
Methods and Experiments With Bounded Tree-width Markov
Networks

Abstract

Markov trees generalize naturally to bounded
tree-width Markov networks, on which ex-
act computations can still be done efficiently.
However, learning the maximum likelihood
Markov network with tree-width greater than
1 is NP-hard, so we discuss a few algorithms
for approximating the optimal Markov net-
work. We present a set of methods for train-
ing a density estimator. Each method is spec-
ified by three arguments: tree-width, model
scoring metric (maximum likelihood or min-
imum description length), and model rep-
resentation (using one joint distribution or
several class-conditional distributions). On
these methods, we give empirical results on
density estimation and classification tasks
and explore the implications of these argu-
ments.

1. Introduction

Density estimation is a useful tool that can be applied
to a variety of tasks involving inference, classification,
and prediction. The problem is to train a model in-
volving a set of interdependent variables given data
points drawn from some fixed distribution. Markov
networks use undirected graphs to explicitly represent
the dependencies (Pearl, 1997). The qualitative graph
structure gives an intuitive explanation of the model
for humans while the quantitative parameters provide
the model with rigor.

In general, learning the best model with respect to
a metric such as Bayesian score is NP-hard (Chick-
ering et al., 1994), but the problem is tractable if
we restrict our family of models. For instance, Chow
and Liu (1968) showed that the maximum likelihood
Markov tree can found exactly in polynomial time.
Their work has spurred many generalizations that per-
mit more dependencies: mixture trees (Meila & Jor-
dan, 2000), thin junction trees (Bach & Jordan, 2001),

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

polytrees (Dasgupta, 1999), and large node Chow-Liu
trees (Huang et al., 2002a).

In this paper, we focus on one specific generalization
of Chow and Liu (1968)’s work: bounded tree-width
Markov networks (Srebro, 2000). Learning the max-
imum likelihood bounded tree-width Markov network
reduces to the problem of finding the maximum weight
hyperforest in a hypergraph, which is NP-hard even for
tree-width 2. Section 3 discusses various algorithms for
approximating the maximum hyperforest.

The maximum likelihood (ML) score is not suitable for
model selection because it will always add the maxi-
mum number of hyperedges to the model. We consider
using an alternative scoring metric based on minimum
description length (MDL) (Rissanen, 1987) for regu-
larization.

If all variables are treated equally, then we would train
a single joint model over all the variables. But if there
is a class variable, it might be advantageous to train
a separate model for each class. In that case, we can
either force each class-conditional model to have a sin-
gle shared graph structure or let them have varying
structures. We consider all three of these model rep-
resentations.

Thus, there are three arguments that specify a
method for training a density estimator: tree-width
(0, 1, 2, . . .), scoring metric (ML or MDL), and model
representation (joint, conditional with shared struc-
ture, or conditional with free structure). We present
the first set of comprehensive experimental results on
a large number of empirical data sets for each of these
methods (Section 6).

2. Bounded tree-width Markov
networks

2.1. Overview

This section reviews bounded tree-width Markov net-
works (Srebro, 2000). A Markov network associated
with a graph G specifies a probability distribution PG.
The n vertices (variables) of G are connected by edges,
which represent allowable dependencies between vari-
ables. A variable v, conditioned on its neighbors, is
independent of all other variables.

The distribution PG of the Markov network can be de-
composed into the product of potential functions over
the cliques1 in G:

PG(x) =
∏

h∈Cliques(G)

φh(xh) (1)

A word about notation: if x is a vector of the values
of all the variables, then xh is the vector of the values
of the variables in h. If G is triangulated2, exact in-
ference and computation of marginal probabilities are
possible. If the maximum clique size k+1 of G is small,
then relatively few parameters are necessary to specify
PG. If these two properties are satisfied, then G has
tree-width k.

Every tree-width k graph G has a covering k-
hyperforest H whose hyperedges are exactly the cliques
(not necessarily maximal) in G. From now on, we will
speak of hyperedges in H rather than cliques in G.

In that case, each potential function φh can be ex-
pressed purely in terms of the marginal probabilities
over xh, completely independent of the structure and
marginals elsewhere in the hyperforest in the following
way:

φh(xh) =
Ph(xh)∏

h′(h φh′(xh′)
(2)

The parameters that specify the Markov network PG =
PH are the marginal probabilities Ph over the hyper-
edges h ∈ H. If the hyperforest H is fixed, and
our data points are drawn independently from some
fixed target distribution P̂ . The maximum likeli-
hood Markov network PH over H is the one in which
Ph = P̂h for all hyperedges h ∈ H.

In the following two sections, we show how the two
scoring metrics, ML and MDL, can be expressed as
a sum of weights over the hyperedges of a hyper-
forest (times a constant). Then to find the best k-
hyperforest, we can compute in advance all the weights
wh of the candidate (≤k)-hyperedges, and feed these
abstracted weights into an algorithm for finding the
maximum weight hyperforest. It is crucial that the
computation of wh depend only on P̂h.

Finding the best bounded tree-width Markov network
with respect to a scoring metric reduces to finding the
maximum weight hyperforest with the corresponding
weights. Section 3 will discuss algorithms for finding
the maximum weight hyperforest.

1A clique is a fully-connected subgraph.
2A graph is triangulated if there are no minimal cycles

of more than 3 edges.

2.2. Weights for likelihood

The likelihood of PH with respect to P̂ is given by the
following:

L(H) = −D(P̂ ‖ PH)
= EX∼P̂

[
log PH(X)

]
= EX∼P̂

[
log

∏
h∈H

φh(Xh)
]

=
∑
h∈H

EXh∼P̂h

[
log φh(Xh)

]
,

∑
h∈H

wh

In the last step, we defined the weight wh of an hyper-
edge h to be a function of the target marginal prob-
abilities over h. If h is a single vertex v, then wh is
−H(Pv), the negative entropy of the marginal proba-
bility distribution with respect to variable v. If h is an
edge {u, v}, then wh is I(Xu;Xv) = H(Xu)+H(Xv)−
H(Xu, Xv), the mutual information between random
variables Xu and Xv.

All weights except those of single vertices are mono-
tone, meaning that the weight of any hyperforest H
is at least the weight of any sub-hyperforest H ′ ⊂ H.
The single vertices always have negative weight and
are included in any hyperforest by default.

2.3. Weights for minimum description length

Since the weights for the likelihood scoring metric are
monotone, the maximum weight hyperforest will al-
ways be a hypertree. However, the hypertree may con-
tain more hyperedges than warranted, and is bound to
overfit the data, even though we are already limiting
the tree-width.

To regularize the model for model selection, we can
find the bound tree-width Markov network with the
minimum description length (MDL) (Rissanen, 1987;
Bouckaert, 1994). The description length of PH with
respect to m data points drawn from P̂ is as follows:

DL(H) = mD(P̂ ‖ PH) +
1
2
NH log m

= mD(P̂ ‖ PH) +
1
2

log m
∑
h∈H

Nh

= −m
(∑

h∈H

wh −
∑
h∈H

Nh

2m
log m

)
= −m

∑
h∈H

(
wh −

Nh

2m
log m

)
, −m

∑
h∈H

w′
h

NH is the number of parameters in H, which can be
decomposed into Nh over all hyperedges h ∈ H. Let
Nh = NumParams(Ph)−

∑
h′(h Nh′ .

NumParams(Ph) is the number of parameters needed
to specify the marginal probabilities of Ph. If h con-
tains d discrete variables, and the variables can take
on n1, n2, . . . , nd different values, respectively, then
NumParams(Ph) =

(∏d
i=1 ni

)
− 1.

Clearly, minimizing the description length is equiva-
lent to maximizing the weight of the hyperforest. Note
that these weights w′

h are no longer monotone, since
we have introduced a penalty on each hyperedge that
is related to the number of parameters associated with
it.

3. Maximum hyperforest algorithms

Now we turn our attention to finding the maximum
weight hyperforest in a hypergraph. For tree-width
1, the problem is essentially the standard maximum
spanning tree problem (Cormen et al., 1989). Note
that if we use MDL, we might have negative weights
on some edges, in which case we might end up with a
forest instead of a tree.

The two most common algorithms for finding the max-
imum spanning tree are due to Kruskal and Prim. The
former takes a global approach by greedily adding the
maximum weight edge that does not form a cycle. The
latter takes an incremental approach by starting at a
vertex and greedily connecting new vertices to the cur-
rent tree to maximize the weight of the resulting tree.

3.1. A global algorithm

Srebro (2000) presents a randomized approximation
algorithm that finds a hypertree whose weight is at
least 1/(8kk!(k +1)!) times the weight of the optimum
hypertree (assuming weights are monotone). The al-
gorithm first approximates the maximum weight wind-

mill farm in the hypergraph. A windmill farm is a spe-
cial kind of hyperforest, so it can greedily extended by
adding hyperedges, as long as we maintain acyclicity.
To facilitate the greedy Kruskal-like extension, (Liang
& Srebro, 2003) developed a data structure for detect-
ing hypercycles.

We can consider a simpler algorithm that does the
greedy extension starting with an empty hyperforest
instead of a windmill farm. This algorithm has no
theoretical guarantees. But we tested these two vari-
ants on both artificial and real data and found that in
practice, the algorithm based on windmill farms per-
forms no better. This is not too surprising given the
weak lower bound.

3.2. An incremental algorithm

Instead of taking a global approach to the prob-
lem, consider incrementally constructing a hyperfor-
est3 from some initial hyperedge (Malvestuto, 1991).
At each iteration of the algorithm, we choose a new
vertex v to connect to the current hyperforest via a
hyperedge h, as to maximize the weight of the result-
ing hyperforest. h must be the union of v and some
(not necessarily maximal) hyperedge h′ in the current
hyperforest. Note that if h′ is the empty hyperedge,
the new hyperedge h would just be {v}, which breaks
away from the current hyperforest. When h is added,
all sub-hyperedges of h not already in the hyperforest
must also be added.

The incremental algorithm has the computational ad-
vantage that we do not need to detect hypercycles,
which is a complicated task. The algorithm always
maintains a hyperforest, since it is adding hyperedges
in reverse order of a Graham reduction.

One might expect that the global algorithm to per-
form better than the incremental algorithm because
it makes choices that are in some sense more globally
wise. But surprisingly, based on empirical evidence,
exactly the opposite is true.

Finally, we can incorporate limited backtracking into
these greedy algorithms to increase quality. Our back-
tracking variant of the incremental algorithm tries
each of the 100 heaviest hyperedges as the starting
hyperedge. It chooses the best resulting hyperfor-
est. This simple modification increased the hyperforest
weight a modest amount. This is the variant that we
will use from now on.

3This hyperforest will always be a hypertree if all
weights are monotone.

4. Model representation and
classification

If we are simply want a density estimator and no vari-
able is distinguished as a class variable, then we can
find a joint distribution to model the data using the
techniques discussed in Section 3. However, in clas-
sification tasks, the class variable is distinguished. It
might be beneficial to model each class separately and
then combine all the class-conditional models into our
final model. For notational purposes, let us split a
data point x into the class y ∈ Y and the values of all
other variables z. The three model representations are
detailed below.

Joint (J) We model the data directly using a single
Markov network trained on all our training data:
P (x) = P (y, z).

Class-conditional with free structure (Cf) We
build a separate model Py(z) for each class
y using only the data with the correspond-
ing class. Our final model is described by
P (x) = P (y, z) = P (y)P (z|y) = P (y)Py(z).
Each Markov network Py(z) may have a different
structure.

Class-conditional with shared structure (Cs)
Like Cf , we build Py(z) for each class, but now,
we want to enforce that they all have the same
structure. To accomplish that goal, for each class
y, we compute the vector of weights wy over all
hyperedges not involving y. We find the best
shared hyperforest using a convex combination
of these weights: w =

∑
y∈Y P (y)wy. Cs is

a compromise between J and Cf in that the
parameters are specific to each class, but the
structure is global.

We can directly use a probabilistic model as a classifier
by doing inference on the missing class variable. Given
input z, we output argmaxyP (y, z). Such a classifier
has the advantage that if other variables in z have
missing values, they can be inferred using the same
machinery.

Note that for the J representation, only the vertices
directly connected to the class variable are relevant for
classification.4

5. Related work

Each method shall be denoted by its three arguments
as f -R-k, where k is the tree-width, R is the model rep-

4These variables are called the Markov blanket.

{MDL,ML}-0-J Choose the most common label
{MDL,ML}-{Cf ,Cs}-0 Naive Bayes (NB)

ML-Cf -1 Chow and Liu (CL)

ML-Cs-1 Tree-Augmented Naive Bayes (TAN)

Table 1. Relating previous work to our methods.

resentation, and f is the scoring metric. Notice that
changing an argument affects the complexity (number
of parameters) of the model: higher tree-width results
in more complex models than lower tree-width; ML is
more complex than MDL; Cf is more complex than Cs

which is more complex than J . The simplest model is
MDL-0-J , and the most complex model is ML-3-Cf .

Some of these methods are old news. Three methods
that have been Table 1 shows how those methods fit
into our framework.

Friedman et al. (1997) discusses the three non-trivial
methods in Table 1 as well as a algorithm that builds
a Bayesian networks by adding edges based on MDL
score. An issue with the algorithm is that it would stop
adding edges if variables were pairwise independent,
but there are dependencies involving more than two
variables. Our algorithm considers all k-hyperedges
at once, so we can capture up to (k + 1)-th order de-
pendencies. Of course, we could still fail if we were
trying to learn the parity function over all n variables,
in which case any proper subset of the n variables ex-
hibit independence, but the n variables are dependent.

Huang et al. (2002a) builds a classifier from ML-k-
Cf . To construct the hyperforest, they first finds the
maximum likelihood Markov tree and then greedily
contracts edges into large nodes of maximum size j.
thus constructing a (2j−1)-hyperforest. In their ex-
periments, they considered j = 3.

Semi-naive Bayes models are hyperforests in which all
the hyperedges intersect at exactly the class variable.
They form a subset of ML-k-Cs. Huang et al. (2002b)
uses uses linear programming relaxation to approxi-
mate the maximum likelihood model.

6. Experiments

6.1. Synthetic data: recovering a hidden
hypertree

We generated a random tree-width k Markov network
T ∗, and we sampled sampled 10,000 data points from
it (all variables are binary). From this data, we tried
finding the best k′-hyperforest from the data. For
k′ = k, both algorithms were able to recover the hid-
den hypertree. For k′ > k, MDL was able to recover
the structure, while ML overfit the data with a model
whose tree-width was k′, whereas the true tree-width

k 0 1 2 3 4 5
LL -29.54 -16.89 -15.26 -14.99 -14.75 -14.48

Table 2. Test log-likelihood for ML-k-J on the ALARM
network. The log-likelihood (negative entropy) of the
ALARM network is -13.26. Numbers are averaged over
10 trials.

is k.

6.2. ALARM network

In another experiment, we generated a training set
of 10,000 data points and a test set of 2,000 data
points using the Bayesian network ALARM (Hecker-
man et al., 1995). Our goal was to approximate this
network by using a bounded tree-width Markov net-
work. In this case, ML found a better network than
MDL. We evaluate the quality of a network by com-
puting the log-likelihood on the held out test data.
The test log-likelihood increased with the tree-width
(Table 2).

6.3. MNIST handwritten digit recognition

The MNIST data set includes 28 × 28 4-bit grayscale
pixels, which we downsampled to 14× 14. We trained
on the 60,000 examples and tested on the remaining
10,000. Due to time and space limits, we only tried
tree-widths 1 and 2. ML-Cf -2 achieves 5.845% clas-
sification error, while Chow and Liu achieve 6.875%
error. Here, having a separate model for each class
(digit) helps because the relationship between pixels
is different for each digit. Indeed, the structures of the
Markov networks for each digit roughly outlines the
digit.

6.4. UCI machine learning data sets

We tested our algorithm on 28 data sets from the UCI
machine learning repository (Blake et al., 1998), sum-
marized in Table 3.

In a preprocessing step, numeric variables that had at
least 10 distinct values, were discretized into 5 inter-
vals, with each interval containing the same number of
points.

Although hyperforests have the ability to deal with
data points with missing variables, we decided for sim-
plicity to designate “missing” as an ordinary value that
a variable can take on. We apply smoothing by adding
a pseudo-count of 0.001 to each possible configuration
for each hyperedge.

For each data set, we ran 50 trials, except connect4
(10 trials) due to time complexity. In each trial, we

Data set n m |Y | r

adult 15 (6 N, 3 M) 48842 2 8.9
australian 15 (7 N, 0 M) 690 2 3.9
breast 10 (8 N, 1 M) 699 2 5.2
car 7 (0 N, 0 M) 1728 4 3.6
connect4 43 (0 N, 0 M) 67557 3 3.0
crx 16 (6 N, 7 M) 690 2 4.9
dna 181 (0 N, 0 M) 3186 3 2.0
ecoli 8 (5 N, 0 M) 336 8 4.6
flare 13 (0 N, 0 M) 1066 6 3.7
german 21 (3 N, 0 M) 1000 2 4.0
glass 10 (9 N, 0 M) 214 6 5.1
heart 14 (5 N, 0 M) 270 2 3.6
hepatitis 20 (6 N, 15 M) 155 2 3.6
ionosphere 35 (32 N, 0 M) 351 2 4.7
iris 5 (4 N, 0 M) 150 3 4.6
letter 17 (16 N, 0 M) 20000 26 6.2
lymphography 19 (0 N, 0 M) 148 4 3.3
mushroom 23 (0 N, 1 M) 8124 2 5.2
nursery 9 (0 N, 0 M) 12960 5 3.6
pima 9 (8 N, 0 M) 768 2 4.7
satimage 37 (36 N, 0 M) 6435 6 5.0
segment 20 (16 N, 0 M) 2310 7 4.8
shuttle 10 (9 N, 0 M) 58000 7 5.2
soybean 36 (0 N, 34 M) 683 19 4.2
splice 61 (0 N, 0 M) 3175 3 4.0
tic-tac-toe 10 (0 N, 0 M) 958 2 2.9
vote 17 (0 N, 16 M) 435 2 2.9
waveform 22 (21 N, 0 M) 5000 3 4.9
wine 14 (13 N, 0 M) 178 3 4.9

Table 3. Statistics about the data sets. n is the total num-
ber of variables. In addition, we give the number of nu-
meric variables with at least 10 different values (N) and
the number of variables with missing values (M). m is the
number of data points, |Y | is the number of classes, r is
the average number of possible values per variable.

randomly split all the data points into a training set
containing 90% of the points and a test set containing
10%. We trained each algorithm on the training set
and measured 4 values: likelihood on the training set,
classification error on the training set, likelihood on
the test set, and classification error on the test set.

Tables 4 shows the average log-likelihood of the test set
over all the data sets; Table 5 shows the classification
error on the test set. In case of a tie, the most simple
method is chosen.

To measure overall quality of each method, we aver-
aged the measurements across all datasets (Table 6).
On the training data, the most complex model family,
ML-Cf -3, is clearly the best for both maximizing log-
likelihood and minimizing classification error. How-
ever, it overfits the data, and performs badly on the
test data.

On the test data, MDL generally performed better
than ML. For maximizing the log-likelihood, Cf is bet-
ter than J or Cs for every data set (fixing the other
two method arguments), since Cf allows a more fine-
grained modeling of class-specific dependencies. For
minimizing classification error, Cs outperformed the
other two representations. Although it can be useful
to model each class separately, Cf suffers because the
data spread very thin across all the classes. For den-

Data set Best method Best MDL-Cf -3 CL TAN

adult MDL-Cs-2 -18.47 -18.47 -18.61 -18.61
australian MDL-J-2 -19.60 -19.87 -20.30 -20.28
breast MDL-Cs-1 -11.71 -11.71 -12.46 -12.13
car MDL-Cs-1 -11.16 -11.18 -11.20 -11.16
connect4 ML-Cf -3 -21.34 -21.46 -22.51 -22.52

crx ML-J-1 -21.85 -21.96 -23.42 -23.52
ecoli MDL-J-2 -10.66 -11.26 -12.90 -12.16
flare MDL-Cf -3 -8.91 -8.91 -9.37 -9.23

german MDL-J-1 -29.61 -29.83 -30.35 -30.52
glass MDL-J-1 -18.29 -19.54 -23.73 -22.46
heart MDL-J-1 -19.98 -20.09 -22.43 -22.06
hepatitis MDL-Cs-1 -24.72 -25.10 -31.87 -30.83
ionosphere MDL-Cf -1 -57.00 -57.00 -58.72 -59.08

iris MDL-J-1 -6.78 -7.14 -6.95 -6.95
letter ML-Cf -3 -18.19 -19.41 -19.62 -20.55

lymph. MDL-J-1 -22.16 -23.36 -27.44 -26.30
mushroom ML-Cf -3 -13.14 -13.89 -16.02 -17.54

nursery MDL-Cf -2 -13.91 -13.91 -13.94 -13.96

pima ML-J-1 -15.53 -15.72 -15.91 -15.80
satimage ML-Cf -2 -29.47 -30.81 -30.86 -31.74

segment MDL-Cf -3 -19.47 -19.47 -19.51 -20.03

shuttle ML-Cf -3 -6.19 -6.27 -6.72 -6.86

soybean MDL-Cf -1 -18.25 -18.29 -21.50 -22.62

splice ML-Cs-1 -114.30 -114.62 -114.49 -114.30
tic-tac-toe ML-Cs-2 -13.73 -13.97 -14.40 -14.36
vote ML-J-1 -15.28 -15.77 -15.78 -15.79
waveform MDL-Cf -2 -38.66 -38.66 -38.80 -38.83

wine MDL-J-1 -25.69 -26.24 -33.07 -32.29

Table 4. The test log-likelihood is given for the best
method out of the ones we tried, MDL-Cf -3 (which had
the overall best performance), Chow and Liu (CL), and
Tree-Augmented Naive Bayes (TAN).

Data set Best family Best MDL-Cs-3 CL TAN

adult MDL-J-3 0.15 0.15 0.15 0.15
australian MDL-J-1 0.12 0.13 0.16 0.16
breast MDL-Cs-3 0.02 0.02 0.03 0.03
car ML-Cs-3 0.02 0.06 0.05 0.05
connect4 ML-Cs-3 0.19 0.19 0.24 0.24
crx MDL-Cf -1 0.13 0.14 0.20 0.20

ecoli MDL-Cs-3 0.15 0.15 0.22 0.22
flare MDL-J-3 0.25 0.26 0.26 0.27
german MDL-Cs-0 0.24 0.24 0.28 0.28
glass MDL-Cf -3 0.33 0.36 0.35 0.41

heart MDL-J-3 0.17 0.18 0.24 0.23
hepatitis ML-J-1 0.15 0.15 0.16 0.18
ionosphere MDL-Cf -1 0.08 0.09 0.09 0.09

iris MDL-J-3 0.03 0.04 0.07 0.04
letter ML-Cf -2 0.22 0.30 0.27 0.29

lymph. MDL-Cs-3 0.18 0.18 0.23 0.36
mushroom MDL-Cs-3 0.00 0.00 0.00 0.00
nursery ML-Cs-3 0.02 0.06 0.05 0.06
pima MDL-J-3 0.24 0.24 0.27 0.26
satimage MDL-Cs-3 0.14 0.14 0.15 0.14
segment ML-Cf -1 0.08 0.09 0.08 0.10

shuttle MDL-Cs-3 0.02 0.02 0.02 0.02
soybean MDL-Cf -1 0.05 0.07 0.06 0.13

splice ML-J-2 0.03 0.05 0.05 0.04
tic-tac-toe ML-Cs-3 0.08 0.16 0.26 0.23
vote ML-J-1 0.04 0.07 0.07 0.07
waveform MDL-Cs-3 0.19 0.19 0.19 0.19
wine MDL-Cf -1 0.02 0.02 0.06 0.06

Table 5. The test classification error is given for the best
method out of the ones we tried, MDL-Cs-3 (which had
the overall best performance), Chow and Liu (CL), and
Tree-Augmented Naive Bayes (TAN).

Method train LL train error test LL test error

ML-Cf -0 (NB) -25.82 0.142 -26.44 0.159

ML-Cf -1 (CL) -21.14 0.084 -24.75 0.153

ML-Cf -2 -18.91 0.051 -28.71 0.206

ML-Cf -3 -16.54 0.036 -30.72 0.295

ML-Cs-1 (TAN) -21.56 0.089 -24.73 0.161
ML-Cs-2 -19.32 0.063 -28.19 0.243
ML-Cs-3 -16.94 0.043 -30.20 0.336
ML-J-1 -23.27 0.164 -24.48 0.177
ML-J-2 -20.88 0.130 -26.89 0.175
ML-J-3 -18.41 0.097 -29.92 0.206

MDL-J-1 -23.61 0.170 -24.37 0.182
MDL-J-2 -23.02 0.155 -23.82 0.168
MDL-J-3 -22.92 0.149 -23.73 0.163
MDL-Cs-1 -22.46 0.109 -23.76 0.139
MDL-Cs-2 -22.31 0.106 -23.62 0.135
MDL-Cs-3 -22.27 0.105 -23.58 0.134
MDL-Cf -1 -22.05 0.106 -23.54 0.139

MDL-Cf -2 -21.90 0.102 -23.39 0.136

MDL-Cf -3 -21.87 0.102 -23.35 0.137

Table 6. Performance for a few model families averaged
over all data sets. The best figures are bolded.

sity estimation, the overall best method is MDL-Cf -3,
which performed at least as well as TAN and CL on 25
out of the 28 datasets. For classification, the overall
best method is MDL-Cs-3, which performed at least
as well as TAN and CL on 21 out of the 28 datasets.

However, out of the 8 data sets containing at least 5000
examples, ML-Cf -2 performs better than MDL-Cf -3
in test log-likelihood (-20.21 versus -20.36), and MDL-
Cf -3 performs better than MDL-Cs-3 (0.127 versus
0.132). With more data sets, we can afford to transi-
tion to more complicated models, from Cs to Cf and
from MDL to ML.

The graphical model helps us understand the relation-
ships in data. For example, on the splice data set, the
variables form a linear sequence of DNA base pairs. It
is expected that dependencies will be spatially local,
and the class variable to have interactions mostly with
the base pairs around the splice site. The hypertree
structure of ML-J-3 reflects this.

7. Discussion

We introduced several methods by varying the tree-
width, scoring metric, and model representation. We
demonstrated how Markov networks with tree-width 2
and 3 can improve performance in both density estima-
tion and classification. Increasing tree-width allows us
to capture more dependencies between the variables,
but can lead to overfitting with the ML scoring metric.
MDL largely prevents this problem.

We could also consider Bayesian model averaging as it
is applied in Meila and Jordan (2000; 2003) to trees.
We can formulate a decomposable prior over hyper-
trees as for trees. To further improve density estima-
tion and classification performance, we may wish to

model continuous variables with a Gaussian distribu-
tion (Friedman et al., 1998), and use inference to fill
in the missing values of query points prior to classifi-
cation.

As we increase tree-width in order to model the data
more accurately, we pay a severe penalty. The time
and space complexity of our algorithm increases expo-
nentially with the tree-width. From m data points, we
construct a complete k-hypergraph of all O(nk+1) can-
didate hyperedges. A major bottleneck is construct-
ing this hypergraph from the data, which requires
O(mnk+1) time. Pelleg and Moore (2002) suggests
sampling a small portion of the training data to get
an initial estimate of edge weights and sampling more
data to refine the estimate as necessary. They showed
that it drastically reduces the running time while sac-
rificing a little quality. Adapting this technique to hy-
pertrees would bring bounded tree-width Markov net-
works closer to the practicality of Chow and Liu, while
also allowing us to explore higher tree-width.

Acknowledgements

References

Bach, F., & Jordan, M. (2001). Thin junction trees.
Advances in Neural Information Processing Sys-
tems.

Blake, C., Keogh, E., & Merz, C. (1998). Uci reposi-
tory of machine learning databases.

Bouckaert, R. R. (1994). Minimum description length
principle.

Cerquides, J., & de Mantaras, R. (2003). Tractable
bayesian learning of tree augmented naive bayes
classifiers.

Chickering, D. M., Geiger, D., & Heckerman, D.
(1994). Learning bayesian networks is np-hard
(Technical Report MSR-TR-94-17). Microsoft Re-
search.

Chow, C. K., & Liu, C. N. (1968). Approximating
discrete probability distributions with dependence
trees. IEEE Transactions on Information Theory,
IT-14, 462–467.

Cormen, T. H., Leiserson, C. E., & Rivest, R. L.
(1989). Introduction to algorithms. MIT Press.

Dasgupta, S. (1999). Learning polytrees. Proceedings
of the Conference on Uncertainty in Artificial Intel-
ligence.

Friedman, N., Geiger, D., & Goldszmidt, M. (1997).
Bayesian network classifiers. Machine Learning, 29,
131–163.

Friedman, N., Goldszmidt, M., & Lee, T. J. (1998).
Bayesian network classification with continuous at-
tributes: getting the best of both discretization and
parametric fitting. Proceedings of the 15th Interna-
tional Conference on Machine Learning (pp. 179–
187). Morgan Kaufmann, San Francisco, CA.

Heckerman, D., Geiger, D., & Chickering, D. (1995).
Learning bayesian networks: the combination of
knowledge and statistical data. 20(3), 197–243.

Huang, K., King, I., & Lyu, M. (2002a). Constructing
a large node chow-liu tree based on frequent item-
sets. Proceedings of the International Conference on
Neural Information Processing.

Huang, K., King, I., & Lyu, M. R. (2002b). Learn-
ing maximum likelihood semi-naive bayesian net-
work classifier.

Liang, P., & Srebro, N. (2003). A dynamic data struc-
ture for checking hyperacyclicity (Technical Report).
Massachusetts Institute of Technology.

Malvestuto, F. M. (1991). Approximating discrete
probability distributions with decomposable models.
IEEE Transactions on Systems, Man and Cybernet-
ics, 21, 1287–1294.

Meila, M., & Jordan, M. (2000). Learning with mix-
tures of trees. Journal of Machine Learning Re-
search, 1, 1–48.

Pearl, J. (1997). Probabilistic reasoning in intelligent
systems. Morgan Kaufmann Publishers. Revised
second printing edition.

Pelleg, D., & Moore, A. (2002). Using tarjan’s red rule
for fast dependency tree construction (Technical Re-
port CMU-CS-02-116). Carnegie Mellon University.

Rissanen, J. (1987). Stochastic complexity. J. Royal
Statistical Society, Series B, 49, 223–239.

Srebro, N. (2000). Maximum likelihood markov net-
works: An algorithmic approach. Master’s thesis,
Massachusetts Institute of Technology.

