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Spectral Segmentation

Build a weighted graph G = (V, E, W) from the image

I Define W using Intervening
Contour

(i , j) low affinity

I Normalized Cuts
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Normalized Cuts
I Graph G = (V ,E ,W )

I Split into A, B disjoint, A ∪ B = V

cut(A,B) =
ÿ

u∈A,v∈B
w(u, v)

assoc(A,V ) =
ÿ

u∈A,v∈V
w(u, v)

Ncut(A,B) =
cut(A,B)

assoc(A,V )
+

cut(A,B)

assoc(B ,V )

I General case: partition using smallest eigenvectors of

(D −W )z = λDz

where Dii =
ř

j Wij
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Normalized Cuts: Embedding
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Angular Embedding: Grouping with Ordering

I Previously: absolute position does not matter

yy y yy yy
approximately equivalent to

yyy yy yy
I Now: define ordering direction in embedding space

yy y yy yy
min max

[Yu, PAMI 2012]
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Angular Embedding: Grouping with Ordering

Given:
I Relative ordering relationships Θ(·, ·)
I Confidence on relationships C (·, ·)

Subject to:
I Linear constraints on embedding solution in columns of U

Define:

D = Diag(C1n)

W = C • exp(iΘ)

Solve generalized eigenproblem QPQz = λz :

P = D−1W

Q = I − D−1U(UTD−1U)−1UT
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Multigrid and Multiscale

multigrid: efficient solver computation

multiscale: efficient problem representation

use both!

multiscale structure shapes multigrid strategy
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Progressive Multigrid Multiscale
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Transformed Progressive Multigrid Multiscale
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Algorithm Overview

W =

W2 0 0
0 W1 0
0 0 W0

 U = [0 U2 U1] Z =

Z2

Z1

Z0


I Solve unconstrained problem: (W2, 0) for sZ2

I Look at constraint: U∗2 [Z2; Z1] = 0

I Rewrite as: [xU2; |U2]∗ [Z2; Z1] = 0

I Least-squares interpolate:

rZ1 = |U2(|U2
∗
|U2)

−1
(−xU2

∗
sZ2)

I Use [ sZ2; rZ1] as initial guess for solving:

(Diag(W2,W1) , [0 U2]) for [ sZ2; sZ1]
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Implementation

I Work with m eigenvectors simultaneously

I Work with n × 2m intermediate representation:
n = # nodes
m = # eigenvectors

I n increases coarse-to-fine

I Randomized Matrix Approximation
[Halko, Martinsson, and Tropp, SIREV, 2011]

I Randomized algorithms for linear algebra problems
I Exponentially small failure probability
I Simple implementation
I Same computational complexity
I Better hardware parallelization properties
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Randomized Matrix Approximation

I Fixed Rank Problem

Given: n × n sparse matrix M
Find: n × l dense matrix A, where l = 2m� n
Such that: range of A approximates range of M

I Randomized Subspace Iteration

Draw draw n × l Gaussian matrix Ω
Y ← (MM∗)qMΩ
A← QR-Orthonormalize(Y )

I Eigensolver

B ← A∗MA l × l matrix
(V ,Λ)← Eigs(B ,m) small eigenproblem
Z ← AV



Randomized Matrix Approximation

I Fixed Rank Problem
Given: n × n sparse matrix M
Find: n × l dense matrix A, where l = 2m� n
Such that: range of A approximates range of M

I Randomized Subspace Iteration

Draw draw n × l Gaussian matrix Ω
Y ← (MM∗)qMΩ
A← QR-Orthonormalize(Y )

I Eigensolver

B ← A∗MA l × l matrix
(V ,Λ)← Eigs(B ,m) small eigenproblem
Z ← AV



Randomized Matrix Approximation

I Fixed Rank Problem
Given: n × n sparse matrix M
Find: n × l dense matrix A, where l = 2m� n
Such that: range of A approximates range of M

I Randomized Subspace Iteration
Draw draw n × l Gaussian matrix Ω
Y ← (MM∗)qMΩ
A← QR-Orthonormalize(Y )

I Eigensolver

B ← A∗MA l × l matrix
(V ,Λ)← Eigs(B ,m) small eigenproblem
Z ← AV



Randomized Matrix Approximation

I Fixed Rank Problem
Given: n × n sparse matrix M
Find: n × l dense matrix A, where l = 2m� n
Such that: range of A approximates range of M

I Randomized Subspace Iteration
Draw draw n × l Gaussian matrix Ω
Y ← (MM∗)qMΩ
A← QR-Orthonormalize(Y )

I Eigensolver
B ← A∗MA l × l matrix
(V ,Λ)← Eigs(B ,m) small eigenproblem
Z ← AV



Matrix Approximation + Interpolation
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Multiscale Alignment for Free

Image Multiscale sPb 1
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