
Progressive Multigrid Eigensolvers for

Multiscale Spectral Segmentation

Michael Maire1 and Stella X. Yu2

1California Institute of Technology - Pasadena, CA
2University of California at Berkeley / ICSI - Berkeley, CA



Spectral Segmentation

Build a weighted graph G = (V, E, W) from the image

I Define W using Intervening
Contour

(i , j) low affinity

I Normalized Cuts
[Shi & Malik 1997]



Spectral Segmentation

Build a weighted graph G = (V, E, W) from the image

I Define W using Intervening
Contour

(i , j) low affinity

I Normalized Cuts
[Shi & Malik 1997]



Spectral Segmentation

Build a weighted graph G = (V, E, W) from the image

I Define W using Intervening
Contour

(i , k) high affinity

I Normalized Cuts
[Shi & Malik 1997]



Spectral Segmentation

Build a weighted graph G = (V, E, W) from the image

I Define W using Intervening
Contour

(i , k) high affinity

I Normalized Cuts
[Shi & Malik 1997]



Normalized Cuts
I Graph G = (V ,E ,W )

I Split into A, B disjoint, A ∪ B = V

cut(A,B) =
ÿ

u∈A,v∈B
w(u, v)

assoc(A,V ) =
ÿ

u∈A,v∈V
w(u, v)

Ncut(A,B) =
cut(A,B)

assoc(A,V )
+

cut(A,B)

assoc(B ,V )

I General case: partition using smallest eigenvectors of

(D −W )z = λDz

where Dii =
ř

j Wij



Normalized Cuts
I Graph G = (V ,E ,W )

I Split into A, B disjoint, A ∪ B = V

cut(A,B) =
ÿ

u∈A,v∈B
w(u, v)

assoc(A,V ) =
ÿ

u∈A,v∈V
w(u, v)

Ncut(A,B) =
cut(A,B)

assoc(A,V )
+

cut(A,B)

assoc(B ,V )

I General case: partition using smallest eigenvectors of

(D −W )z = λDz

where Dii =
ř

j Wij



Normalized Cuts
I Graph G = (V ,E ,W )

I Split into A, B disjoint, A ∪ B = V

cut(A,B) =
ÿ

u∈A,v∈B
w(u, v)

assoc(A,V ) =
ÿ

u∈A,v∈V
w(u, v)

Ncut(A,B) =
cut(A,B)

assoc(A,V )
+

cut(A,B)

assoc(B ,V )

I General case: partition using smallest eigenvectors of

(D −W )z = λDz

where Dii =
ř

j Wij



Normalized Cuts: Embedding

Image Eigenvector



Normalized Cuts: Embedding

Image

vv

Eigenvector

yy



Normalized Cuts: Embedding

Image

vvv vv

v v
Eigenvector

yy y yy yy



Normalized Cuts: Embedding

Image

vvv vv

v v
Eigenvectors

yy y yy yyyyyyyyy yyyyy yyy y yyyy y



Normalized Cuts: Embedding

Image

vvv vv

v v

��
��

Eigenvectors

yy y yy yy��
��

yyyyyyy ��
��
yyyyy yy ��
��

y y yyyy y��
��



Angular Embedding: Grouping with Ordering

I Previously: absolute position does not matter

yy y yy yy
approximately equivalent to

yyy yy yy
I Now: define ordering direction in embedding space

yy y yy yy
min max

[Yu, PAMI 2012]



Angular Embedding: Grouping with Ordering

I Previously: absolute position does not matter

yy y yy yy
approximately equivalent to

yyy yy yy

I Now: define ordering direction in embedding space

yy y yy yy
min max

[Yu, PAMI 2012]



Angular Embedding: Grouping with Ordering

I Previously: absolute position does not matter

yy y yy yy
approximately equivalent to

yyy yy yy
I Now: define ordering direction in embedding space

yy y yy yy
min max

[Yu, PAMI 2012]



Angular Embedding: Grouping with Ordering

Given:
I Relative ordering relationships Θ(·, ·)
I Confidence on relationships C (·, ·)

Subject to:
I Linear constraints on embedding solution in columns of U

Define:

D = Diag(C1n)

W = C • exp(iΘ)

Solve generalized eigenproblem QPQz = λz :

P = D−1W

Q = I − D−1U(UTD−1U)−1UT



Angular Embedding: Grouping with Ordering
Given:

I Relative ordering relationships Θ(·, ·)
I Confidence on relationships C (·, ·)

Subject to:
I Linear constraints on embedding solution in columns of U

Define:

D = Diag(C1n)

W = C • exp(iΘ)

Solve generalized eigenproblem QPQz = λz :

P = D−1W

Q = I − D−1U(UTD−1U)−1UT



Angular Embedding: Grouping with Ordering
Given:

I Relative ordering relationships Θ(·, ·)
I Confidence on relationships C (·, ·)

Subject to:
I Linear constraints on embedding solution in columns of U

Define:

D = Diag(C1n)

W = C • exp(iΘ)

Solve generalized eigenproblem QPQz = λz :

P = D−1W

Q = I − D−1U(UTD−1U)−1UT



Angular Embedding: Grouping with Ordering
Given:

I Relative ordering relationships Θ(·, ·)
I Confidence on relationships C (·, ·)

Subject to:
I Linear constraints on embedding solution in columns of U

Define:

D = Diag(C1n)

W = C • exp(iΘ)

Solve generalized eigenproblem QPQz = λz :

P = D−1W

Q = I − D−1U(UTD−1U)−1UT



Angular Embedding: Grouping with Ordering
Given:

I Relative ordering relationships Θ(·, ·)
I Confidence on relationships C (·, ·)

Subject to:
I Linear constraints on embedding solution in columns of U

Define:

D = Diag(C1n)

W = C • exp(iΘ)

Solve generalized eigenproblem QPQz = λz :

P = D−1W

Q = I − D−1U(UTD−1U)−1UT



Single Scale Unconstrained Problem

b

b

b

b

W



Multigrid Solver

b

b

b

b

W

[Chennubhotla and Jepson, NIPS 2005]
[Brezina et al., Num. Linear Alg. w/App., 2008]

[Kushnir, Galun, and Brandt, PAMI 2010]



Multigrid Solver

b

b

b

b

W

b
b

Ψ(W )

[Chennubhotla and Jepson, NIPS 2005]
[Brezina et al., Num. Linear Alg. w/App., 2008]

[Kushnir, Galun, and Brandt, PAMI 2010]



Multigrid Solver

b

b

b

b

W

b
b

Ψ(W )

b
b

Ψ(Ψ(W ))

[Chennubhotla and Jepson, NIPS 2005]
[Brezina et al., Num. Linear Alg. w/App., 2008]

[Kushnir, Galun, and Brandt, PAMI 2010]



/Multirange Problem/

b

b

b

b

W

[Cour, Benezit, and Shi, CVPR 2005]



/Multirange Problem/

b

b

b

b

W

U1

b b

τ(W )

[Cour, Benezit, and Shi, CVPR 2005]



/Multirange Problem/

b

b

b

b

W

U1

b b

τ(W )

U2

b

b τ(τ(W ))

[Cour, Benezit, and Shi, CVPR 2005]



/Multiscale Problem/

b

b

b

b

W0

U1

b b

W1

U2

b

b W2



Multigrid and Multiscale

multigrid: efficient solver computation

multiscale: efficient problem representation

use both!

multiscale structure shapes multigrid strategy



Multigrid and Multiscale

multigrid: efficient solver computation

multiscale: efficient problem representation

use both!

multiscale structure shapes multigrid strategy



Multigrid and Multiscale

multigrid: efficient solver computation

multiscale: efficient problem representation

use both!

multiscale structure shapes multigrid strategy



Multigrid and Multiscale

multigrid: efficient solver computation

multiscale: efficient problem representation

use both!

multiscale structure shapes multigrid strategy



Multigrid and Multiscale

multigrid: efficient solver computation

multiscale: efficient problem representation

use both!

multiscale structure shapes multigrid strategy



Progressive Multigrid Multiscale

b

b W2

b b

W1

U2

b

b W2

b

b

b

b

W0

U1

b b

W1

U2

b

b W2

ΦU2

ΦU1



Transformed Progressive Multigrid Multiscale

b

b τ (W0,W1,W2)

b b

τ (W0,W1)

U2

b

b W2

b

b

b

b

W0

U1

b b

W1

U2

b

b W2

ΦU2

ΦU1



Algorithm Overview

W =

W2 0 0
0 W1 0
0 0 W0

 U = [0 U2 U1] Z =

Z2

Z1

Z0


I Solve unconstrained problem: (W2, 0) for sZ2

I Look at constraint: U∗2 [Z2; Z1] = 0

I Rewrite as: [xU2; |U2]∗ [Z2; Z1] = 0

I Least-squares interpolate:

rZ1 = |U2(|U2
∗
|U2)

−1
(−xU2

∗
sZ2)

I Use [ sZ2; rZ1] as initial guess for solving:

(Diag(W2,W1) , [0 U2]) for [ sZ2; sZ1]



Algorithm Overview

W =

W2 0 0
0 W1 0
0 0 W0

 U = [0 U2 U1] Z =

Z2

Z1

Z0



I Solve unconstrained problem: (W2, 0) for sZ2

I Look at constraint: U∗2 [Z2; Z1] = 0

I Rewrite as: [xU2; |U2]∗ [Z2; Z1] = 0

I Least-squares interpolate:

rZ1 = |U2(|U2
∗
|U2)

−1
(−xU2

∗
sZ2)

I Use [ sZ2; rZ1] as initial guess for solving:

(Diag(W2,W1) , [0 U2]) for [ sZ2; sZ1]



Algorithm Overview

W =

W2 0 0
0 W1 0
0 0 W0

 U = [0 U2 U1] Z =

Z2

Z1

Z0


I Solve unconstrained problem: (W2, 0) for sZ2

I Look at constraint: U∗2 [Z2; Z1] = 0

I Rewrite as: [xU2; |U2]∗ [Z2; Z1] = 0

I Least-squares interpolate:

rZ1 = |U2(|U2
∗
|U2)

−1
(−xU2

∗
sZ2)

I Use [ sZ2; rZ1] as initial guess for solving:

(Diag(W2,W1) , [0 U2]) for [ sZ2; sZ1]



Algorithm Overview

W =

W2 0 0
0 W1 0
0 0 W0

 U = [0 U2 U1] Z =

Z2

Z1

Z0


I Solve unconstrained problem: (W2, 0) for sZ2

I Look at constraint: U∗2 [Z2; Z1] = 0

I Rewrite as: [xU2; |U2]∗ [Z2; Z1] = 0

I Least-squares interpolate:

rZ1 = |U2(|U2
∗
|U2)

−1
(−xU2

∗
sZ2)

I Use [ sZ2; rZ1] as initial guess for solving:

(Diag(W2,W1) , [0 U2]) for [ sZ2; sZ1]



Algorithm Overview

W =

W2 0 0
0 W1 0
0 0 W0

 U = [0 U2 U1] Z =

Z2

Z1

Z0


I Solve unconstrained problem: (W2, 0) for sZ2

I Look at constraint: U∗2 [Z2; Z1] = 0

I Rewrite as: [xU2; |U2]∗ [Z2; Z1] = 0

I Least-squares interpolate:

rZ1 = |U2(|U2
∗
|U2)

−1
(−xU2

∗
sZ2)

I Use [ sZ2; rZ1] as initial guess for solving:

(Diag(W2,W1) , [0 U2]) for [ sZ2; sZ1]



Algorithm Overview

W =

W2 0 0
0 W1 0
0 0 W0

 U = [0 U2 U1] Z =

Z2

Z1

Z0


I Solve unconstrained problem: (W2, 0) for sZ2

I Look at constraint: U∗2 [Z2; Z1] = 0

I Rewrite as: [xU2; |U2]∗ [Z2; Z1] = 0

I Least-squares interpolate:

rZ1 = |U2(|U2
∗
|U2)

−1
(−xU2

∗
sZ2)

I Use [ sZ2; rZ1] as initial guess for solving:

(Diag(W2,W1) , [0 U2]) for [ sZ2; sZ1]



Algorithm Overview

W =

W2 0 0
0 W1 0
0 0 W0

 U = [0 U2 U1] Z =

Z2

Z1

Z0


I Solve unconstrained problem: (W2, 0) for sZ2

I Look at constraint: U∗2 [Z2; Z1] = 0

I Rewrite as: [xU2; |U2]∗ [Z2; Z1] = 0

I Least-squares interpolate:

rZ1 = |U2(|U2
∗
|U2)

−1
(−xU2

∗
sZ2)

I Use [ sZ2; rZ1] as initial guess for solving:

(Diag(W2,W1) , [0 U2]) for [ sZ2; sZ1]



Implementation

I Work with m eigenvectors simultaneously

I Work with n × 2m intermediate representation:
n = # nodes
m = # eigenvectors

I n increases coarse-to-fine

I Randomized Matrix Approximation
[Halko, Martinsson, and Tropp, SIREV, 2011]

I Randomized algorithms for linear algebra problems
I Exponentially small failure probability
I Simple implementation
I Same computational complexity
I Better hardware parallelization properties



Implementation

I Work with m eigenvectors simultaneously

I Work with n × 2m intermediate representation:
n = # nodes
m = # eigenvectors

I n increases coarse-to-fine

I Randomized Matrix Approximation
[Halko, Martinsson, and Tropp, SIREV, 2011]

I Randomized algorithms for linear algebra problems
I Exponentially small failure probability
I Simple implementation
I Same computational complexity
I Better hardware parallelization properties



Implementation

I Work with m eigenvectors simultaneously

I Work with n × 2m intermediate representation:
n = # nodes
m = # eigenvectors

I n increases coarse-to-fine

I Randomized Matrix Approximation
[Halko, Martinsson, and Tropp, SIREV, 2011]

I Randomized algorithms for linear algebra problems
I Exponentially small failure probability
I Simple implementation
I Same computational complexity
I Better hardware parallelization properties



Implementation

I Work with m eigenvectors simultaneously

I Work with n × 2m intermediate representation:
n = # nodes
m = # eigenvectors

I n increases coarse-to-fine

I Randomized Matrix Approximation
[Halko, Martinsson, and Tropp, SIREV, 2011]

I Randomized algorithms for linear algebra problems
I Exponentially small failure probability
I Simple implementation
I Same computational complexity
I Better hardware parallelization properties



Implementation

I Work with m eigenvectors simultaneously

I Work with n × 2m intermediate representation:
n = # nodes
m = # eigenvectors

I n increases coarse-to-fine

I Randomized Matrix Approximation
[Halko, Martinsson, and Tropp, SIREV, 2011]

I Randomized algorithms for linear algebra problems
I Exponentially small failure probability
I Simple implementation
I Same computational complexity
I Better hardware parallelization properties



Implementation

I Work with m eigenvectors simultaneously

I Work with n × 2m intermediate representation:
n = # nodes
m = # eigenvectors

I n increases coarse-to-fine

I Randomized Matrix Approximation
[Halko, Martinsson, and Tropp, SIREV, 2011]

I Randomized algorithms for linear algebra problems
I Exponentially small failure probability
I Simple implementation
I Same computational complexity
I Better hardware parallelization properties



Randomized Matrix Approximation

I Fixed Rank Problem

Given: n × n sparse matrix M
Find: n × l dense matrix A, where l = 2m� n
Such that: range of A approximates range of M

I Randomized Subspace Iteration

Draw draw n × l Gaussian matrix Ω
Y ← (MM∗)qMΩ
A← QR-Orthonormalize(Y )

I Eigensolver

B ← A∗MA l × l matrix
(V ,Λ)← Eigs(B ,m) small eigenproblem
Z ← AV



Randomized Matrix Approximation

I Fixed Rank Problem
Given: n × n sparse matrix M
Find: n × l dense matrix A, where l = 2m� n
Such that: range of A approximates range of M

I Randomized Subspace Iteration

Draw draw n × l Gaussian matrix Ω
Y ← (MM∗)qMΩ
A← QR-Orthonormalize(Y )

I Eigensolver

B ← A∗MA l × l matrix
(V ,Λ)← Eigs(B ,m) small eigenproblem
Z ← AV



Randomized Matrix Approximation

I Fixed Rank Problem
Given: n × n sparse matrix M
Find: n × l dense matrix A, where l = 2m� n
Such that: range of A approximates range of M

I Randomized Subspace Iteration
Draw draw n × l Gaussian matrix Ω
Y ← (MM∗)qMΩ
A← QR-Orthonormalize(Y )

I Eigensolver

B ← A∗MA l × l matrix
(V ,Λ)← Eigs(B ,m) small eigenproblem
Z ← AV



Randomized Matrix Approximation

I Fixed Rank Problem
Given: n × n sparse matrix M
Find: n × l dense matrix A, where l = 2m� n
Such that: range of A approximates range of M

I Randomized Subspace Iteration
Draw draw n × l Gaussian matrix Ω
Y ← (MM∗)qMΩ
A← QR-Orthonormalize(Y )

I Eigensolver
B ← A∗MA l × l matrix
(V ,Λ)← Eigs(B ,m) small eigenproblem
Z ← AV



Matrix Approximation + Interpolation

l r

n1

n0

M = QPQ

Initialize A



Matrix Approximation + Interpolation

l r

n1

n0

M = QPQ

Apply M (Coarse)



Matrix Approximation + Interpolation

l r

n1

n0

l r

M = QPQ

Converge A (Coarse)



Matrix Approximation + Interpolation

l r

n1

n0

l r

M = QPQ

Interpolate



Matrix Approximation + Interpolation

l r

n1

n0

l r

M = QPQ

Apply M (Fine)



Matrix Approximation + Interpolation

l r

n1

n0

l r l r

M = QPQ

Converge A



Eigenvector Convergence Comparison

1 coarse: 0.46 sec 1 fine: 15 sec

Image

Progressive Multigrid Baseline Solver

Eigenvector 7

> 10× speedup



Eigenvector Convergence Comparison

1 coarse: 0.46 sec

1 fine: 15 sec

Image Progressive Multigrid

Baseline Solver

Eigenvector 7

> 10× speedup



Eigenvector Convergence Comparison

20 coarse: 3 sec

1 fine: 15 sec

Image Progressive Multigrid

Baseline Solver

Eigenvector 7

> 10× speedup



Eigenvector Convergence Comparison

20 c, 1 med: 5 sec

1 fine: 15 sec

Image Progressive Multigrid

Baseline Solver

Eigenvector 7

> 10× speedup



Eigenvector Convergence Comparison

20 c, 1 med: 5 sec 1 fine: 15 sec

Image Progressive Multigrid Baseline Solver

Eigenvector 7

> 10× speedup



Eigenvector Convergence Comparison

. . . , 1 fine: 17 sec 1 fine: 15 sec

Image Progressive Multigrid Baseline Solver

Eigenvector 7

> 10× speedup



Eigenvector Convergence Comparison

. . . , 3 fine: 27 sec 1 fine: 15 sec

Image Progressive Multigrid Baseline Solver

Eigenvector 7

> 10× speedup



Eigenvector Convergence Comparison

. . . , 3 fine: 27 sec 5 fine: 34 sec

Image Progressive Multigrid Baseline Solver

Eigenvector 7

> 10× speedup



Eigenvector Convergence Comparison

. . . , 3 fine: 27 sec 20 fine: 94 sec

Image Progressive Multigrid Baseline Solver

Eigenvector 7

> 10× speedup



Eigenvector Convergence Comparison

. . . , 3 fine: 27 sec 50 fine: 202 sec

Image Progressive Multigrid Baseline Solver

Eigenvector 7

> 10× speedup



Eigenvector Convergence Comparison

. . . , 3 fine: 27 sec 225 fine: 760 sec

Image Progressive Multigrid Baseline Solver

Eigenvector 7

> 10× speedup



Eigenvector Convergence Comparison

. . . , 3 fine: 27 sec 225 fine: 760 sec

Image Progressive Multigrid Baseline Solver

Eigenvector 7

> 10× speedup



Multiscale Spectral Pb

Image gsPbg

M-sPb Coarse M-sPb Medium M-sPb Fine



Multiscale Spectral Pb

Image gsPbg

M-sPb Coarse M-sPb Medium M-sPb Fine



Multiscale Spectral Pb

Image gsPbg

M-sPb Coarse M-sPb Medium M-sPb Fine



Multiscale Spectral Pb

Image gsPbg

M-sPb Coarse M-sPb Medium M-sPb Fine



Multiscale Alignment for Free

Image Multiscale sPb 1



Multiscale Alignment for Free

Image Multiscale sPb 2



Multiscale Alignment for Free

Image Multiscale sPb 3



Multiscale Alignment for Free

Image Multiscale sPb 4



Multiscale Alignment for Free

Image Multiscale sPb 5



Thank You


