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Abstract

Contours and junctions are important cues for percep-

tual organization and shape recognition. Detecting junc-

tions locally has proved problematic because the image in-

tensity surface is confusing in the neighborhood of a junc-

tion. Edge detectors also do not perform well near junc-

tions. Current leading approaches to junction detection,

such as the Harris operator, are based on 2D variation in

the intensity signal. However, a drawback of this strategy is

that it confuses textured regions with junctions. We believe

that the right approach to junction detection should take

advantage of the contours that are incident at a junction;

contours themselves can be detected by processes that use

more global approaches. In this paper, we develop a new

high-performance contour detector using a combination of

local and global cues. This contour detector provides the

best performance to date (F=0.70) on the Berkeley Seg-

mentation Dataset (BSDS) benchmark. From the resulting

contours, we detect and localize candidate junctions, taking

into account both contour salience and geometric configu-

ration. We show that improvements in our contour model

lead to better junctions. Our contour and junction detec-

tors both provide state of the art performance.

1. Introduction

We present a new, high-performance detector for con-

tours in natural images, and use its output to detect and lo-

calize image junctions. These are each well-studied prob-

lems in computer vision; our novel contributions are the fol-

lowing:

• Contour Detection: We combine the use of local in-
formation derived from brightness, color, and texture

signals, with global information obtained from spec-

tral partitioning, to produce a contour detector. On the

BSDS benchmark of 100 images, this provides the best

results to date (comparison data is available for several

algorithms tested over the last 4 years [10]).

• Junction Detection and Localization: Local junc-
tion detection is difficult, even for humans [18]. Yet

much previous work in the computer vision commu-

nity focused on operators based on local image patches

[5, 8, 11, 14, 23]. These approaches detect the pres-

ence of edge energy at mutiple orientations, as might

happen in textured areas, and as such provide a use-

ful signal for structure from motion and object recog-

nition. We are interested in a more classic notion of

junctions, as in line drawing interpretation and percep-

tual organization. Our approach is based on detect-

ing junctions as the approximate intersection points of

contours in a way that makes us immune to the well-

known problems of contour detectors in the neighbor-

hood of a junction. Benchmarks for junction detection

seem non-existent, so we develop a new one based on

the BSDS. We compare our junction detector to base-

lines built on variants of the Harris detector [11].

The two main sections of this paper present our approach

to and results on these twin problems. Discussions of rel-

evant past work on contour and junction detection are em-

bedded in their respective sections.

2. Contour Detection

There is an extensive literature on contour detection.

For the purposes of this paper, we consider two main ap-

proaches to this task. A first family of methods aims at

quantifying the presence of a boundary at a given image lo-

cation through local measurements. Early local approaches,

such as the Canny detector [3], model edges as sharp dis-

continuities in the brightness channel. A richer description

can be obtained by considering the response of the image

to a family of filters of different scales and orientations. An

example is the Oriented Energy approach [19, 21], in which

the filterbank is composed of quadrature pairs of even and

odd symmetric filters. More recent approaches also take

into account color and texture information and make use of

learning techniques for cue combination [17, 6].

A second family of methods relies on integrating global



Figure 1. Top: Original image and first four generalized eigenvectors. Bottom: Maximum response over orientations θ of sPb(x, y, θ),
and of sPbvj

(x, y, θ) for each eigenvector vj.

image information into the grouping process. Spectral

graph theory [4] has often been used for this purpose, partic-

ularly, the Normalized Cuts criterion [16, 25]. In this frame-

work, given an affinity matrixW whose entries encode the

similarity between pixels, one defines Dii =
∑

j Wij and

solves for the generalized eigenvectors of the linear system:

(D − W )v = λDv (1)

Traditionally, after this step, clustering is applied to

obtain a segmentation into regions. This approach often

breaks uniform regions where the eigenvectors have smooth

gradients. One solution is to reweight the affinity matrix

[26]; others have proposed alternative graph partitioning

formulations [9, 27, 29]. Recently, Zhu et al. [30] proposed

detecting closed topological cycles in a directed edgel graph

by considering the complex eigenvectors of the normalized

random walk matrix. Although contour detection methods

based on spectral partitioning have been reported to do well

in the high precision / low recall regime, their performance

is generally poor in the high recall / low precision regime

[9, 29].

There is of course a much larger tradition in boundary

detection and region segmentation. Classic approaches in-

clude the variational formulation introduced by Mumford

and Shah [20], level-set methods [24] and techniques based

on perceptual organization of contour outputs [15, 28]. Re-

cent methods in contour detection include [7], where salient

smooth curves are extracted by using a greedy approximate

solution to the minimum-cover problem; [22], where the

Conditional Random Fields framework is used to enforce

curvilinear continuity of contours; and [1], where Ultramet-

ric Contour Maps are obtained from hierarchical agglomer-

ative clustering of regions.

2.1. Combining Local and Global Contours

We consider in this paper the detector of [17], whose

output Pbσ(x, y, θ) predicts the posterior probability of a

boundary at each image pixel by measuring the difference in

several feature channels on the two halves of a disc of radius

σ centered at (x, y) and divided by a diameter at angle θ.
In our experiments, we sample θ at 8 orientations in the
interval [0, π).
In order to detect fine as well as coarse structures, we

consider brightness, color, and texture gradients at three

scales: [σ
2 , σ, 2σ], where σ is the default scale of the Pb

detector. We then combine linearly the local cues, denoted

{Gi}, in a single multiscale oriented signal:

mPb(x, y, θ) =

9
∑

i=1

αi · Gi(x, y, θ) (2)

In order to introduce global information, we consider

the first k + 1 generalized eigenvectors of the system (1),
noted {v0, ...,vk}, where the corresponding eigenvalues
{λ0, ..., λk} are such that 0 = λ0 ≤ ... ≤ λk . In our exper-

iments, we use k = 8.
We construct the affinity matrixW by using the interven-

ing contour cue [9, 13], the maximal value of mPb along
a line connecting two pixels. We then reshape each vj in

the size of the original image and extract its contours us-

ing Gaussian directional derivatives at multiple orientations

θ, obtaining an oriented signal sPbvj
(x, y, θ). The informa-

tion from different eigenvectors is then combined to provide

the “spectral” component of our boundary detector:

sPb(x, y, θ) =

k
∑

j=1

1
√

λj

· sPbvj
(x, y, θ) (3)

where the choice of the weights is motivated by the physical

interpretation of generalized eigensystems as mass-spring

systems [2]. Figure 1 presents an example. Note that, by

extracting an oriented contour signal from the eigenvectors

instead of producing hard segmentations, we eliminate the

problem of large uniform regions sometimes being broken

up by the Normalized Cuts algorithm.
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Figure 2. Evaluation of boundary detectors. Left: Comparison of the detectors in this paper. The spectral detector sPb improves the
precision of the local signal mPb, while their combination gPb provides uniformly better performance. Middle: Comparison of gPb
with leading boundary detectors on grayscale images. Right: Comparison of gPb with leading boundary detectors on color images. gPb
obtains the highest F-measure (2 · Precision · Recall/(Precision + Recall)) to date on the BSDS benchmark.

The signalsmPb and sPb convey different information,
as the former fires at all the edges while the latter extracts

only the most salient curves in the image. We found that

a simple linear combination is enough to benefit from both

behaviors. Our final globalized probability of boundary

is then written as:

gPb(x, y, θ) =

9
∑

i=1

βi · Gi(x, y, θ) + γ · sPb(x, y, θ) (4)

where the weights are learned by gradient ascent on the F-

measure.

A thinned, real-valued contour image can be obtained

from gPb by considering the maximal response over ori-
entations at each location and applying non-maximum sup-

pression [3, 12].

2.2. Evaluation

Figure 2 presents the evaluation of our boundary detec-

tion results using the BSDS benchmark [10]. The precision-

recall curves show that the reduction of false positives due

to the use of global information in sPb is concentrated in the
high thresholds, while gPb takes the best of both worlds, re-
lying on sPb in the high precision regime and on mPb in
the high recall regime. The mean improvement in precision

of gPb with respect to the single scale Pb is 10% in the re-
call range [0.1, 0.9]. The gain in precision of the grayscale
version of gPb with respect to the Canny detector is 17%
in the same recall range. Qualitatively, this improvement

translates as reduction of clutter edges and completion of

contours in the output, as shown in Figure 3. The central

and right panels of Figure 2 show that gPb compares fa-
vorably with the leading contour detection techniques eval-

uated on the BSDS [1, 3, 6, 7, 17, 22, 29, 30].

3. Junction Detection

Evidence from psychophysics [18] suggests that junc-

tions are difficult to detect locally. However, much previ-

ous work in the computer vision community has focused on

the development of operators based on local image patches

[5, 8, 11, 14, 23]. While our approach still analyzes an im-

age neighborhood, we do not necessarily rely on image in-

formation in the immediate vicinity of a junction. Rather,

we choose the support of the neighborhood large enough

with respect to the support of the boundary operator so that

our algorithm may recover from errors in contour detection

near a junction.

3.1. Local Operators

We use a version of the Harris operator [11] as a base-

line with which to compare our algorithm. Given image I
let G be a two-dimensional Gaussian smoothing kernel and
define:

A(x, y) = G ∗ [∇I∇IT ]
∣

∣

(x,y)
(5)

where ∗ denotes convolution [14].
Let λ1 and λ2 be the eigenvalues of A(x, y). The Harris

corner operator is based on the observation that near a cor-

ner, both λ1 and λ2 are large and positive, whereas near an

edge or featureless region, at least one of λ1, λ2 ≈ 0. We
define our Harris operator to be:

H(x, y) = λ1λ2/(λ1 + λ2) (6)

Applying non-maximum suppression toH(x, y) yields can-
didate junction locations.

Reliance on the grayscale image derivative∇I leaves the
Harris operator vulnerable to erroneous responses in tex-

tured regions. The next section describes a novel junction



Figure 3. When compared with the local detector Pb, our detector gPb reduces clutter and completes contours. From left to right:
Original image, thresholded Pb, thresholded gPb, and gPb. The thresholds shown correspond to the points of maximal F-measure on the
curves in Figure 2.

detection algorithm based on Pb or its variantsmPb, gPb,
etc. To illustrate that our gains are partially due to this al-

gorithm and not just the result of a better image derivative

estimate, we include as a comparison point the Harris oper-

ator with ∇I computed from Pb(x, y, θ).

3.2. Contourbased Approach

Junctions may be viewed as points at which two or more

distinct contours intersect. For each junction, we would like

to recover its location and salience, and also identify the

contours passing through it.

Given a set of contours defined by the non-maximum

suppressed output of Pb (or a similar boundary detector),
if one knew the junction locations, it would be easy to iden-

tify the associated contours. Conversely, if one knew which

contours intersect at each junction, it would be easy to es-

timate the optimal locations. This suggests an EM-style al-

gorithm. For an image neighborhood IN :

1. Estimate the optimal junction location L = (xL, yL)
by minimizing its weighted distance from the contours

{Ci} ∈ IN

L = argmin(x,y)∈IN

∑

i

wid(Ci, (x, y)) (7)



where d(Ci, (x, y)) is the distance from contour Ci to

point (x, y). In practice, we approximate each contour
fragmentCi as a line segment and let d(·, ·) be the dis-
tance from a point to the line containing this segment.

Hence, d(·, ·) is small provided the smooth continua-
tion of the contour intersects the junction.

2. Update the weightwi of each contourCi in order to se-

lect only those contours passing close to the junction:

wi = |Ci| · exp(−d(Ci, L)
2
/ǫ2) (8)

where |Ci| =
∑

(x,y)∈Ci
Pb(x, y) is the total contrast

of contour Ci and ǫ is a parameter controlling the dis-
tance tolerance.

3. Repeat the above two steps for a set number of itera-

tions or until the optimal junction location L reaches a
fixed point. In practice, convergence is fast and in our

experiments we capped the number of iterations at 5.

The weights are initialized by setting wi = |Ci| ∀i.

Figure 4 provides an example of a set of contour frag-

ments in an image neighborhood and their line segment

approximations. Step 1 minimizes a weighted distance to

these lines. Notice that some contours do not participate in

the junction. Step 2 removes such distractors.

The errormeasure minimized in Step 1 is similar in spirit

to that used by Forstner and Gulch [8] for corner localiza-

tion. However, they minimize a sum of squared distances

from lines through directed pixels and are vulnerable to

clutter without the reweighting step.

Note that we need only consider neighborhoods IN

likely to contain a junction: those near existing endpoints

of our approximately linear contour fragments.

Figure 4. Contour fragments in an image neighborhood. We sub-

divide contours into approximately linear pieces and consider the

corresponding straight line segments when localizing junctions.

Figure 5 shows the results of our junction localization

algorithm. The left panel contains the Pb response in the

Figure 5. Junction localization. Left: Contours detected in an im-

age neighborhood. Right: Contours reweighted according to their

intersection with the detected junction (red star). Our reweighting

technique removes clutter which is not part of the junction. The

surviving contours are precisely those participating in the junction.

neighborhood of a junction. The right panel displays each

pixel with intensity equal to the weight of its corresponding

contour after localization. Reweighting removes interfering

contours which pass through the image neighborhood, but

not the junction.

The above approach leaves open the question of junction

salience. We would like a quantitative measure of junction

strength in order to compare our results to local operators

such as Harris. We design a “probability of junction” oper-

ator, Pj, motivated by the following considerations:

• Contours meeting at a junction should be salient.

• Junctions should be sharp. The intersecting contours
should be nearly orthogonal.

• We wish to treat all junction types in the same frame-
work. Let n be the degree of a junction (usually 2 or 3).
We evaluate an n-junction by regarding it as the maxi-
mally salient 2-junction formed by its components.



The following Pj measure satisfies all three of these
constraints:

Pj(xL, yL) ∝ maxCu,Cv∈IN
{√wuwv · sin(θ(Cu, Cv))}

(9)

where θ(Cu, Cv) is the angle between contour fragments
Cu and Cv at the junction location (xL, yL). The term
sin(θ(Cu, Cv)) is a counterpart to extracting the component
perpendicular to the dominant orientation, analogous to the

second eigenvector of∇I∇IT .

3.3. Junction Benchmark

To our knowledge, no standard dataset exists in the com-

puter vision community for the purpose of benchmark-

ing junction detection algorithms. We adapt the human

ground truth of the BSDS to serve as a junction bench-

mark. From the ground truth segmentations, we extract 3-
junctions as places where three or more regions intersect,

and 2-junctions as locations of high curvature along human
drawn boundaries. Just as for contour detection, the corre-

spondence between machine and human marked junctions

is used to produce a precision-recall curve for each junction

detection algorithm.
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Figure 6. Human agreement on junction detection. Junction loca-

tions are automatically extracted from human marked ground truth

contours in the BSDS. Points represent all pairwise comparisons

of junction locations between subjects who marked the same im-

age. The X’s represent average agreement for each image. The

overall average agreement is the maximum performance a junc-

tion detection algorithm could expect to achieve.

Human agreement on the junction detection task, as

shown in Figure 6, is lower that human agreement on the

boundary detection task. Contours added or omitted can

more drastically change the junction structure, as can the

degree to which subjects traced sharp details. Hence, we use

a larger tolerance (6 pixels) for junction agreement. There is

a lower ceiling (in terms of F-measure) on this task than on

boundary detection. However, as the next section will show,

the junction benchmark can distinguish the performance of

our contour-based approach from that of traditional local

operators.
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Figure 7. Evaluation of junction detectors. Performance improve-

ments come from two sources: a better contour signal (notice the

difference between standard Harris and Harris on Pb, as well as
the difference between Pj on Canny, Pj on Pb, and Pj on gPb),
and a better junction measure (notice the difference between Har-

ris on Pb and Pj on Pb).

3.4. Evaluation

Figure 7 presents the results of evaluating several junc-

tion detectors on our BSDS-based junction benchmark. The

baseline Harris operator on the grayscale image performs

worst of all, with an F-measure of 0.28. Using Pb to esti-
mate the derivatives serving as input to Harris boosts its F-

measure to 0.34. Our contour-based junction detector Pj,
using the best contour signal gPb, performs best of all at
F=0.41. Human agreement on this task yields a ceiling of
F=0.47. Figure 8 illustrates the qualitative aspects of our
junction detector in comparison to the baseline Harris oper-

ator.

Our junction detector determines which contours partici-

pate in a junction (see Figure 5) in addition to estimating the

junction salience. Figure 9 shows that we can use this infor-

mation to restore missing contours near salient junctions.

4. Conclusion

In this paper, we have presented a unified framework for

contour and junction detection and shown leading results on

the BSDS benchmark. Since we have connectivity informa-

tion associating junctions and contours, this allows us to go

partway to producing idealized line drawings. We believe

these results will serve as useful input for later stages of

perceptual organization and object recognition.



Figure 8. Comparison of Pj with the Harris operator. From left to right: Original image, top junctions detected by Harris, top junctions
detected by Pj, junctions (Pj) (in red) overlayed on contours (gPb). For the purposes of display, we placed a Gaussian blob at each
junction location, with brightness corresponding to junction salience. In each of the center images, we show the same number (25) of
junctions. Additional results are provided in the supplemental material.
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