Progressive Multigrid Eigensolvers for Multiscale Spectral Segmentation

Michael Maire¹ and Stella X. Yu²

 $^1 \text{California}$ Institute of Technology - Pasadena, CA $^2 \text{University}$ of California at Berkeley / ICSI - Berkeley, CA

Build a weighted graph G = (V, E, W) from the image

Build a weighted graph G = (V, E, W) from the image

Define W using Intervening Contour

(i, j) low affinity

Build a weighted graph G = (V, E, W) from the image

Define W using Intervening Contour

(i, k) high affinity

Build a weighted graph G = (V, E, W) from the image

Define W using Intervening Contour

(i, k) high affinity

Normalized Cuts
[Shi & Malik 1997]

Normalized Cuts

- Graph G = (V, E, W)
- Split into A, B disjoint, $A \cup B = V$

Normalized Cuts

 \blacktriangleright Graph G = (V, E, W)▶ Split into A, B disjoint, $A \cup B = V$ $cut(A, B) = \sum w(u, v)$ $u \in A, v \in B$ $assoc(A, V) = \sum_{u \in V} w(u, v)$ $u \in A.v \in V$ $Ncut(A, B) = \frac{cut(A, B)}{assoc(A, V)} + \frac{cut(A, B)}{assoc(B, V)}$

Normalized Cuts

 \blacktriangleright Graph G = (V, E, W)Split into A, B disjoint, $A \cup B = V$ $cut(A, B) = \sum w(u, v)$ $u \in A.v \in B$ $assoc(A, V) = \sum w(u, v)$ $\mu \in A, \nu \in V$ $Ncut(A, B) = \frac{cut(A, B)}{assoc(A, V)} + \frac{cut(A, B)}{assoc(B, V)}$

General case: partition using smallest eigenvectors of

$$(D - W)z = \lambda Dz$$

where $D_{ii} = \sum_j W_{ij}$

(日) (日) (日) (日) (日) (日) (日)

Eigenvector

▲日▼▲□▼▲Ⅲ▼▲□▼ ● ④④⊙

□ ▶ ▲ 🗗 ▶ ▲ 三 ▶ ▲ 🗄 ▶ ▲ 🗗 ▶ ▲ 🗗

[Yu, PAMI 2012]

[Yu, PAMI 2012]

Given:

- Relative ordering relationships $\Theta(\cdot, \cdot)$
- Confidence on relationships $C(\cdot, \cdot)$

Given:

- Relative ordering relationships $\Theta(\cdot, \cdot)$
- Confidence on relationships $C(\cdot, \cdot)$

Subject to:

 \blacktriangleright Linear constraints on embedding solution in columns of U

Given:

- Relative ordering relationships $\Theta(\cdot, \cdot)$
- Confidence on relationships $C(\cdot, \cdot)$

Subject to:

 \blacktriangleright Linear constraints on embedding solution in columns of U

Define:

 $D = Diag(C1_n)$ $W = C \bullet \exp(i\Theta)$

Given:

- Relative ordering relationships $\Theta(\cdot, \cdot)$
- Confidence on relationships $C(\cdot, \cdot)$

Subject to:

 \blacktriangleright Linear constraints on embedding solution in columns of U

Define:

 $D = Diag(C1_n)$ $W = C \bullet \exp(i\Theta)$

Solve generalized eigenproblem $QPQz = \lambda z$:

 $P = D^{-1}W$ $Q = I - D^{-1}U(U^{T}D^{-1}U)^{-1}U^{T}$

Single Scale Unconstrained Problem

W

Multigrid Solver

W

[Chennubhotla and Jepson, NIPS 2005] [Brezina et al., Num. Linear Alg. w/App., 2008] [Kushnir, Galun, and Brandt, PAMI 2010]

Multigrid Solver

[Chennubhotla and Jepson, NIPS 2005] [Brezina et al., Num. Linear Alg. w/App., 2008] [Kushnir, Galun, and Brandt, PAMI 2010]

Multigrid Solver

[Chennubhotla and Jepson, NIPS 2005] [Brezina et al., Num. Linear Alg. w/App., 2008] [Kushnir, Galun, and Brandt, PAMI 2010]

< □ > < □ >

Multirange Problem

[Cour, Benezit, and Shi, CVPR 2005]

 $\langle \Box \rangle$

Multirange Problem

[Cour, Benezit, and Shi, CVPR 2005]

Multirange Problem

[Cour, Benezit, and Shi, CVPR 2005]

Multiscale Problem

(□ ▶ ▲□ ▶ ▲ 三 ▶ ▲ 三 ● ○ < ◇

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ���

multigrid: efficient solver computation

multigrid: efficient solver computation multiscale: efficient problem representation

multigrid: efficient solver computation multiscale: efficient problem representation use both!

multigrid: efficient solver computation multiscale: efficient problem representation use both!

multiscale structure shapes multigrid strategy

Progressive Multigrid Multiscale

Transformed Progressive Multigrid Multiscale

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへの

$$W = \begin{bmatrix} W_2 & 0 & 0 \\ 0 & W_1 & 0 \\ 0 & 0 & W_0 \end{bmatrix} \quad U = \begin{bmatrix} 0 & U_2 & U_1 \end{bmatrix} \quad Z = \begin{bmatrix} Z_2 \\ Z_1 \\ Z_0 \end{bmatrix}$$

$$W = \begin{bmatrix} W_2 & 0 & 0 \\ 0 & W_1 & 0 \\ 0 & 0 & W_0 \end{bmatrix} \quad U = \begin{bmatrix} 0 & U_2 & U_1 \end{bmatrix} \quad Z = \begin{bmatrix} Z_2 \\ Z_1 \\ Z_0 \end{bmatrix}$$

• Solve unconstrained problem: $(W_2, 0)$ for \overline{Z}_2

$$W = \begin{bmatrix} W_2 & 0 & 0 \\ 0 & W_1 & 0 \\ 0 & 0 & W_0 \end{bmatrix} \quad U = \begin{bmatrix} 0 & U_2 & U_1 \end{bmatrix} \quad Z = \begin{bmatrix} Z_2 \\ Z_1 \\ Z_0 \end{bmatrix}$$

Solve unconstrained problem: $(W_2, 0)$ for \overline{Z}_2

• Look at constraint: U_2^* $[Z_2; Z_1] = 0$

$$W = \begin{bmatrix} W_2 & 0 & 0 \\ 0 & W_1 & 0 \\ 0 & 0 & W_0 \end{bmatrix} \quad U = \begin{bmatrix} 0 & U_2 & U_1 \end{bmatrix} \quad Z = \begin{bmatrix} Z_2 \\ Z_1 \\ Z_0 \end{bmatrix}$$

Solve unconstrained problem: $(W_2, 0)$ for \overline{Z}_2

- Look at constraint: U_2^* [Z_2 ; Z_1] = 0
- Rewrite as: $[U_2; U_2]^* [Z_2; Z_1] = 0$

$$W = \begin{bmatrix} W_2 & 0 & 0 \\ 0 & W_1 & 0 \\ 0 & 0 & W_0 \end{bmatrix} \quad U = \begin{bmatrix} 0 & U_2 & U_1 \end{bmatrix} \quad Z = \begin{bmatrix} Z_2 \\ Z_1 \\ Z_0 \end{bmatrix}$$

- Solve unconstrained problem: $(W_2, 0)$ for Z_2
- Look at constraint: U_2^* [Z_2 ; Z_1] = 0
- Rewrite as: $[U_2; U_2]^* [Z_2; Z_1] = 0$
- Least-squares interpolate:

 $\widetilde{Z}_1 = \underbrace{\widetilde{U}_2}_{2} (\underbrace{\widetilde{U}_2}^* \underbrace{\widetilde{U}_2})^{-1} (- \underbrace{\widehat{U}_2}^* \overline{Z}_2)$

$$W = \begin{bmatrix} W_2 & 0 & 0 \\ 0 & W_1 & 0 \\ 0 & 0 & W_0 \end{bmatrix} \quad U = \begin{bmatrix} 0 & U_2 & U_1 \end{bmatrix} \quad Z = \begin{bmatrix} Z_2 \\ Z_1 \\ Z_0 \end{bmatrix}$$

- Solve unconstrained problem: $(W_2, 0)$ for Z_2
- Look at constraint: U_2^* [Z_2 ; Z_1] = 0
- Rewrite as: $[\overrightarrow{U_2}; \ \overrightarrow{U_2}]^* \ [Z_2; \ Z_1] = 0$
- Least-squares interpolate:

 $\widetilde{Z}_1 = \underbrace{\widetilde{U}_2}_{2} (\underbrace{\widetilde{U}_2}^* \underbrace{\widetilde{U}_2})^{-1} (- \underbrace{\widehat{U}_2}^* \overline{Z}_2)$

 ▶ Use [Z
₂; Z
₁] as initial guess for solving: (Diag(W₂, W₁), [0 U₂]) for [Z
₂; Z
₁]

▲□▶▲□▶▲三▶▲三▶ ④�?

▶ Work with *m* eigenvectors simultaneously

- ▶ Work with *m* eigenvectors simultaneously
- Work with $n \times 2m$ intermediate representation:

n = # nodes m = # eigenvectors

- Work with *m* eigenvectors simultaneously
- Work with $n \times 2m$ intermediate representation:

n = nodes

m = # eigenvectors

n increases coarse-to-fine

- Work with *m* eigenvectors simultaneously
- Work with $n \times 2m$ intermediate representation:

n = # nodes

m = # eigenvectors

- n increases coarse-to-fine
- Randomized Matrix Approximation [Halko, Martinsson, and Tropp, SIREV, 2011]

- Work with *m* eigenvectors simultaneously
- Work with $n \times 2m$ intermediate representation:

n = # nodes

m = # eigenvectors

- n increases coarse-to-fine
- Randomized Matrix Approximation [Halko, Martinsson, and Tropp, SIREV, 2011]
 - Randomized algorithms for linear algebra problems
 - Exponentially small failure probability
 - Simple implementation
 - Same computational complexity
 - Better hardware parallelization properties

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ○ < ⊙

Fixed Rank Problem

Given: $n \times n$ sparse matrix MFind: $n \times l$ dense matrix A, where $l = 2m \ll n$ Such that: range of A approximates range of M

Fixed Rank Problem

Given: $n \times n$ sparse matrix MFind: $n \times l$ dense matrix A, where $l = 2m \ll n$ Such that: range of A approximates range of M• Randomized Subspace Iteration Draw draw $n \times l$ Gaussian matrix Ω $Y \leftarrow (MM^*)^q M\Omega$ $A \leftarrow QR$ -ORTHONORMALIZE(Y)

Fixed Rank Problem

 $Z \leftarrow AV$

Given: $n \times n$ sparse matrix M Find: $n \times I$ dense matrix A, where $I = 2m \ll n$ Such that: range of A approximates range of MRandomized Subspace Iteration Draw draw $n \times I$ Gaussian matrix Ω $Y \leftarrow (MM^*)^q M\Omega$ $A \leftarrow QR$ -ORTHONORMALIZE(Y) Eigensolver $B \leftarrow A^*MA$ $I \times I$ matrix $(V, \Lambda) \leftarrow \operatorname{EIGS}(B, m)$ small eigenproblem

M = QPQ

< 4 ₽ × <

Initialize A

M = QPQ

< □ ▶

Apply M (Coarse)

M = QPQ

Converge A (Coarse)

M = QPQ

Interpolate

< □ ▶

< 🖓 ▶

M = QPQ

Apply M (Fine)

M = QPQ

Converge \overline{A}

Image

1 coarse: 0.46 sec

Image Progressive Multigrid

20 coarse: 3 sec

Image Progressive Multigrid

20 c, 1 med: 5 sec

Image Progressive Multigrid

- ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲

Eigenvector 7

< □ >

Image Progressive Multigrid Baseline Solver

Eigenvector 7

< □ ▶

Image Progressive Multigrid Baseline Solver

..., 3 fine: 27 sec

Image Progressive Multigrid Baseline Solver

Eigenvector 7

< □ ▶

20 fine: 94 sec

Image Progressive Multigrid Baseline Solver

Eigenvector 7

< □ ▶

Progressive Multigrid **Baseline Solver**

Eigenvector 7

< □ >

▲□▶▲圖▶▲≧▶▲≧▶ ≧ ∽000

Multiscale Spectral Pb

M-sPb Coarse

M-sPb Medium

M-sPb Fine
Multiscale Spectral Pb

M-sPb Coarse

M-sPb Medium

M-sPb Fine

Multiscale Spectral Pb

M-sPb Coarse

M-sPb Medium

M-sPb Fine

Multiscale Spectral Pb

M-sPb Coarse

M-sPb Medium

M-sPb Fine

< □ >

Image

Multiscale sPb 1

Image

Multiscale sPb 2

(ロ) 4 日) 4 三) 4 三) 9 ()

Image

Multiscale sPb 3

(口) 4 母) 4 目) 4 目) 日 クタウ

Image

Multiscale sPb 4

Image

Multiscale sPb 5

- ロ ト 4 聞 ト 4 画 ト 4 画 - ク 9 9

Thank You