 - Multiclass (discrete, unordered categories)
 - Real valued

Discrete ordinal labels

"undesirable", "indifferent", "preferred"

Background: **Binary Regression**

+1 / -1 labels

Labeled training set

$$(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$$

Learn

$$z(x) = w'x + w_0$$

such that

$$z(x)>0$$
 when $y=+1$,

and
$$z(x)<0$$
 when $y=-1$

minimizing

$$\sum_{i} loss(z(x_i);y_i)$$

$$loss(z;y) = \begin{cases} 0 & yz > 0 \\ 1 & otherwise \end{cases}$$

Focus on linear regression as an example. Same ideas apply to any other family of predictors

Background: Binary Regression

+1 / -1 labels

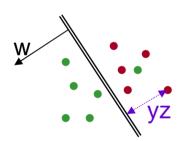
Labeled training set

$$(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$$

Learn minimizing

$$z(x) = w'x + w_0$$

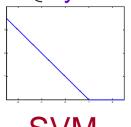
$$\sum_{i} loss(z(x_i); y_i) + \lambda |w|^2$$



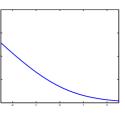
$$loss(z;y) = \begin{cases} 0 & yz > 1 \\ 1 & otherwise \end{cases}$$

Focus on linear regression as an example. Same ideas apply to any other family of predictors

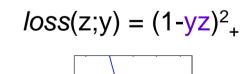
$$loss(z;y) = \begin{cases} 0 & yz > 1 \\ 1-yz & otherwise \end{cases}$$



$$loss(z;y) = log(1+e^{-yz})$$



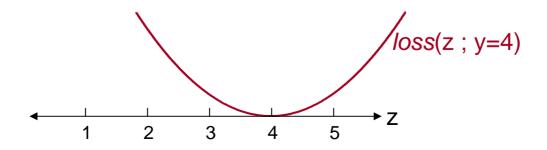
logistic regression



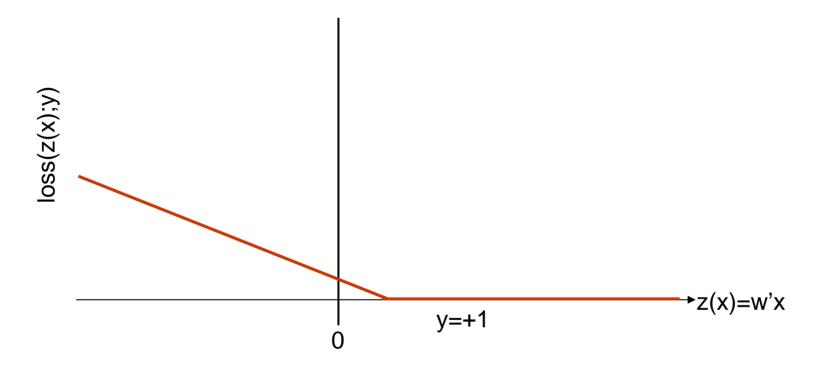


Discrete Ordinal Labels

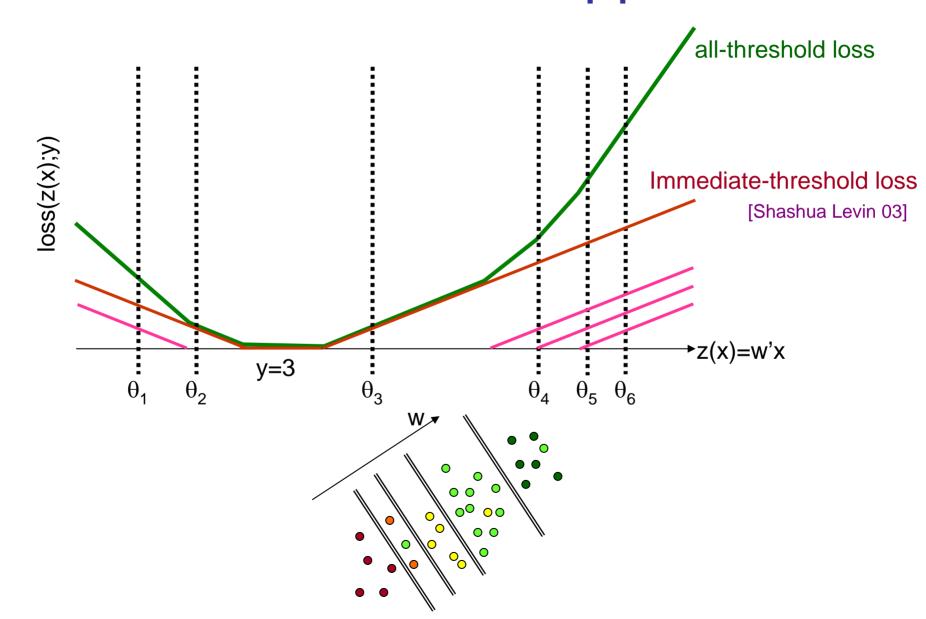
- Instead of y = -1 or +1, we have y = 1, 2, 3, ..., k
- Treat as *k* multiple unrelated classes, learn separate classifier for each value?
- Treat as a real valued objective, minimize, e.g. sumsquared error?



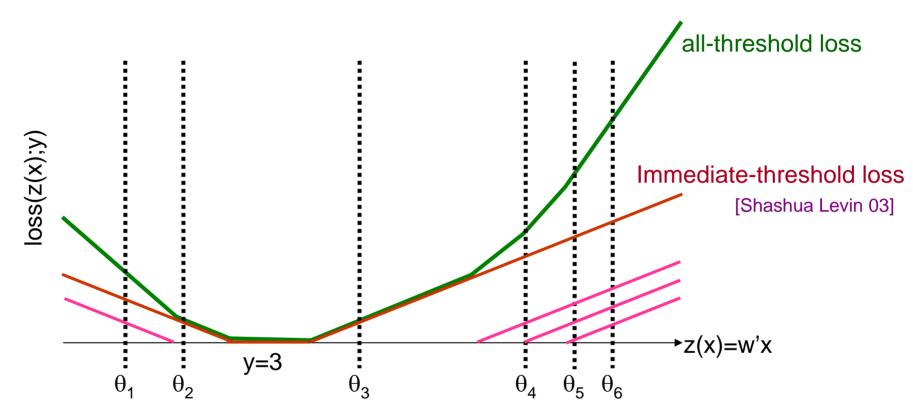
Threshold based approach



Threshold based approach

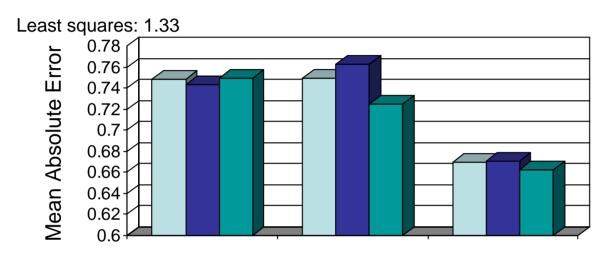


Threshold based approach



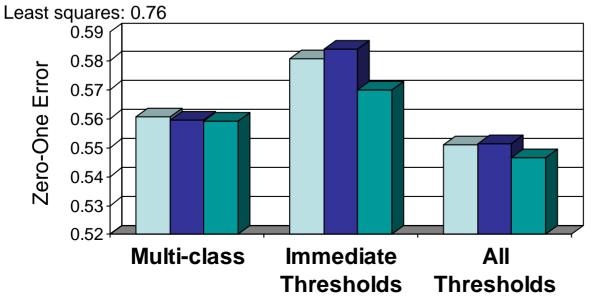
- All-threshold loss is a bound on the absolute rank-difference
- For both constructions:
 - can use any penalty function (e.g. logistic) instead of hinge
 - learn per-user θ 's (different users use ratings differently)

Results on MovieLens Data



- ☐ Truncated Square Error
- (Smoothed) Hinge
- Logistic

All-Threshold vs others significant at p<10⁻¹⁶

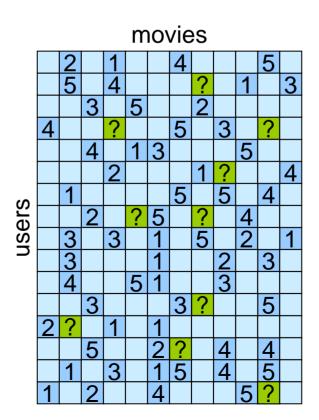


All-Threshold vs others barely significant at p<0.14

Beyond Linear Regression

- Same constructions can be used whenever a loss function is needed:
 - Kernel methods (SVMs)
 - Collaborative prediction (matrix completion)

[Srebro Rennie Jaakkola NIPS'04] [Rennie Srebro ICML'05]



Other Loss Functions

- Generalization to the logistic motivated by probabilistic generative model (see paper)
- Similar generative model with additive Gaussian "noise" [Chu Ghahramani 2004]

Alternative approach:

- Map ordinal labels to "<" relationships [Herbrich et al 2000]
 - quadratic number of relationships

Summary

 Studied different constructions for loss-functions for discrete ordinal labels

 All-threshold construction best, much better then treating as multiclass or using squared error

 Can be used whenever a (scale sensative) loss function is needed