
Progressive Multigrid Eigensolvers for Multiscale Spectral Segmentation

Michael Maire1 and Stella X. Yu2

1California Institute of Technology - Pasadena, CA
2University of California at Berkeley / ICSI - Berkeley, CA

mmaire@caltech.edu, stellayu@berkeley.edu

Abstract

We reexamine the role of multiscale cues in image seg-
mentation using an architecture that constructs a globally
coherent scale-space output representation. This charac-
teristic is in contrast to many existing works on bottom-up
segmentation, which prematurely compress information into
a single scale. The architecture is a standard extension of
Normalized Cuts from an image plane to an image pyramid,
with cross-scale constraints enforcing consistency in the so-
lution while allowing emergence of coarse-to-fine detail.

We observe that multiscale processing, in addition to im-
proving segmentation quality, offers a route by which to
speed computation. We make a significant algorithmic ad-
vance in the form of a custom multigrid eigensolver for con-
strained Angular Embedding problems possessing coarse-
to-fine structure. Multiscale Normalized Cuts is a special
case. Our solver builds atop recent results on randomized
matrix approximation, using a novel interpolation opera-
tion to mold its computational strategy according to cross-
scale constraints in the problem definition. Applying our
solver to multiscale segmentation problems demonstrates
speedup by more than an order of magnitude. This speedup
is at the algorithmic level and carries over to any imple-
mentation target.

1. Introduction
Spectral clustering techniques have wide applicability

to perceptual organization problems. The spectral relax-
ation of the Normalized Cuts problem [14] appears as
the driving method in much research on image segmen-
tation [5, 13, 17, 15, 1, 11]. The importance of exploit-
ing multiscale cues to generate high quality segmentations
is widely recognized. Yu [15] formulates segmentation as
clustering on the average of multiscale affinity matrices. Ar-
beláez et al. [1] derive entries of a single affinity matrix
from a combination of multiscale features. Both of these
systems summarize multiscale cues and optimize a single
output that best explains the summary.

Cour et al. [5] present an alternative, suggesting multi-
range or multiscale approaches which couple sparse affin-
ity matrices at coarse and fine levels of an image pyramid
using constraints [17]. Though this work lacks the sophisti-
cated post-processing steps found in other spectral segmen-
tation pipelines, such as gPb [1], it offers the insight that
scale-space representation should be preserved throughout
the clustering procedure.

While image pyramids offer concise means of describing
both short and long range interactions, they do not alleviate
the fact that the computation time required to solve spec-
tral clustering problems is often prohibitive. Both image
pyramids and the Nyström method [6] can be seen as tech-
niques for approximating dense affinity matrices. But, run-
time for Normalized Cuts with only sparse affinity matrices
on a modern CPU can still be measured in minutes [5, 1].

Sparse affinity matrices make these problems feasible in
terms of asymptotic computational complexity, but far from
fast. Multigrid methods [13, 4, 2, 8] provide a strategy for
further reducing the computational load.

Our key observation is that multigrid and multiscale
techniques are complimentary and should be intertwined,
producing fast high-quality segmentation algorithms. Un-
like generic multigrid methods [4, 2, 8], we explicitly ad-
dress constrained problems [17, 5] with the intuition that
the constraints themselves can guide the schedule of com-
putations within the solver. Figure 1 provides a comparison.

Sections 2 and 3 present eigensolver technical details in
the more general setting of Angular Embedding, an exten-
sion of Normalized Cuts to handle both grouping and or-
dering relationships [16], recently used in simultaneously
resolving segmentation, figure-ground, and object detec-
tion [9, 10]. We develop our solver within the framework
of randomized matrix approximation [7], a new mathemati-
cal technique which naturally fits our interpolation strategy.
We also inherit its favorable parallelization properties.

Section 4 demonstrates speedup results as well as seg-
mentation improvements, in the form of high quality con-
tours, achieved by combining our efficient solver with the
best aspects of previous systems [5, 1]. Section 5 concludes.

b

b

b

b

b

b b

b

W

Ψ(W)
Ψ(Ψ(W))

Multigrid [4, 2, 8]

b

b

b

b

b b

b

b

U1

U2

W

τ (W)

τ (τ (W))

Multirange [5]

b

b

b

b

b b

b

b

U1

U2

W0

W1

W2

Multiscale [5, 15]

b

b

b

b

b b

b

b

U1

U2

W0

W1

W2

Multiscale

b

b

W2

ΦU2

b b

b

b

U2

W1

W2

ΦU1 b

b

b

b

b b

b

b

U1

U2

W0

W1

W2

Progressive Multigrid Multiscale

b

b τU (W0,W1,W2)

ΦU2

b b

b

b

U2

τU (W0,W1)

W2

ΦU1 b

b

b

b

b b

b

b

U1

U2

W0

W1

W2

Transformed Progressive Multigrid Multiscale

Figure 1. System comparison. Multigrid techniques exploit coarse-to-fine structure within a spectral clustering problem by adapting the
optimization routine used to solve it. Multirange or multiscale techniques instead adapt the problem definition to explicitly encode such
structure. We combine both approaches, producing a progressive multigrid algorithm for the solver. Top Left: Consider a sparse matrix W
defining pairwise affinities between nodes in a graph (e.g. connections between neighboring pixels, for image segmentation, as shown in
green). Generic multigrid eigensolvers [4, 2, 8], applied to the corresponding Normalized Cuts eigenproblem [14], coarsen the problem by
subsampling nodes and interpolating weights. Solution eigenvectors from iteratively coarsened problems, Ψ(W) and Ψ(Ψ(W)), initialize
the solver on the next finer problems, W and Ψ(W), respectively (blue arrows). Top Middle: Multirange [5] simulates the effect of a
dense affinity matrix by sampling longer-range affinities on coarser pixel grids (τ(W)) and tying graphs together using constraints (Us, red
links) [17]. Top Right: Rather than resampling, a true multiscale approach [5, 15] ties together level-dependent information, in the form
of different affinities, W0, W1, W2, on each subgraph. Bottom: Our custom eigensolver maps a multiscale constrained spectral clustering
problem onto a progressive multigrid computation strategy. Unlike generic multigrid methods, the constraints from the problem definition
shape computation within the solver. Instead of coarsening uniformly, our algorithm drops or adds entire levels at once. Constraints both
tie levels in the expanded problem and determine interpolation functions ΦUs for moving work between levels. When dropping a level, say
W0, we can optionally use the constraints to fold it into the next coarsest level, substituting transformed affinity τU (W0,W1) for W1.

l r

n1

n0

l r l r

Diffuse: A = D− 1
2 WD− 1

2 A

Project: A = (I −D− 1
2U(U∗D−1U)−1U∗D− 1

2)A

Interpolate: A = [A; D
1
2
[n0]

U [n0](U
∗
[n0]

U [n0])
−1(−U∗

[n1]
D

− 1
2

[n1]
A)] Cn 1·(l+

r)

C(n1+n0)·(l+r)

b
bbb

bbb

ΦU (A)

Figure 2. Multiscale evolution from random noise to eigenvectors. Left: Let there be n1 and n0 nodes at coarse and fine scales
respectively, with rn0 = n0 +n1 total nodes. To compute m length rn0 eigenvectors, within matrix A we store l = 2m random vectors
(l-block) for spanning the eigenspace, and r=mmore vectors (r-block) for testing convergence. We build these vectors progressively over
scale, at each step applying diffusion and projection based on the graph weights and constraints, and then checking whether the r vectors
lie in the l space. We first initialize (orange) the coarse scale n1×(l+ r) vectors (top block) with random Gaussian noise, and follow with
diffusion and projection, repeating until convergence (pink). We then use the top block to initialize the (bottom-block) fine-scale n0×(l+r)
vectors via interpolation (blue) defined by inter-scale constraints. This is followed again by diffusion, projection, and checking the entire
matrixA. Upon convergence, the r block is no longer of any use. We apply diffusion to the l block before collapsing it to a core l×l matrix
B. We extract m eigenvectors of this much smaller matrix B and then interpolate back to recover the desired m eigenvectors of length rn0.
Right: In an equivalent view, A initially lives in a subspace of dimension n1(l + r), where diffusion and projection operations are cheap.
Performing most of the work in this subspace before interpolating to deal with the full problem in the larger space gives us a speedup.

2. Spectral Clustering with Constraints
We consider Angular Embedding (AE) [16] problems

with constraints [17], defined by a triple (C,Θ, U) of real-
valued matrices. Skew-symmetric n× n matrix Θ specifies
relative ordering relationships between n nodes. Symmetric
n× n matrix C specifies a confidence on each relationship.
Normalized Cuts is a special case, where Θ = 0 and con-
fidence is synonymous with affinity. The task is to embed
nodes into an m-dimensional space, such that location in
this embedding space preserves the pairwise relationships.

The n × u matrix U specifies u linear constraints that
the solution embedding x must satisfy: U∗x = 0, where ∗

denotes complex conjugate transpose. In the case of multi-
scale segmentation, U will state that each coarse pixel must
be consistent with the finer pixels in the scale below it; the
coarse pixel’s embedding must be the average of the fine.

The optimal embedding is given by the leading m eigen-
vectors of the generalized eigenproblem:

QPQx = λx (1)

where P is a normalized weight matrix and Q is a projector
onto the feasible solution space (Q enforces constraints):

P = D−1W (2)

Q = I −D−1U(UTD−1U)−1UT (3)

with D and W defined in terms of C and Θ by:

D = diag(C1) W = C • exp(iΘ) (4)

where 1 is a column vector of n ones, I is the identity ma-
trix, diag(·) is a matrix with its vector argument on the main
diagonal, • denotes the matrix Hadamard product, i =

`
−1

and exponentiation acts element-wise. For convenience, we
work with degree-normalized variable z = D

1
2x with cor-

respondingly modified sP , sQ, and sU replacing P , Q, U .
The multiscale setting upgrades each of C, Θ, U to an

array of matrices, C, Θ, U, indexed by level s. Let ns
denote the number of nodes at level s and rns =

°
ś≥s

nś the
number of nodes in levels s and coarser.

Node relationships are within-level only, making Cs, Θs

ns × ns matrices. Constraints must appear incrementally,
associating nodes newly appearing at level s with nodes
from coarser levels. Hence, Us has dimensions rns × us.

3. Eigensolver
Let Ms = QsPsQs denote the matrix whose leading

eigenvectors solve the multiscale AE problem (C,Θ,U)
restricted to levels s and coarser. The intuition behind our
eigensolver is to interpolate from the eigenvectors of Ms an
initial solver state forMs−1, eventually obtaining the eigen-
vectors ofM0 and thereby solving the unrestricted problem.
Coarser subproblems speed the solution to finer ones.

Image Multiscale Eigenvectors 2 through 7

1 coarse iteration: 0.46 sec 20 coarse iterations: 3 sec 20 coarse, 1 medium: 5 sec 20 c., 3 med, 1 fine: 17 sec 20 c., 3 med, 3 fine: 27 sec

P
ro

gr
es

si
ve

M
ul

tig
ri

d

M
ul

tis
ca

le
E

ig
en

ve
ct

or
7

B
as

el
in

e
E

ig
en

so
lv

er

1 fine iteration: 15 sec 5 fine iterations: 34 sec 20 fine iterations: 94 sec 50 fine iterations: 202 sec 225 fine iterations: 760 sec

Figure 3. Eigenvector convergence comparison. Top: Image and leading eigenvectors for multiscale Normalized Cuts applied across a
three-level image pyramid with scales linked by constraints. Bottom: Our progressive multigrid solver processes sub-pyramids in coarse-
to-fine order. The baseline solver immediately starts work on the finest pyramid, taking far longer to converge (760 sec vs 27 sec).

To accomplish this, we borrow the randomized sub-
space iteration procedure from recent results concerning
probabilistic algorithms for constructing matrix decompo-
sitions [7]. Instead of working directly with large sparse
matrices Ms and their eigenvectors, we incrementally con-
struct a tall dense matrix A whose range approximates the
range of M0. Computation of approximation A for M pro-
ceeds by sampling a sufficient number of random vectors
and repeatedly applying M until these vectors form a basis
A that captures the range of M . Though seemingly similar
to a power iteration method for finding eigenvectors, we do
not yet extract them. A itself is not a set of eigenvectors, but
later they can be cheaply obtained from A. When desiring
m eigenvectors, we must oversample the size of the basis
A (sampling 2m vectors is sufficient) in order the ensure
the randomized algorithm has a negligible (exponentially
small) probability of failure.

We add a novel interpolation step to randomized sub-
space iteration in order to initialize As−1 from As. As
coarse and fine subproblems share the coarse levels, initial-
ization is a copy operation on these coarse levels and an
interpolation for the finest level (see dotted and solid blue
arrows in Figure 1). We equivalently work with a single
matrix A and grow it by adding rows during interpolation.

Suppose we have a two-level problem with cross-scale

constraint U∗x = 0. This can be rewritten as:[
U[n1]; U[n0]

]∗ [
x[n1]; x[n0]

]
= 0 (5)

where U[n1] is the n1 × u upper block of U involving val-
ues for the n1 coarse nodes and U[n0] is the lower block
with values for the n0 fine nodes. The notation similarly
selects subranges of x. Given only x1, solving this under-
constrained equation for x0 in the least squares sense al-
lows us to interpolate a fine representation from a coarse
one. We apply precisely the same interpolation procedure
during coarse-to-fine subspace iteration, with x replaced by
the appropriate subblock of A.

Changing variables from x to z, Figure 2 illustrates the
core operations within our eigensolver. Determining con-
vergence requires evolving two separate bases withinA and
checking the accuracy with which the first reconstructs the
second. Algorithms 1 and 2 present full technical details.

Algorithm 2’s outer loop iterates over coarse-to-fine
pyramids. Lines 4-16 extract the active subproblem; here
Diag(·) places its matrix arguments on the block diagonal
of a larger matrix. Lines 17-27 initialize A or interpolate
from a coarser level. Lines 28-33 perform almost all com-
putational work, refining A until the solution converges for
the subproblem; here k ← 2k guarantees that asymptoti-
cally we waste negligible time convergence testing. Lines

Algorithm 1 Matrix approximation via subspace iteration

Given functions f , g such that f(X) = MX and g(X) =
M∗X for some n × n matrix M , compute an n × (l + r)
matrix A whose leftmost l columns approximate the range
of M and rightmost r columns test convergence [7].

Initialize A using Gaussian random sampling.
1: function MXAPPROXINIT(f, n, l, r)
2: draw n× (l + r) Gaussian matrix Ω ∈ Cn·(l+r)
3: A← MXAPPROXREORTH(f(Ω), l, r)

4: return A

Perform a single update to A to improve the approximation.
5: function MXAPPROXUPDATE(f, g, A, l, r)
6: A← g(A)
7: A← MXAPPROXREORTH(A, l, r) . optional1

8: A← f(A)
9: A← MXAPPROXREORTH(A, l, r) . optional1

10: return A

Perform k updates toA to improve the approximation. Also

return ˆ̂
A, the left l columns ofA just before the final update.

11: function MXAPPROXREFINE(f, g, A, l, r, k)
12: for j ← 0, . . . , (k − 2) do
13: A← MXAPPROXUPDATE(f, g, A, l, r)
14: end for
15: (

ˆ̂
A,)← MXAPPROXSPLIT(A, l, r)

16:
ˆ̂
A← QR-ORTHONORMALIZE(

ˆ̂
A)

17: A← MXAPPROXUPDATE(f, g, A, l, r) . final one
18: A← MXAPPROXREORTH(A, l, r)

19: return (A,
ˆ̂
A)

Reorthonormalize bases in the left/rightmost columns of A.
20: function MXAPPROXREORTH(A, l, r)
21: (pA, qA)← MXAPPROXSPLIT(A, l, r)

22: pA← QR-ORTHONORMALIZE(pA) . left basis
23: qA← QR-ORTHONORMALIZE(qA) . right basis

24: return
[pA qA

]
. recombine A

Split A into the bases in its left/rightmost columns.
25: function MXAPPROXSPLIT(A, l, r)
26: pA← A[0:(n−1), 0:(l−1)] . leftmost l columns
27: qA← A[0:(n−1), l:(l+r−1)] . rightmost r columns

28: return (pA, qA)

Test for convergence by returning an error bound estimate.

29: function MXAPPROXTEST(ˆ̂
A, qA)

30: E ← qA− ˆ̂
A

ˆ̂
A∗ qA . n× r error matrix

31: return max
j=0,...,r−1

∥∥E[0:(n−1), j]

∥∥
1Reorthonormalization here guarantees numerical stability. In practice,
these calls can be executed rarely; we found no issue dropping them.

Algorithm 2 Progressive multigrid Angular Embedding

Compute the m leading eigenvectors V and eigenvalues Λ
of a multiscale constrained Angular Embedding problem.

1: function MULTIGRIDAE(C,Θ,U,m)
2: A← [], l← 2m, r ← m
3: for s← smax, . . . , 0 do . loop over scales
4: C ← Diag(Csmax

, . . . ,Cs) . setup subproblem
5: Θ← Diag(Θsmax , . . . ,Θs)
6: D ← diag(C1)
7: W ← C • exp(iΘ)

8: sP ← D− 1
2WD− 1

2

9: U ← [Usmax
; . . . ; Us]

10: if U = [] then . no constraints
11: f(·)← DIFFUSE(sP , ·)
12: else . constraints
13: sU ← D− 1

2U
14: sR← INCCHOLESKY(sU∗ sU)
15: f(·)← DIFFUSEPROJECT(sP , sU, sR, ·)
16: end if
17: if A = [] then . initialize
18: A← MXAPPROXINIT(f, rns, l, r)
19: else . interpolate
20: pUα ← U[0:(rns+1−1), (rus+1):(rus−1)]

21: pUβ ← U[(rns+1):(rns−1), (rus+1):(rus−1)]

22: pRβ ← INCCHOLESKY(pU∗
β
pUβ)

23: pDα ← D[0:(rns+1−1), 0:(rns+1−1)]

24: pDβ ← D[(rns+1):(rns−1), (rns+1):(rns−1)]

25:
spUα ← pD− 1

2
α
pUα, spUβ ← pD 1

2

β
pUβ

26: A←
[
A;

spUβ(pRβ \ pR∗
β \ (−spU∗

αA))
]

27: end if
28: k ← 1
29: repeat . apply diffusion/projection
30: (A,

ˆ̂
A)← MXAPPROXREFINE(f, f,A, l, r, k)

31: (, qA)← MXAPPROXSPLIT(A, l, r)
32: k ← 2k
33: until (MXAPPROXTEST(

ˆ̂
A, qA) < ε)

34: end for
35: (pA,)← MXAPPROXSPLIT(A, l, r)

36: B ← pA∗f(pA) . B is an l × l matrix
37: (V,Λ)← EIGS(B,m) . small eigenproblem
38: V ← D− 1

2 pAV . rn0 ×m eigenvectors
39: return (V,Λ)

Apply eigensolver diffusion and projection operations.
40: function DIFFUSE(sP ,Z) return sPZ
41: function DIFFUSEPROJECT(sP , sU, sR,Z)
42: Z ← Z − sU(sR \ sR∗ \ sU∗Z)
43: Z ← sPZ
44: Z ← Z − sU(sR \ sR∗ \ sU∗Z)

45: return Z

35-38 solve a trivially small eigenproblem and recover the
solution to the original Angular Embedding problem.

An important point is that we never explicitly construct
�M = sQ sP sQ as it may become dense even though sP and sQ
are sparse. Yu and Shi [17] discuss options for resolving this
issue. We adopt the one of using the incomplete Cholesky
factorization of (sU∗ sU) and solving a linear system. Nota-
tion R \ z in the pseudocode means to solve Ry = z and
return y. Using the same trick, we avoid computing the ex-
plicit inverse (pU∗

β
pUβ)−1 when interpolating.

Algorithm 3 implements weight folding for the trans-
formed system show in Figure 1, optionally replacing lines
6-7 of Algorithm 2 or, more efficiently, being conducted in
an initial pass. For segmentation, we do not see significant
differences with weight folding, so report results without.

Algorithm 3 Weight folding for transformed multigrid AE

Compute degree matrixD and weight matrixW that are ac-
tive for the pyramid based at level s when solving the multi-
scale AE problem (C,Θ,U) using transformed multigrid.

1: function WEIGHTFOLD(C,Θ,U, s)
2: C ← Diag(Csmax

, . . . ,C0) . initialize weights
3: Θ← Diag(Θsmax

, . . . ,Θ0)
4: D ← diag(C1)
5: W ← C • exp(iΘ) . rn0 × rn0 matrix
6: U ← [Usmax ; . . . ; U0]
7: for ś← 0, . . . , (s− 1) do . fold levels below s

8: pUα ← U[0:(rnś+1−1), (ruś+1):(ruś−1)]

9: pUβ ← U[(rnś+1):(rnś−1), (ruś+1):(ruś−1)]

10: pRα ← INCCHOLESKY(pU∗
α
pUα)

11: xWα ←W[0:(rns+1−1), 0:(rns+1−1)]

12: xWβ ←W[(rnś+1):(rnś−1), (rnś+1):(rnś−1)]

13: �W ← pUα(pRα \ pR∗
α \ (−pU∗

β
xWβ))

14: �W ← pUα(pRα \ pR∗
α \ (−pU∗

β
�W ∗))

15: W ← xWα + �W ∗ . rnś+1 × rnś+1 matrix
16: end for
17: D ← diag(abs(W)1)

18: return (D,W)

3.1. Hardware Parallelism

Ignoring our multigrid strategy, using randomized ma-
trix approximation techniques for eigenproblems has the
same computational complexity as traditional eigensolvers,
but with a slightly larger constant factor. However, these
techniques are better suited to parallel implementations. We
inherit this property; each step of our eigensolver operates
simultaneously across at least m vectors.

Efficiently parallelizing a Lanczos eigensolver for run-
ning the gPb algorithm [1] on a GPU requires assuming
the affinity matrix has a repeating stencil structure [3]. Our

12 14 16 18 20 22 24 26 28 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Log
2
(Computation Cost)

E
rr

or
 B

ou
nd

Eigensolver Convergence Behavior

31x

Progressive Multigrid
Baseline Multiscale

Figure 4. Progressive multigrid speeds convergence. For any
fixed computational cost, running our solver using a progressive
multigrid strategy produces significantly lower error than running
it on the multiscale problem without using multigrid. Jumps in er-
ror (arrows) occur as the multigrid solver switches levels. Here,
cost is the total amount of computation required for diffusion
and projection operations, adjusted for the fact that operations are
cheaper on coarser subproblems when using progressive multigrid.
Note the log scale; multigrid is 31 times faster by this measure.

Baseline (tol=0.1) Multigrid (tol=0.1) Multigrid (tol=0.01)
0

200

400

600

800

1000

1200

1400

1600

1800

C
P

U
 T

im
e

(s
ec

on
ds

)

Setup Subproblems
Initialize A
Interpolate A
Diffuse+Project A
Convergence Test
Small Eigenproblem

Figure 5. Eigensolver runtime breakdown. Diffusion and pro-
jection operations applied to refine the matrix approximation dom-
inate the running time of our solver in both baseline and progres-
sive multigrid modes. Even with a tighter error tolerance, the
multigrid strategy offers an 11× speedup over the baseline. Com-
putation is for 32 multiscale eigenvectors. Times are averaged over
the 100 BSDS [12] test images.

eigensolver is parallelizable without any restrictions on the
sparsity patterns in the problem definition. This is impor-
tant as recent work relies on solving Angular Embedding
problems with data-dependent sparsity patterns [9, 10].

Image Multiscale sPb: Coarse Multiscale sPb: Medium Multiscale sPb: Fine sPb [1]

Figure 6. Multiscale spectral Pb. Following the procedure of Arbeláez et al. [1], we take gradients of eigenvectors to turn the result of
spectral clustering into a spectral probability of boundary (sPb) measure. Our eigenvectors live on an image pyramid, rather than a grid, so
we end up with a set of consistent coarse-to-fine boundaries across three scales. Comparing our results (center columns) to the original sPb
(right) shows the advantage of preserving multiscale information throughout the spectral clustering stage. Row 1: The original sPb places
an incorrect edge inside the arch and fails to pop out the top-left corner from the background. Row 2: Our multiscale version correctly
separates the right side of the bird’s head from the background; the corresponding original sPb edge is extremely weak. Rows 3, 4: Tiger
and zebra stripes behave as they should, emerging at fine scale and disappearing at coarse. The original sPb must trade off representing
object boundaries vs interior details, compressing both into a single output. Rows 5-7: Foreground objects pop-out strongly at coarse scale;
their boundaries are more salient across scales. Row 8: Multiscale preserves salient structure in the left side of the image.

4. Experiments

We apply our eigensolver to image segmentation prob-
lems, defined on a multilevel pyramid [5], with scale-
dependent affinities on each level. Intervening contour,
computed on top of probability of boundary [1], determines
affinities at three different scales. Unlike Arbeláez et al. [1],
we refrain from collapsing the affinity matrix into a single
scale before spectral clustering. We preserve multiscale in-
formation through the entire segmentation pipeline.

Figure 3 provides a visual comparison of eigensolver
convergence behavior on an example image segmentation
problem. Figures 4 and 5 quantify the speedup in terms
of both counting operations and recording actual CPU run-
time. Note that the solver spends the vast majority of time
on applying the inherently m-way parallel diffusion and
projection operations to matrix A, as shown by the yellow
blocks in Figure 5.

Though our eigensolver is amenable to parallelization,
our experiments are all on a serial implementation in MAT-
LAB and observed speedups are solely due to our use of
constraints to shape multigrid computation. Progressive
multigrid gives more than a factor of 10 speedup over the
baseline. All benchmarks are for finding 32 eigenvectors
and are averaged over the 100 images of the Berkeley seg-
mentation dataset test set [12].

Figure 6 compares the output from our multiscale spec-
tral clustering problem to the single scale currently used in
gPb. Clear differences hint at future applications of our mul-
tiscale pipeline to improving image segmentation quality.

5. Conclusion

Our novel eigensolver merges constrained spectral clus-
tering with progressive multigrid computation. We demon-
strate large speedups in solving multiscale image segmenta-
tion problems. Our eigensolver is applicable to many prob-
lems with coarse-to-fine structure and our segmentation
framework shows the benefits of a full multiscale pipeline.

Acknowledgments. ONR MURI N00014-10-1-0933 and
ARO/JPL-NASA Stennis NAS7.03001 supported Michael
Maire’s work. NSF CAREER IIS-1257700 supported Stella
Yu’s work.

References
[1] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik. Contour

detection and hierarchical image segmentation. PAMI, 2011.
[2] M. Brezina, T. Manteuffel, S. McCormick, J. Ruge,

G. Sanders, and P. Vassilevski. A generalized eigensolver
based on smoothed aggregation (GES-SA) for initializing
smoothed aggregation multigrid (SA). Numerical Linear Al-
gebra with Applications, 15(2-3):249–269, 2008.

[3] B. Catanzaro, B.-Y. Su, N. Sundaram, Y. Lee, M. Murphy,
and K. Keutzer. Efficient, high-quality image contour detec-
tion. ICCV, 2009.

[4] C. Chennubhotla and A. D. Jepson. Hierarchical eigensolver
for transition matrices in spectral methods. NIPS, 2005.

[5] T. Cour, F. Benezit, and J. Shi. Spectral segmentation with
multiscale graph decomposition. CVPR, 2005.

[6] C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral
grouping using the Nyström method. PAMI, 2004.

[7] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding struc-
ture with randomness: Probabilistic algorithms for construct-
ing approximate matrix decompositions. SIREV, 2011.

[8] D. Kushnir, M. Galun, and A. Brandt. Efficient multilevel
eigensolvers with applications to data analysis tasks. PAMI,
2010.

[9] M. Maire. Simultaneous segmentation and figure/ground or-
ganization using angular embedding. ECCV, 2010.

[10] M. Maire, S. X. Yu, and P. Perona. Object detection and seg-
mentation from joint embedding of parts and pixels. ICCV,
2011.

[11] S. Maji, N. K. Vishnoi, and J. Malik. Biased normalized cuts.
CVPR, 2011.

[12] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database
of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecologi-
cal statistics. ICCV, 2001.

[13] E. Sharon, M. Galun, D. Sharon, R. Basri, and A. Brandt. Hi-
erarchy and adaptivity in segmenting visual scenes. Nature,
442:810–813, 2006.

[14] J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. PAMI, 2000.

[15] S. X. Yu. Segmentation induced by scale invariance. CVPR,
2005.

[16] S. X. Yu. Angular embedding: A robust quadratic criterion.
PAMI, 2012.

[17] S. X. Yu and J. Shi. Segmentation given partial grouping
constraints. PAMI, 2004.

