
proteins
STRUCTURE O FUNCTION O BIOINFORMATICS

Fast gap-free enumeration of conformations
and sequences for protein design
Kyle E. Roberts,1† Pablo Gainza,1† Mark A. Hallen,1 and Bruce R. Donald1,2,3*
1 Department of Computer Science, Duke University, Durham, North Carolina

2 Department of Biochemistry, Duke University Medical Center, Durham, North Carolina

3 Department of Chemistry, Duke University, Durham, North Carolina

ABSTRACT

Despite significant successes in structure-based computational protein design in recent years, protein design algorithms

must be improved to increase the biological accuracy of new designs. Protein design algorithms search through an exponen-

tial number of protein conformations, protein ensembles, and amino acid sequences in an attempt to find globally optimal

structures with a desired biological function. To improve the biological accuracy of protein designs, it is necessary to

increase both the amount of protein flexibility allowed during the search and the overall size of the design, while guarantee-

ing that the lowest-energy structures and sequences are found. DEE/A*-based algorithms are the most prevalent provable

algorithms in the field of protein design and can provably enumerate a gap-free list of low-energy protein conformations,

which is necessary for ensemble-based algorithms that predict protein binding. We present two classes of algorithmic

improvements to the A* algorithm that greatly increase the efficiency of A*. First, we analyze the effect of ordering the

expansion of mutable residue positions within the A* tree and present a dynamic residue ordering that reduces the number

of A* nodes that must be visited during the search. Second, we propose new methods to improve the conformational

bounds used to estimate the energies of partial conformations during the A* search. The residue ordering techniques and

improved bounds can be combined for additional increases in A* efficiency. Our enhancements enable all A*-based methods

to more fully search protein conformation space, which will ultimately improve the accuracy of complex biomedically rele-

vant designs.

Proteins 2015; 83:1859–1877.
VC 2015 Wiley Periodicals, Inc.

Key words: computational protein design; structure-based design; A* search; combinatorial search.

INTRODUCTION

Redesigning a protein’s structure or function has vast

potential in biomedical research. One promising tech-

nique for protein redesign is computational structure-

based protein design (CSPD). Starting from a template

protein structure, CSPD algorithms search over amino

acid sequences and conformations to predict mutations

to the native protein sequence that will have a desired

effect on the protein’s biochemical properties. Despite

enormous advances in computational power, a major

limitation in CSPD is the fact that the conformational

space grows exponentially as we increase the number of

mutable residue positions or increase the amount of pro-

tein flexibility allowed during the design search.1 Search-

ing these conformational spaces to find protein

sequences that will perform biologically important func-

tions requires advanced algorithms.

Proteins are dynamic and can exist in many low-

energy, near-native conformations at physiological condi-

tions. If flexibility is ignored or significantly limited dur-

ing the design search, the search can become brittle and

miss biologically favorable conformations and sequen-

ces.2 Therefore, we have developed and implemented

algorithms in the CSPD software package Osprey to

model both continuous side-chain and backbone flexibil-

ity during the design search,2–5 and to approximate

protein binding constants using partition functions over

molecular ensembles.6 We showed that incorporating

Grant sponsor: NIH; Grant number: 2R01-GM-78031-05.
†Kyle E. Roberts and Pablo Gainza contributed equally to this work.

*Correspondence to: Bruce R. Donald, Duke University, Box 90129, LSRC, D212,

Durham, NC 27708. E-mail: brd1proteins15@cs.duke.edu

Received 24 March 2015; Revised 14 July 2015; Accepted 21 July 2015

Published online 3 August 2015 in Wiley Online Library (wileyonlinelibrary.com).

DOI: 10.1002/prot.24870

VVC 2015 WILEY PERIODICALS, INC. PROTEINS 1859



continuous flexibility in CSPD improves the recovery of

native amino acids and finds novel low-energy sequences

that are missed by rigid-rotamer techniques.2 Similarly,

ranking sequences based on low-energy protein ensem-

bles with Osprey improves the results of prospective

designs.7,8 Applying these methods has led to many suc-

cessful experimentally validated, biomedically relevant

applications, including enzyme design,9,10 design of pro-

tein:protein interaction inhibitors,7,11 drug resistance

prediction,12,13 and the redesign of anti-HIV-1

antibodies.14–16

The CSPD problem that Osprey and other CSPD algo-

rithms solve can be formulated as follows: given the pro-

tein design “input model” (that is, input protein

structure(s), rotamer library, energy function, and

allowed protein flexibility), find the amino acid sequence

that stabilizes the fold of the given input structure(s).

This optimization problem can be solved by computa-

tionally searching over amino acid types, side-chain con-

formations (that is, rotamers2,17,18), and backbone

movements3–5 that best accommodate the desired pro-

tein fold. The CSPD problem is an optimization over

protein conformation and sequence space to find: (i) the

global minimum energy conformation (GMEC), (ii)

ensembles of low-energy conformations to score confor-

mational entropy (the K � algorithm6) and/or (iii) a

ranking of protein sequences for experimental testing.

While the CSPD problem is NP-hard,19,20 practical bio-

logical designs can be solved with mathematical guaran-

tees by several optimization techniques.21–24 These

provable algorithms guarantee that the optimal solution

is found with respect to the input model.

One of the more prevalent provable CSPD techniques is

the branch-and-bound algorithm A*.21,25 The A* algo-

rithm transforms the CSPD problem into a tree search,

where every level of the tree represents a mutable residue

position, each leaf represents a conformation in the search

space, and every internal node of the tree represents a

protein “partial conformation” (Fig. 1). The total size of

the tree is exponential in the number of mutable residue

positions. However, the A* algorithm can efficiently search

the tree by bounding the energy of every partial confor-

mation and using a best-first search to enumerate a gap-

free, in-order list of low-energy protein conformations. In

CSPD, a preprocessing dead-end elimination (DEE) prun-

ing step is commonly used before A* to prune rotamers

that are guaranteed to not be part of any low-energy pro-

tein conformations.8,26,27 After pruning, A* is used to

enumerate the remaining conformations or sequences in

order of increasing energy.

A* enumeration is essential for all CSPD algorithms

implemented in Osprey, including the methods that

allow continuous side-chain and backbone flexibility dur-

ing the design search,2–5 and the ensemble-based meth-

ods that approximate protein binding constants by

computing partition functions.6 Specifically, the

ensemble-based algorithm, K �, relies on the gap-free, in-

order list of conformations generated by A* to provably

approximate partition functions used to rank protein

sequences. The incorporation of ensemble-based scoring

into protein design better reflects protein dynamics and

is crucial for accurate designs.7,13,28,29 A*’s ability to

generate a gap-free low-energy ensemble makes it

uniquely suited for ensemble-based design in contrast to

other provable methods that only find the GMEC, such

as integer linear programming (ILP).22,30 The gap-free

list generated by A* also allows a set of low-energy

Figure 1
Tree representation of protein conformation space. A: A toy example
of three serine residues (shown in orange, blue, and gray) belonging to

the antibody VRC07 (PDB id: 4OLZ14), partially shown in white car-
toon. B: A 2D representation of (A), and for the purposes of this toy

example, we allow each residue to mutate to only two rotamers (shown
here as a star and a circle). C: Protein design algorithms compute pair-

wise interactions between rotamers based on an input energy function,

and these are shown here in matrices between residue pairs. For sim-
plicity, all internal rotamer energies are zero, and the pairwise energies

not shown have a zero value. D: The protein conformation and
sequence space can be represented as a tree. In a tree representation,

each level represents a residue, each inner node (each of the nodes
between the root of the tree, r, and the leaves of the tree) represents a

partially assigned conformation, and each child assigns a rotamer choice

for the next residue. Each leaf represents a fully assigned conformation.
A na€ıve approach to solve the protein design problem would explore

this tree completely. The optimal path is shown in red. E: Branch-and-
bound algorithms such as A* explore a small part of the tree by com-

puting energy lower bounds (called f-scores and shown next to each
node) on the possible conformations allowed at each inner node. A*

expands nodes in order of their f-score and guarantees that the optimal

solution is found (shown in red). [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

1860 PROTEINS

K.E. Roberts et al.

http://wileyonlinelibrary.com


sequences to be suggested for experimental testing. Due

to inaccuracies in the protein design model, it is rarely

expected that every design prediction will work perfectly.

Therefore, generating an ordered list of suboptimal

sequences is superior to only finding the GMEC.8

In addition to its use in Osprey, A* has been used by

several other CSPD methods to successfully design novel

and improved proteins. A* has been used to design stabi-

lized variants of Cyanovirin-N,31 optimize the binding

affinity of an antibody fragment to the integrin VLA1,32

create calmodulin/M13 variant complexes with novel

specificity,33 design HIV-1 protease inhibitors,34

improve the endosomal sorting of granulocyte colony-

stimulating factor,35 select candidate residue positions

for diversification that improved horseradish peroxidase

enantioselectivity,36 design BH3 peptides that can bind

Bcl-xL,
37 and design a novel zinc transporter.29 As

designs become more complex, the A* search can become

an algorithmic bottleneck in protein design. Improve-

ments to the A* algorithm will not only enable more

complex designs, but allow CSPD algorithms to more

comprehensively explore protein conformational space.

By improving critical CSPD algorithms like A*, protein

designers can use more biologically accurate input mod-

els, which will greatly improve the accuracy of CSPD and

unlock the ability to design biological functions that

were previously unattainable by CSPD methods.

In this work we show how the performance of the tra-

ditional A* algorithm8,21 can be radically improved in

two ways: first, by intelligently ordering the search tree

(Section “Ordered A* Trees”), and second, by using

improved methods to bound the best outcome of each

path in the tree (Section “Tighter A* f-score Bounds”).

In Section “Ordered A* Trees,” we analyze the ordering

of protein residues within the A* tree and the effect the

ordering has on performance. We propose several alter-

natives to the traditional sequential residue ordering,

including predefined orders and a new dynamic ordering

algorithm (Dynamic A*), that improve the efficiency of

A*. In Section “Tighter A* f-score Bounds,” we focus on

improving the lower bounds on the energies of partially

defined protein conformations, which are used to guide

the tree search in A*. We refer to these lower bounds as

f-scores. We analyze and compare the traditional A* f-

score vs. improved f-scores computed using established

techniques from the field of computational optimization,

including linear programming (LP),22 max-product lin-

ear programming (MPLP),38 and local consistency

(LoC).23 In the “Results” Section we present a large-

scale study of 29 difficult protein designs that shows the

large performance improvements that result from the

new residue ordering and f-score methods.

Protein design is an important tool in biotechnology.

Due to improvements in computational structural biol-

ogy (for example, more protein structures in the PDB

database and improved energy functions and rotamer

libraries), the protein design problem has been trans-

formed into a computational search problem. Some of

the most important remaining challenges are directly

related to our ability to search this space efficiently:

searching the continuous flexible space of proteins, mod-

eling proteins as dynamic ensembles and enumerating

multiple sequence candidates for experimental testing.

Our improvements to the A* search enable CSPD proto-

cols that can specifically address these challenges. We

detail two such examples in our work. First, we describe

a novel A* branching technique, Sequence-A*, that

allows A* to directly enumerate sequences rather than

conformations. Our improvement of A* f-scores and res-

idue ordering allows Sequence-A* to accurately bound

the energies of partial sequences and directly find the

best suboptimal sequences. We show that Sequence-A*

can generate a gap-free in-order list of low-energy

sequences much faster than traditional A* methods. Sec-

ond, we demonstrate that our improved A* methods can

be combined with minimization-aware protein design

methods2,3 to solve problems that had too many viable

rotamers for traditional A* to solve. By improving the

capacity of search algorithms, our new methods will

allow more accurate and consistent designs, which will

translate into novel biological designs.

METHODS

Background: The A* algorithm for the
protein design problem

In CSPD, a protein conformation can be represented

as a vector of n rotamers a5ða1; a2; :::; anÞ, where n is

the number of residue positions allowed to mutate dur-

ing the design search. The total energy for the conforma-

tion a is defined as

EðaÞ5Etempl1
Xn

i50

EðaiÞ1
Xn

i50

Xn

j5i11

Eðai; ajÞ; (1)

where Etempl is the template energy (that is, the energy of

the backbone atoms and side-chain residues that are not

allowed to move or mutate), EðaiÞ is the internal energy

of rotamer ai plus the energy of ai with the template,

and Eðai; ajÞ is the pairwise energy between rotamers ai

and aj. In its simplest form, the goal of CSPD is to find

the rotamer vector with the lowest energy, known as the

GMEC: g5 argmina EðaÞ. To reduce the size of the pro-

tein conformational search space, DEE can be used to

prune rotamers that are guaranteed to not be part of the

GMEC.1,6,8,26,27 After DEE pruning, many low-energy

protein conformations remain unpruned and must be

searched to find the lowest-energy structures.

To enumerate protein conformations that remain after

DEE pruning, a branch-and-bound algorithm based on

PROTEINS 1861

Fast Conformation Search for Protein Design



the A* algorithm can be used.6,21 A* searches protein

conformations by representing the design problem as a

tree search and traverses only the branches of the tree

that might lead to the lowest energy structure. Each level

of the tree represents a residue position in the protein

that is being designed (Fig. 1). Each internal node in the

tree represents a partial rotamer assignment, where the

number of assigned rotamers is equal to the node’s depth

in the tree. Therefore, every leaf node of the tree is a

complete rotamer assignment. Formally, each node x at

depth m in the tree contains a partial rotamer assign-

ment p5ðp1; p2; � � � ; pmÞ where pm is the assigned

rotamer at the mth residue position. The remaining resi-

due positions U5fm11; � � � ; ng have not been assigned

a rotamer yet. Every node x is scored with an f-score,

which is the sum of the partially assigned conformation’s

energy g(x) and a bound on the remaining possible

rotamer assignments for that node h(x):

f ðxÞ5gðxÞ1hðxÞ: (2)

Since g(x) scores the unique partially assigned confor-

mation at node x, the energy of this partial conformation

can be computed exactly:

gðxÞ5
Xm

i51

EðpiÞ1
Xm

j5i11

Eðpi; pjÞ
 !

(3)

In contrast, h(x) must estimate the minimum energy

of all remaining rotamer assignments for node x. Any

function that provides a lower-energy bound for the pro-

tein conformations can be used by A* to enumerate low-

energy conformations. In Ref. 21, the following canonical

bound is presented:

hðxÞ5
Xn

j5m11

min
qj2Qj

 
EðqjÞ1

Xm

i51

Eðpi; qjÞ1

Xn

k5j11

min
qk2Qk

Eðqj ; qkÞ
!
:

(4)

We refer to the f-score [Eq. (2)] that incorporates the

above canonical bound [Eq. (4)] as the traditional f-

score. In Eq. (4), Qj refers to the set of unpruned

rotamers that are allowed at residue position j.

The A* algorithm proceeds by iteratively finding the

A* node with the lowest f-score and expanding the node

by creating child nodes that assign specific rotamers to

the next unassigned residue position. To expand a node

at depth m in the A* tree, a child node is created for

each rotamer r at residue position m 1 1 with the partial

rotamer assignment ðp1; � � � ; pm; rÞ. The A* algorithm

progressively expands nodes until the lowest f-score node

is a leaf node. This leaf node is guaranteed to be the

GMEC because the lower bounds for all remaining

conformations are higher than the leaf node’s energy. If

desired, A* can continue to enumerate conformations in

order of lowest energy, which provides a gap-free, in-

order list of low-energy conformations. We refer to the

A* algorithm described in this section and presented

in21 as Trad-A*. In Table I, we summarize the A*

method terminology introduced in this section and the

remainder of the Methods Section.

Ordered A* trees

The A* algorithm was originally developed for motion

planning in robotics as a faster alternative to Dijkstra’s

algorithm.25 While protein design shares some similar-

ities with this motion planning technique, there is a dis-

tinct difference between the two problems. In motion

planning, each edge in the tree corresponds to a planned

motion, and the output of the algorithm is the complete

path from tree root to leaf node, which corresponds to

the planned robot motion. However, in protein design,

only the final leaf node (that is, the full rotamer assign-

ment) is required as output, so the path that was taken

to get to the leaf is discarded. In other words, the order

in which the rotamers are assigned to residue positions

in the A* tree does not matter for correctness and the

path in the protein design A* tree does not have any

inherent meaning, in stark contrast to motion planning.

While the residue ordering within the A* tree does not

affect correctness (final output conformation and

sequence), the complexity (A* runtime) can be drasti-

cally affected by the order. Intuitively, if a subtree in the

A* tree does not contain the GMEC, it is beneficial to

prune it and prevent exploration of this subtree. If the

algorithm encountered paths with high energy bounds

early in the search, then A* could avoid expanding an

exponential number of paths. Encountering paths with

high low-energy bounds early can be achieved by order-

ing the tree such that nodes with high bounds are

expanded closest to the root of the A* tree and all its

subtrees. Consider the example in Figure 2. Residues 3–5

form a clique, such that the choice of a rotamer at one

residue significantly affects the choice at the other two

residues. If the traditional sequential residue ordering is

used for the A* search, all of the nodes at a depth of 1–5

must be created [Fig. 2(C)] to guarantee that all other

paths do not lead to the GMEC. However, when the

ordering is switched [Fig. 2(D,E)], only one or two levels

must be explored in the subtrees that do not lead to the

GMEC [Fig. 2(D,E)]. This is well-known in the field of

constraint satisfaction problems (CSPs), where depth-

first search combined with backtracking is used to find a

variable assignment that satisfies all of the problem con-

straints. Much work has been done developing variable

ordering heuristics and evaluating their performance on

various CSPs (for example39–41).

1862 PROTEINS

K.E. Roberts et al.



The guiding principle behind a good residue ordering

is to order the residues such that the number of

expanded nodes in the A* tree is small. This can be done

by ordering paths so that they fail (that is, have large

bounds) as fast as possible. In the protein design A*

search, this can be done by choosing to expand residue

positions that will increase the lower bound on the con-

formations within the tree as much as possible. Based on

this idea, we introduce four static (predetermined) resi-

due orderings to replace the traditional sequential order-

ing. We also present two new dynamic ordering methods

that choose which residue position to expand next at

each node based on the possible increase in energy

bound [that is, Eq. (2)].

Static A* ordering

The traditional A* enumeration in protein design uses

a sequential static ordering of residues in the A* tree. Spe-

cifically, depth m in the tree corresponds to the mth muta-

ble residue in the protein design problem. However, there

is no reason why this would be the optimal ordering of

residue positions within the tree. We have implemented

four alternative variable orderings–StaticMinDom, Stati-

cMaxDom, StaticDomCmed, and StaticHMean to deter-

mine how these ordering methods affect the speed and

efficiency of the protein design A* search. The StaticMin-

Dom ordering expands residue positions in order of

increasing variable domain size (that is, number of avail-

able rotamers per residue position). By expanding varia-

bles with a small domain first this greedily minimizes the

total size of the A* tree. The StaticMaxDom ordering is

the opposite of StaticMinDom and expands residue posi-

tions in order of decreasing variable domain size. By

expanding residue positions with many rotamers early in

the search, the total number of conformations that the h-

score must bound for a specific node is reduced, which

could lead to a more direct convergence to the GMEC.

The StaticDomCmed ordering method is defined in23

and chooses the residue position to expand based on the

ratio of the variable’s domain size divided by the sum of

the median pairwise energies to every other residue posi-

tion. By using the median variable costs, this ordering

tries to take into account the lower bound increase that

will occur when a specific variable is chosen and find the

variable that will increase the lower bound the most. Sim-

ilar to StaticDomCmed, the StaticHMean ordering scores

every position based on the harmonic mean of all the

position’s energetic interactions:

SHMðiÞ5

X
j 6¼i

jQi3Qj j21X
ðqi ;qjÞ2ðQi3Qj2farg min

ri ;rj

Eðri ;rjÞgÞ

ðEðqi; qjÞ2 min
ri ;rj

Eðri; rjÞÞ21

0
BBBBBB@

1
CCCCCCA
:

(5)

StaticHMean first normalizes every pairwise interac-

tion between residues i and j by subtracting the mini-

mum pair energy for any pair of rotamers at the two

positions (minri ;rj
Eðri; rjÞ). Then, StaticHMean computes

Table I
Summary of A* Method Terminology

Term Definition

Residue (Variable) Orderings
Trad-A* (or Sequential) Residue positions in the A* search are ordered by their location in the protein's amino acid sequence.
StaticMinDom Residue positions are expanded in order of increasing variable domain size (i.e., the number of available

rotamers per residue position).
StaticMaxDom Opposite of StaticMinDom. Residue positions are expanded in order of decreasing variable domain size.
StaticDomCmed Residue positions are expanded based on the ratio of the variable's domain size divided by the sum of the

median pairwise energies to every other residue position.23

StaticHMean Residue positions are ordered based on the harmonic mean of all the position's energetic interactions [Eq. (5)].
DynMin The residue position to be expanded is chosen dynamically such that it has the largest minimum f-score.
DynHMean The residue position to be expanded is chosen dynamically such that it maximizes the harmonic mean of its

f-scores.

f-score Methods
Trad-A* A* nodes are bounded by a sum of the partially assigned conformation's energy and a bound on the remaining

possible rotamer assignments for that Node [Eqs. (2–4)].
A*-LoC A* nodes are bounded by the LoC zero-arity cost function, c0, computed using EDAC.42

A*-LP A* nodes are bounded by the solution to the LP relaxation of the CSPD ILP [Eq. (11)].
A*-MPLP A* nodes are bounded using the MPLP algorithm, which approximates the solution to the CSPD LP relaxation.

A* Branching Methods
Conformation-A* A* enumerates an in-order, gap-free list of low-energy conformations. Each A* node represents a partially

assigned conformation.
Sequence-A* In contrast to Conformation-A*, Sequence-A* directly enumerates protein sequences rather than conforma-

tions. Each A* node represents a partially assigned sequence.

PROTEINS 1863

Fast Conformation Search for Protein Design



the harmonic average for each residue pair using the

normalized pairwise energies. All the harmonic terms

involving a specific residue are summed and used as the

residue’s score. Residues are then ordered in the A* tree

by decreasing order of this score.

Dynamic A* ordering

Dynamic A* reordering allows the A* algorithm to

choose which residue position to expand next at an A*

node based on which residue position will move the

Figure 2
Toy example that demonstrates the effect of residue position reordering on an A* search. A: Toy design problem where seven residue positions

are each allowed to mutate to two rotamers (represented by a star and a circle). Each residue position is colored by a unique color: orange (posi-
tion 0), cyan (position 1), gray (position 2), purple (position 3), maroon (position 4), green (position 5), and black (position 6). B: Diagram show-

ing the pairwise energies between all rotamers in this toy example. For simplicity, assume that all intrarotamer energies are zero and can be

ignored, and that the interactions between pairs that are not joined by an edge are zero. C–E: The A* algorithm explores only part of the full con-
formation tree to compute the optimal conformation. A* iteratively expands the node with the lowest f-score (shown by the dotted red path for

the nodes in the optimal conformation path) until a leaf is reached. Each expansion results in the creation of new nodes representing the children
of the expanded node. To compute the optimal conformation efficiently, it is desirable to expand the fewest number of nodes. The number of

nodes expanded can be dramatically reduced by changing the ordering of the tree. C: The traditional A* algorithm for protein design (Trad-A*)
sorts residues in the arbitrary sequential order given by the protein sequence. The bounds on the energies for each inner node in the optimal con-

formation are shown in red, and the path that leads to the optimal conformation is marked in a thick, red, dashed line. In this toy example, Trad-

A* expands 33 nodes, and creates 67 nodes (the 33 expanded nodes plus their children). D,E: Large speedups in A* can be achieved by a rational
ordering of nodes. The energies of each node in the optimal conformation are shown. D: In a static reordering, residue levels are reordered once

before A* runs. In this toy example, A* with static reordering must only expand 13 nodes and create 25 nodes to compute the optimal conforma-
tion. E: In a dynamic reordering, the next level is chosen independently for each path “on the fly” (that is, as the A* algorithm expands nodes).

In this dynamic reordering example, at depth m 5 2 the solution path expands position 3 (purple) while the alternative path expands position 4
(maroon). A* with dynamic ordering must expand only 9 nodes, and create a total of 17 nodes, to compute the optimal conformation. F: The

optimal conformation for this example is shown.

1864 PROTEINS

K.E. Roberts et al.



search closest to the GMEC energy. This removes the corre-

spondence between the depth in the A* tree and the resi-

due position that exists in traditional A* algorithms. A

dynamic A* node contains a set of rotamers P that have

been assigned and a set of unassigned residue positions U.

There is no requirement that the rotamers in P have

sequential residue positions, in contrast to the definition of

the partial rotamer assignment p in Section 2.1. Hence, the

residue positions in U need not be sequential either. There-

fore, dynamic A* adds a step to the traditional A* search

where the next residue position to be expanded is chosen

from U. Different strategies can be used to choose the next

residue position for a given A* node. We tested two ways

to choose which residue to expand, DynMin and DynH-

Mean. DynMin chooses the next variable based on the

maximum of the variable’s minimum f-score. DynHMean

chooses the residue with the maximum harmonic mean f-

score (with respect to the parent’s f-score).

In mathematical terms, the next chosen residue posi-

tion by DynMin is the position i such that:

i5 arg max
i2U

min
qi2Qi

f ðP [ fqigÞ
� �

: (6)

The next residue i for the DynHMeandynamic order-

ing is chosen as:

i5 arg max
i2U

jQijX
qi2Qi

ðf ðP [ fqigÞ2f ðPÞÞ21

0
BB@

1
CCA: (7)

A* enumeration with dynamic ordering proceeds by

directly choosing the next residue position to expand

at each node instead of expanding residue positions

in a predetermined order. The traditional A* algo-

rithm in Section “Background: The A* Algorithm for

the Protein Design Problem” can be updated to

reflect this change:

f ðxÞ5gðxÞ1hðxÞ (8)

gðxÞ5
X
pi2P

EðpiÞ1
X
pj2P;

j>i

Eðpi; pjÞ

0
B@

1
CA (9)

hðxÞ5
X
j2U

min
qj2Qj

EðqjÞ1
X
pi2P

Eðpi; qjÞ1
X
k2U ;
k>j

min
qk2Qk

Eðqj; qkÞ

0
B@

1
CA: (10)

Tighter A* f-score bounds

The residue orderings for A* described in Section

“Ordered A* Trees” are founded on the idea that

encountering large f-scores early in the search quickly

guides the search to low-energy conformations. Another

way to increase A* f-scores is to tighten the bounds on

the energies of unassigned conformations [Eq. (4)].

Recall that the f-score of an inner node in the A* tree

(for example, Figs. 1 and 2) is a lower bound on the

lowest-energy conformation in the node’s subtree. Thus,

the tightest value of a node’s f-score is the energy of the

lowest energy conformation in the subtree. Although a

polynomial-time algorithm that can compute such a

tight bound is improbable (because it is as hard as solv-

ing the entire problem), it is still possible to tighten the

A* algorithm’s f-score in polynomial or average polyno-

mial time.

As defined in the traditional A* search, h(x) is a very

overoptimistic bound on the energy of the unassigned

conformations. Consider the last term of h(x) in Eq. (4):Pn
k5j11 minqk2Qk

Eðqj ; qkÞ. This term finds the rotamer qk

with the minimum pairwise energy with qj over each of

the remaining unassigned residue positions. However,

there is no consistency constraint: there is no require-

ment that qk be the same rotamer for all j5m11; � � � ; n.

This means different rotamers at position k can contrib-

ute to h(x), resulting in a physically infeasible conforma-

tion. Ultimately, h(x) finds the lowest local pairwise

energy for every unassigned residue pair and does not

consider that two different rotamers cannot be present at

the same residue position in an actual physical confor-

mation. Here we present new A* algorithms for protein

design that use established techniques from computa-

tional optimization in a novel way to bound unassigned

protein conformations. A*-LP uses LP22 to compute

A* f-scores, A*-MPLP computes f-scores with max-

product LP,38 and A*-LoC uses LoC methods to improve

the f-score.42

LP-based f-score bounds

The CSPD problem can be formulated as an

ILP.22,43,44 If an ILP is relaxed (that is, the variables are

not restricted to integers) to an LP then the solution to

this relaxation can be found in polynomial-time45 or

average-case polynomial time (e.g., by the simplex

method).46 The LP relaxation can find non-physical

answers to the protein design problem because fractional

rotamers are allowed at residue positions, but the ener-

getic value of the LP solution is always a lower bound

on the energy of the protein design solution. Thus, the

LP solution can be used as a replacement to the tradi-

tional A* f-score.

Here we present the LP formulation of the protein

design problem based on22:

min
x

X
ri2Qi

xðriÞEðriÞ1
X
ri2Qi

X
rj2Qj

xðri; rjÞEðri; rjÞ (11)

PROTEINS 1865

Fast Conformation Search for Protein Design



subject to X
ri2Qi

xðriÞ51 For all i

X
rj2Qj

xðri; rjÞ5xðriÞ For all ðri; jÞ pairs

where xðriÞ; xðri; rjÞ 2 ½0; 1� and x is the vector of all xðriÞ;
xðri; rjÞ indicator variables. When the decision variable xðriÞ
or xðri; rjÞ is set to 1, this corresponds to choosing

rotamer ri or rotamer pair (ri, rj) respectively. Note that

the LP constraints enforce that the sum of partial

rotamers in a specific residue must add up to one, an

improvement over the traditional A* algorithm where

this sum is unconstrained. The A*-LP algorithm replaces

the Trad-A* f-score with the LP solution.

Message Passing-based f-score bounds

In practice, the LP solution represents an f-score that

tightly bounds the energies of solutions for the protein

design problem. However, even though the exact LP

bound can be computed in average-case polynomial time

using the simplex algorithm46 and in guaranteed poly-

nomial time using interior point algorithms,45 in prac-

tice the time required to solve the LP can become a

resource bottleneck. Thus, it is desirable to compute f-

scores using fast approximation algorithms.

One way to approximate the LP bound is to exploit

the weak duality property of LPs (for a description of

duality and dual LPs, see for example,47–49 and the

Appendix of this work). In an LP any solution that satis-

fies the constraints is called a feasible solution, while the

solution that maximizes the objective function is called

the optimal solution. Every LP (referred to as the

“primal program”) has a dual LP such that any feasible

solution to the dual is a lower bound on the optimal

solution to the primal. Moreover, the protein design LP

also satisfies the strong duality property, which states

that the optimal solution to the dual program has the

same value as the optimal solution to the primal prob-

lem. Thus, any feasible solution of the dual program is a

lower bound on the LP solution, and a dual feasible

solution that approximates the optimal of the dual pro-

gram is a tight lower bound on the LP solution.

Several message-passing algorithms24,38,50–53 use the

LP strong duality property to compute tight bounds on

the LP solution. The MPLP algorithm,38 for example,

optimizes the dual of the LP formulation in Eq. (11) [the

dual is presented in Eq. (13) in the Appendix]. MPLP

performs a block-coordinate descent in the dual by

exchanging messages between residues. Each message,

from residue i to residue j “communicates” the likelihood

of each rotamer rj based on the current likelihood of the

rotamers at residue i. At each step of the algorithm, a set

of dual variables (residue positions) is optimized, while

keeping the remaining variables fixed. MPLP is guaran-

teed to converge, although the convergence value can be

lower than the LP solution. We have implemented an

MPLP solver in Osprey and incorporated MPLP into A*

to create the new A* algorithm A*-MPLP.

LoC-based f-score bounds

An alternative method to calculate A* f-scores can be

understood by formulating the CSPD problem as a

weighted constraint satisfaction problem (WCSP).23 A

WCSP is defined by a set of variables that can each take

on a discrete set of assignments. Local cost functions are

used to weight all possible variable assignments. For the

CSPD problem, the WCSP variables are the mutable resi-

due positions that are each allowed to mutate to a dis-

crete set of rotamers. The WCSP local cost functions

correspond to the CSPD intra- and pairwise-energy

terms. In WCSPs, the cost function can only take on

positive integer values, so the CSPD energy function

must be scaled between 0 and 1.

WCSPs are often solved by a branch-and-bound tree

search similar to A*.54 At each node in the tree, LoC is

enforced on the current subproblem defined by the tree

node. LoC criteria were first developed to solve CSPs,55

which are a special case of WCSPs where each cost func-

tion is a constraint that can either be satisfied or unsatis-

fied.56,57 In CSPs a complete variable assignment is

consistent if it satisfies all cost functions. Enforcing LoC

on a CSP progressively eliminates variable assignments

that are inconsistent with the constraints, making it pos-

sible to find a solution to the problem.

Similar to CSPs, LoC can be applied to WCSPs. How-

ever, since WCSP cost functions are not binary, the goal

of WCSP LoC is to ensure that at least one assignment

of each cost function is zero. Two types of LoC are of

particular importance to WCSPs: node consistency,

which enforces unary constraints (intra-rotamer ener-

gies), and arc consistency, which enforces pairwise con-

straints (rotamer pair energies).54 In practice, node and

arc consistency are enforced by transferring energetic

costs from pairwise energy terms to lower arity (intra-

rotamer or template) energy terms. Ultimately, enforce-

ment of LoC increases the zero-arity cost function c0,

which represents the minimum energy of all protein con-

formations regardless of rotamer assignment (equivalent

to the template energy). By construction, c0 is a lower

bound on the energy of the CSPD solution. Therefore,

we can use this bound to compute A* f-scores.

LoC is enforced by applying equivalence-preserving

transformations to a WCSP, meaning that the CSPD

solution is preserved while the underlying structure of

the problem is changed. It has been shown that it is NP-

hard to find a locally consistent WCSP with a maximum

lower-bound.58 Therefore, several techniques have been

developed to find a tight lower bound, such as DAC,

1866 PROTEINS

K.E. Roberts et al.



FDAC, EDAC,42 and OSAC.59 Here, we use EDAC to

compute A* f-scores in our new algorithm A*-LoC.

Enumerating sequences with A*

The A* algorithm used in protein design efficiently

generates an in-order, gap-free list of low-energy protein

conformations. However, the goal of most protein

designs is to find low-energy sequences (rather than con-

formations) that can be experimentally tested and vali-

dated for a desired function. To generate a list of low-

energy sequences, A* must often enumerate many con-

formations that have the same sequences before a new

conformation with a unique low-energy sequence is

found. To improve the efficiency of searching for low-

energy sequences, we have developed a new A* algo-

rithm, Sequence-A�, that uses a modified node expansion

technique to directly enumerate sequences.

In Sequence-A*, when a node is expanded, all child

rotamers of the same amino acid type are assigned to the

same A* node. For example, consider a hypothetical

example where three valine and three leucine rotamers

are allowed at residue position i. When an A* node is

expanded at position i, Sequence-A* will only create two

new A* nodes (one for all the valine rotamers and one

for all the leucine rotamers), instead of creating six new

A* nodes and assigning an individual rotamer to each

new node. Therefore, internal nodes in the new A*

search tree represent partially assigned sequences instead

of partially assigned conformations (as they did in Trad-

A*) and leaf nodes now represent fully assigned sequen-

ces. Because leaf nodes now represent fully assigned

sequences, when the lowest-energy node is returned from

the A* tree, this node only represents the lowest-energy

sequence. To find the lowest-energy conformation for the

returned sequence, the side-chain placement problem

must be solved for the sequence. Since the side-chain

placement problem is a subproblem of the entire design,

it can be solved relatively quickly compared to the entire

design problem. To distinguish between Sequence-A* and

all previous A* methods that directly enumerate confor-

mations, we refer to the conformation-based methods as

Conformation-A�.
Since Sequence-A* nodes now represent partially

assigned sequences, the f-score for each node must

bound the energy of all sequences that contain the par-

tially assigned sequence. The f-score of each node can be

found by calculating a lower energy bound for all possi-

ble conformations with the node’s partially assigned

sequence. The A*-LP f-score for Sequence-A* is:

min
x

X
ri2Q0

i

xðriÞEðriÞ1
X
ri2Q0

i

X
rj2Q0

j

xðri; rjÞEðri; rjÞ (12)

subject to

X
ri2Q0

i

xðriÞ51 For all i

X
rj2Q0

j

xðri; rjÞ5xðriÞ For all ðri; jÞ pairs

where Q0i is the set of allowed rotamers at residue position

i, xðriÞ; xðri; rjÞ 2 ½0; 1�, and x is the vector of indicator

variables. If position i has been assigned a specific amino

acid type, Q0i will be the set of rotamers in Qi that have

that type. If position i has not been assigned yet, Q0i5Qi .

Similarly to the A*-LP f-score, it is straightforward to

modify the f-score methods in A*-MPLP, A*-LoC, and

Trad-A* for Sequence-A*. All four Sequence-A* f-score

methods have been implemented and tested in Osprey.

Benchmarking methods

Benchmarking test set

The protein systems from2 were used as a test set to

evaluate the proposed algorithmic improvements. Briefly,

crystal structures of protein chains with a maximum

resolution of 1.3 Å and <100 residues in length were

chosen using the PISCES server.60 Proteins in the test set

were chosen such that they had less than 10% sequence

identity with all other proteins in the test set. The test

set consists of the proteins with the following PDB ids:

1AHO, 1CC8, 1F94, 1FK5, 1G6X, 1I27, 1IQZ, 1JHG,

1JNI, 1L9L, 1LNI, 1M1Q, 1MJ4, 1MWQ, 1OAI, 1OK0,

1PSR, 1R6J, 1T8K, 1TUK, 1U07, 1U2H, 1UCR, 1UCS,

1USM, 1V6P, 1VBW, 1VFY, 1WXC, 1X6I, 1XMK, 1Y6X,

1ZZK, 2AIB, 2B97, 2BT9, 2BWF, 2CC6, 2CG7, 2COV,

2CS7, 2D8D, 2DSX, 2FCW, 2FHZ, 2FMA, 2GOM,

2HBA, 2HIN, 2HLR, 2HS1, 2IC6, 2J8B, 2O9S, 2P5K,

2QCP, 2QSK, 2R2Z, 2RH2, 2RIL, 2WJ5, 2ZXY, 3A38,

3D3B, 3DNJ, 3FGV, 3FIL, 3G21, 3G36, 3HFO, 3I2Z,

3JTZ, 3LAG.

Side-chain placements

Side-chain placement runs selected all residues with

<100% relative side-chain solvent accessible surface area

(SASA) and searched over all wild-type amino acid

rotamers at each chosen residue position. SASA values

were determined with the program NACCESS.61 The

number of flexible residues for each system ranges from

45 to 97 with an average of 71 flexible residues.

Protein core designs

Protein core design runs selected core residues with

<30% relative SASA to mutate during the design search.

Each mutable residue was allowed to take on its wild-

type identity and mutate to the 5–7 most likely amino

acid type substitutions based on the BLOSUM62

PROTEINS 1867

Fast Conformation Search for Protein Design



matrix.62 SASA values were determined with the pro-

gram NACCESS.61 The number of mutable residues for

each system ranges from 11 to 42 with an average of 28

mutable positions per design system.

Protein surface designs

The protein surface designs were similar to the protein

core designs, except that all residues with >50% relative

SASA were chosen to mutate during the design search.

The number of mutable residues for each design system

ranged from 17 to 48 residues, with an average of 28

mutable positions per design system.

Continuous rotamer side-chain placement

The improved A* methods can also be used to

improve protein design and side-chain placement with

continuous rotamers.2–5 The A*-LoC-DynMin method

was combined with the iMinDEE algorithm2 to repack

the interface residues of the HIV-1 broadly neutralizing

antibody, VRC07, bound to gp120 (PDB id: 4OLZ).

Interface residues were chosen by computing the contact

dots between VRC07 and gp120 using Probe63 and

choosing all residues with at least one contact dot at the

interface. In total, 27 gp120 residues and 24 VRC07 resi-

dues were flexible during the side-chain placement. An 8

Å shell containing all residues within 8 Å of any interface

residue was input to Osprey as the starting structure.

Osprey parameters

The protein design runs used the Richardsons’ Penulti-

mate Rotamer Library,17 while the side-chain placement

runs used the Penultimate Rotamer Library doped with

the crystal structure side-chain conformations. The

objective energy function consisted of the following

terms: the AMBER64 van der Waals and Coulombic

potential, EEF1 solvation,65 a hydrogen bond poten-

tial,66 an entropic factor1,67 and reference energies.68

The following energy function weights were used: dis-

tDepDiel 5 true, dielectConst 5 4.0, solvation 5 0.40,

vdwMult 5 0.95, hbond 5 3.0, and entropy 5 5.0. To

ensure that a sufficient number of rotamers were present

for the enumeration step, only Goldstein DEE pruning27

was used during the pruning stage. Each design was run

on a single Intel(R) Xeon(R) CPU E5-2695 v2 2.40 GHz

processor with 4 GB of RAM (except the continuous

designs were allowed 10 GB of RAM). A design was con-

sidered to have failed if it ran out of memory or did not

complete within one day of computation. For example,

all the difficult side-chain placement and protein core

design runs conducted with Trad-A* failed because they

ran out of memory. For a given protein system, the same

energy matrix and DEE pruning results are used for each

enumeration technique. Therefore, to understand the

gains from our new enumeration methods, the runtimes

reported in this manuscript reflect only the enumeration

time, that is, the time A* took to solve the problem.

A* enumeration

All combinations of the seven A* variable ordering

methods and the four A* f-scores were conducted on each

of the design test systems (Table I). The A*-LP f-score

uses the LP defined as in Eq. (11), except that the decision

variables for rotamers already assigned at the given node

were set to 1. An LP solver was implemented in Osprey

using the Gurobi optimization suite application program-

ming interface (Version 5.6).69 A*-MPLP uses MPLP38 to

compute its f-scores. We implemented MPLP within

Osprey and set the number of message-passing iterations

to 100, which we found to be a good trade-off between

running time and f-score bound tightness based on previ-

ous experiments. The A*-LoC f-score uses the LoC zero-

arity cost computed by enforcing LoC with EDAC on the

A* node subproblem to bound the conformations allowed

at the A* node. For a residue position that is assigned

rotamer ri within an A* node partial conformation, the

costs for all other rotamers at that position, fqi j qi 6¼ rig,
were set to infinite energy in the WCSP for that node.

Costs for the remaining rotamers were defined by the

computed energy matrix. A version of the WCSP solver

Toulbar270 (Version 0.9.5) modified to output the results

of the initial EDAC bound was integrated with Osprey to

find the zero-arity LoC bound for each A* node.

RESULTS

We tested all the A* enhancements described in the

Methods Section (Table I) on a test set of 73 protein design

systems. To assess the benefits of these methods compared

with Trad-A*, we focus our analysis on difficult problems:

those problems that take over 2 min to run using Trad-A*.

Hence, all problems that were solved by Trad-A* in under

2 min were removed from further consideration. We per-

formed two types of designs to test these algorithms. To

test exclusively the performance of the ordering methods,

we performed side-chain placement designs and further

analyzed the 39 difficult design systems. Side-chain place-

ment is a variation of CSPD where no mutations are

allowed, so the search is performed on rotamers of the

same amino acid type. Then, all combinations of the new

methods were tested on protein designs of the cores of the

protein test set, 29 difficult designs in total.

Variable ordering

We evaluated the static and dynamic variable orderings

using side-chain placements of the test protein systems.

All residue orderings were tested using the Trad-A* f-

score. Four static variable orderings were tested in addi-

tion to the standard sequential residue ordering used in

1868 PROTEINS

K.E. Roberts et al.



Trad-A*.21 Because the sequential Trad-A* ordering does

not use any information about the variable to choose the

ordering, this ordering can be considered a random or

arbitrary ordering. However, each new residue ordering

is based upon a fail-first principle that tries to order the

residue positions in a favorable manner.

Out of the 73 systems tested, 39 were classified as diffi-

cult. The sequential Trad-A* algorithm solved 10 of these

problems; StaticMinDom solved 9 problems; Stati-

cDomCmed solved 10 problems while StaticMaxDom and

StaticHMean solved 13 and 26 systems, respectively. In

addition, of the 10 problems solved by sequential order-

ing, the StaticMinDom, StaticMaxDom, StaticDomCmed,

and StaticHMean orderings were each faster than sequen-

tial ordering for 8, 6, 9, and all 10 systems, respectively.

For the 10 systems that completed with sequential order-

ing, StaticHMean and StaticMaxDom required the least

number of A* nodes (median number of expanded nodes:

3900 and 81000, respectively), while Trad-A*, StaticMin-

Dom, and StaticDomCmed required many more node

expansions (362,000, 109,000, and 129,000 nodes,

respectively). Overall, these results show that the

StaticMaxDom and StaticHMean methods that specifically

focus on quickly improving the A* f-score lower bound

outperform the other orderings. Our newly proposed

dynamic orderings improve upon the StaticMaxDom and

StaticHMean orders by specifically analyzing the f-scores

of future nodes to find more favorable residue orderings

than can be found through static methods.

The dynamic variable orderings, DynMin and DynH-

Mean were able to solve 30 and 31 of the difficult side-

chain placement problems respectively, improving upon

the static variable orderings. DynMin and DynHMean

performed faster than the sequential ordering for all test

systems. DynMin and DynHMean expand fewer nodes

than the static variable methods in 25 and 29 cases

respectively, achieving up to a 2700-fold reduction in the

number of expanded nodes (Fig. 3) within the 10 prob-

lems that were solved by all methods. The dynamic

ordering methods require more computation per node to

find the efficient paths through the A* tree; there is an

average 4 three-fold increase in time needed to expand

an A* node (51 expanded nodes/second vs. 2200 nodes/

second). However, the reduction in the number of nodes

that must be expanded far outweighs the additional time

needed to determine which variable to expand next.

Figure 3
The number of expanded A* tree nodes is greatly reduced by improved variable ordering methods. Top: The total number of conformations A*
had to search through for the 31 difficult side-chain placement problems that the new ordering methods could solve. The size of the conformation

space shown is the number of conformations remaining after dead-end elimination pruning. Bottom: The number of A* nodes expanded by three
different A* orderings for the 31 side-chain placement problems. Data is shown for the sequential residue ordering used in Trad-A* (red circles),

the StaticHMean static variable ordering (purple pentagons), and DynHMean dynamic variable ordering (green squares). The x axis is labeled by
the PDB id used for each side-chain placement problem. All of the runs used the Trad-A* f-score. Trad-A* failed to solve 21 problems (right of the

red vertical line) and StaticHMean failed to solve 5 of the problems. For visual clarity the x axis is ordered first by the number of nodes expanded
by Trad-A*, second by StaticHMean, and finally by DynHMean. [Color figure can be viewed in the online issue, which is available at wileyonlineli-

brary.com.]

PROTEINS 1869

Fast Conformation Search for Protein Design

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


Improved f-scores methods

We tested the new f-score algorithms A*-LoC, A*-

MPLP, and A*-LP by performing 73 protein core designs

and selected the 29 difficult designs (that is, designs that

took Trad-A* >2 min to complete) for further analysis.

For these designs, each mutable residue was allowed to

take on its wild-type identity and several other amino acid

types. In this experiment all f-score methods were tested

with the sequential variable ordering method. The new f-

score methods greatly outperform the standard Trad-A*

algorithm (Fig. 4). Trad-A* was only able to solve five of

the difficult test designs, but A*-LoC, A*-MPLP, and A*-

LP were all able to solve 28 of the 29 problems. For the

systems that the new f-score algorithms were able to solve,

A*-LoC was the fastest algorithm with a median runtime

of 26 seconds, while the median times for A*-MPLP and

A*-LP were 66 and 52 seconds, respectively. Overall, A*-

LP required the least number of expanded nodes (median

of 48 nodes), while the median number of expanded

nodes for A*-LoC and A*-MPLP were 58 and 57, respec-

tively. A*-LoC was the fastest algorithm, but required the

largest number of expanded nodes, implying that there is

a tradeoff between speed and f-score accuracy. On average,

A*-LoC expanded 2.2 nodes/s, A*-MPLP expanded 1.0

nodes/s, and A*-LP was the slowest at 0.9 nodes/s.

The ability of the new A* f-scores to solve more com-

plex design systems and expand fewer A* nodes is

directly related to their ability to produce tight energetic

bounds during the A* search. To investigate the accuracy

of the improved f-score algorithms, we calculated the f-

score gap, that is, the difference between the GMEC

energy and the A* root node f-score lower bound, for

every design system (Fig. 5). Ideally, if the f-score bound

is very accurate, the algorithm can identify the GMEC

energy at the root node. This happened 10 times for A*-

LP and 4 times for A*-MPLP, but never occurred when

using Trad-A*or A*-LoC. However, as shown in Figure 5

the A*-LoC f-scores were always much closer to the

actual GMEC energy than the Trad-A* f-scores. The

overall accuracy of these f-scores follows a similar trend.

The average f-score gap for the 29 difficult design sys-

tems was 76 kcal/mol for Trad-A*, while the f-score gaps

dropped to 3.9, 3.1, and 1.9 kcal/mol for A*-LoC, A*-

MPLP, and A*-LP, respectively.

To better understand the benefits of the improved f-

score algorithms compared with Trad-A*, we now specif-

ically consider the five difficult designs that Trad-A* was

able to solve. For these five systems, A*-LoC, A*-MPLP,

and A*-LP were all able to solve the designs faster than

Trad-A*, with an average reduction in runtime of 19-,

11-, and 11-fold, respectively (Fig. 4). In addition, the

new f-score algorithms drastically reduce the number of

nodes that A* had to expand compared to Trad-A*. A*-

LoC, A*-MPLP, and A*-LP were able to reduce the

Figure 4
The A* search runtime is greatly reduced by the improved f-score

algorithms. The A* runtimes are shown for the 28 difficult protein
core design problems that the new f-score methods could solve. Each

run used the Trad-A* sequential variable ordering method. The PDB id

for each protein core design is labeled on the x axis. The three new f-
score methods, A*-LoC (blue stars), A*-MPLP (green triangles), and

A*-LP (black squares), were able to solve all 28 problems while Trad-A*
(red circles) could only solve five problems (left of the red vertical

line). For visual clarity the order of designs along the x axis is sorted
first by Trad-A* runtime and then by A*-LoC runtime. [Color figure

can be viewed in the online issue, which is available at wileyonlineli-

brary.com.]

Figure 5
Evaluation of A* f-score accuracy. The quantity EðgÞ2f ðx0Þ, referred

to as the f-score gap, is shown for all 29 difficult protein core designs,

where EðgÞ is the energy of the GMEC and f ðx0Þ is the f-score of the
A* root node (that is, the node with no assigned rotamers). The f-score

gap represents how accurately an f-score bound approximates the actual
GMEC energy. An f-score gap of 0.1 kcal/mol indicates that the f-score

was able to exactly bound the GMEC energy. Overall, A*-LP (black
squares) produces the tightest bounds, followed by A*-MPLP (green tri-

angles), and A*-LoC (blue stars). The Trad-A* f-score (red circles)

always produces the worst bounds and is clearly separated from the
other three methods. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

1870 PROTEINS

K.E. Roberts et al.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


number of expanded nodes by an average of 6000-,

6300-, and 6500-fold, respectively. Trad-A* was able to

expand nodes faster than the other methods (Trad-A*:

1146 nodes/s; A*-LoC: 2.2 nodes/s; A*-MPLP: 1.8 nodes/

s; A*-LP: 1.7 nodes/s), but the accuracy of the improved

f-score methods drastically outweighs Trad-A*’s ability to

quickly process A* nodes.

Combining variable ordering with improved f-
scores

Combining the dynamic variable orderings with the

improved A* f-scores yields additional gains over either

approach by itself (Fig. 6). All combinations of DynMin

with A*-LoC, A*-MPLP, and A*-LP were able to solve all

29 difficult test design problems. The gains are most

apparent when analyzing the most complex design sys-

tems. Specifically, we consider the five systems that fin-

ished with the largest number of expanded nodes for A*-

LoC using sequential ordering. When adding DynMin

ordering to A*-LoC, the new A* algorithm A*-LoC-Dyn-

Min has an average 19-fold reduction in runtime com-

pared to A*-LoC. Similarly, when adding DynMin to A*-

MPLP and A*-LP there is an average fold reduction in

runtime of 22 and 7, respectively. The number of

expanded nodes is also reduced by 15, 12 and threefold

when adding DynMin to A*-LoC, A*-MPLP, and A*-LP,

respectively. Interestingly, adding dynamic variable order-

ing has a more dramatic effect on A*-LoC and A*-MPLP

than on A*-LP. This is likely because the f-score gaps for

A*-LP are much smaller than those for A*-LoC or A*-

MPLP. Therefore, if the f-score bounds are already very

accurate, a beneficial reordering of the A* nodes has a

reduced effect compared to looser bounds. This trend is

supported by the fact that when we analyzed the five

hardest problems that the original A* algorithm was able

to solve, we found that adding dynamic reordering

improved the number of nodes by an average of 54 fold.

Above, we used protein core packing and protein core

design problems as benchmarks to measure the benefits

of our new A* methods compared to each other and to

traditional A* techniques. However, our new algorithms

are not limited to these types of designs, but rather can

be used to improve any design that utilizes an A* search.

To test the applicability of our algorithms, we have

applied the A*-LoC-DynMin algorithm to redesign the

surface for each of the 73 proteins in our test set. Surface

residues are expected to be much less spatially con-

strained than protein cores, increasing the total number

of biophysically plausible rotamers at surface residues,

and making surface designs comparably more difficult

than core designs. The A*-LoC-DynMin algorithm was

able to provably find the GMEC for each surface design

tested. The number of residues designed per system

ranged from 17 to 48 with an average of 28 mutable resi-

dues per system. The median number of conformations

that remained after DEE pruning and were input to A*-

LoC-DynMin was 1013. The median time to solve each

design was 17 seconds. The 10 most difficult designs

(ranked by the number of A* nodes that had to be

expanded), took a median time of 2.5 hours to complete.

For these difficult designs, a median of 1031 conforma-

tions per system remained unpruned after DEE pruning.

The largest surface design had 1043 unpruned conforma-

tions after DEE pruning, expanded 4875 A* nodes, and

took 22.5 hours to complete.

Protein design applications enabled by the
new A* methods

Direct enumeration of sequences for protein design

One of the key advantages of A* is its ability to enu-

merate conformations and sequences in gap-free order of

increasing energy. In Conformation-A*, conformations

are enumerated in order, but typically many of the

lowest-energy conformations have the same sequence or

belong to a small number of sequences. An algorithm

that tries to find unique sequences by enumerating low-

energy conformations will be limited in the number of

sequences that it can enumerate because most of the

conformations will belong to a small number of sequen-

ces. Figure 7 shows an example of how the number of

unique sequences grows compared to low-energy confor-

mations for a design of toxin II from Androctonus

Figure 6
Number of “difficult” protein designs solved by improved A* methods. Each cell shows the number of difficult protein core designs (N 5 29) that
were solved using the given variable (residue) ordering method combined with the given f-score method. Column headings denote the residue (variable)

ordering used for the designs. Row headings denote the f-score method used for the designs. Cells are colored from red (least number of designs solved)
to yellow to green (most number of designs solved). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

PROTEINS 1871

Fast Conformation Search for Protein Design

http://wileyonlinelibrary.com


australis hector (PDB id: 1AHO) using an expanded

rotamer library (that is, rotLib1 from 2). The number of

low-energy conformations grows much faster than the

number of unique sequences. When using Sequence-A*

(Section “Enumerating Sequences with A*”) to directly

enumerate sequences, Sequence-A* was able to find all

11717 unique sequences within 4 kcal/mol of the GMEC

in 62 min. However, when using the Conformation-A*

method A*-LoC-DynMin, the design failed to find all the

unique sequences within seven days.

Protein design with minimization

When minimization is allowed during a protein design

search,2,3 many rotamer combinations that were easily

pruned during a rigid search are now viable and must be

considered by A*. The new ordering and f-score A* tech-

niques we presented are needed to efficiently search these

difficult minimization-aware design problems that

include many rotamer choices with similar energetics. To

measure the impact of our new A* algorithms, we con-

ducted a side-chain placement of an antibody-antigen

protein-protein interface (PDB id: 4OLZ). The rotamers

were allowed to continuously minimize during the search

using the iMinDEE algorithm.2 When using iMinDEE,

the A* search no longer enumerates conformations in

order of increasing energy, but rather in order of increas-

ing lower-energy bounds. The A*-LoC-DynMin algo-

rithm was able to find the conformation with the lowest-

energy bound after expanding a total of 41 nodes. In

contrast, Trad-A* fails to find the conformation after

expanding 3.5 million nodes. When Trad-A* failed, the

best f-score bound was still 21 kcal/mol from the lowest-

energy bound. To obtain biologically relevant designs it

is important to search accurate energy landscapes of pro-

teins,2,3,29,71–73 which includes allowing protein mini-

mization during the search. Our new enumeration

techniques enable the design of complex systems that

were previously impractical with the current technology.

DISCUSSION

The Trad-A* algorithm is widely used in the field of

protein design, but can become a bottleneck for complex

protein designs. Improvements in both the A* residue

ordering and accuracy of the f-score energetic bounds lead

to large speedups in A* runtime and large reductions in

the number of nodes explored by A*. The residue order-

ings designed to increase the current bound in the A* tree

as quickly as possible outperformed the traditional

sequential ordering. Moreover, A* f-scores using bounds

based on solutions to LP, MPLP, or LoC greatly improved

upon the traditional A* f-score. All of our new A*

enhancements focus on efficiently reducing the number of

viable paths in the A* search tree. This allows A* to

explore an extremely small fraction of the exponential

search space to enumerate all low-energy protein

conformations.

The residue ordering and f-score improvements were

both designed to increase (that is, improve) the A*

bounds as close to the root of the tree as possible, and

can be combined for synergistic improvements in A* enu-

meration. For example, the most difficult design in our

test set (PDB id: 2FHZ; min f-score gap of 26 kcal/mol)

could only be solved when novel ordering methods were

combined with improved f-score techniques. The poten-

tial gains achieved by combining residue ordering with an

f-score method are most evident for f-scores that provide

large f-score gaps. For f-scores with small f-score gaps,

such as A*-LP, the f-score is often close enough to the

actual GMEC that few nodes need to be expanded. When

only a small number of nodes are required, residue order-

ing can have minimal effect. Indeed, we see the largest

benefits of dynamic ordering with Trad-A* and the least

clear effect with A*-LP. However, designs that allow con-

tinuous side-chain and/or backbone flexibility during the

search2,3 result in problems with many low-energy

rotamers in the search. For these complex problems, it is

Figure 7
The new Sequence-A* algorithm enumerates sequences much faster

than Conformation-A*. To experimentally test protein design predic-

tions, it is often beneficial to predict many low-energy sequences rather
than the single GMEC. Conformation-A* methods enumerate confor-

mations in a gap-free, in-order ranking of low-energy conformations.
However, most of the low-energy conformations often belong to a small

set of protein sequences. Consequently, Conformation-A* enumerates
many more conformations than sequences. The number of unique con-

formations (red) and sequences (blue) are shown for the protein core

design of toxin II (PDB id: 1AHO). Each plotted data point shows the
number of unique sequences (or conformations) within the given

energy cutoff of the GMEC’s energy. Due to the explosion of conforma-
tions within 4.0 kcal/mol of the GMEC’s energy, Conformation-A* was

unable to find all unique sequences within 4.0 kcal/mol of the GMEC’s
energy within seven days. In contrast, by directly enumerating sequen-

ces, Sequence-A* was able to find all unique sequences in 62 min.

[Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

1872 PROTEINS

K.E. Roberts et al.

http://wileyonlinelibrary.com


unlikely that f-score methods can obtain a small f-score

gap. In these difficult cases, it will be crucial to have both

improved f-scores and residue ordering to efficiently solve

the problem.

We have demonstrated that our new algorithms can be

directly used to improve the efficiency of both protein

core and protein surface designs. Because the algorithms

are general, they will likely be useful for many types of

real-world design problems, including enzyme

design,9,10 protein-protein interaction design,7,14 and

multistate design.12,13 Empirically we have found that

tractable problems usually have � 1067 conformations

remaining after DEE pruning. It is important to note

that the number of conformations before DEE pruning

does not necessarily correlate with the number after

pruning, which is determined by several factors including

the energy landscape of the specific protein system

(cf.74). Here, we have focused on using simple and quick

pruning methods (that is, singles Goldstein pruning27)

to demonstrate the gains in conformation enumeration,

but it is expected that combining sophisticated pruning

techniques (such as pairs pruning, conformational split-

ting, and DACS pruning75–77) with our new advanced

enumeration methods will achieve greater gains.

Both the advanced residue orderings and improved f-

scores require additional computation for every

expanded A* node compared to Trad-A*. In general, the

more advanced/accurate the method, the more computa-

tion time is needed for each node. Therefore, there is a

clear tradeoff between the amount of time spent per

node and the accuracy of the method. For example, in

an extreme case, an f-score method that guarantees an f-

score gap of zero could be used, but this is as difficult as

solving the original CSPD problem. In addition, the

optimal variable ordering could be computed, but since

there are Oðn!qnÞ ways to order the variables with

dynamic ordering, finding the optimal ordering is likely

harder than the original CSPD problem (we conjecture

this problem may be NP-hard). However, if very little

work is done at each node (for example, by computing a

fast but loose bound or by using the traditional sequen-

tial order), the computed bound will be poor, resulting

in an unnecessarily large number of nodes that must be

expanded. This tradeoff must always be considered when

developing new methods to further improve A*. Overall,

out of our new A* f-score algorithms, A*-LoC was faster

than the other techniques despite producing larger f-

score gaps and expanding more nodes than A*-MPLP

and A*-LP. By finding the right balance between compu-

tation time per node and strength of the f-score bound,

A*-LoC was able to outperform all other techniques.

Our new A* algorithms greatly reduce the bottleneck

that can arise when using Trad-A* to solve complex bio-

logical designs. By reducing the A* bottleneck, new accu-

rate and efficient CSPD methods can be developed. For

example, Sequence-A* used our new A* improvements

and was shown to generate the lowest-energy sequences

at least 162 times faster than Conformation-A*. These

low-energy sequences can be used to generate a diverse

set of designs for experimental testing, which increases

the chance that a functional design is found. We also

demonstrated the use of our improved A* algorithms for

designs that include continuous side-chain and/or back-

bone flexibility.2,3 Allowing continuous flexibility during

the design search yields many viable rotamers and con-

formations that would have been pruned by rigid

rotamer methods.2 Therefore, when including minimiza-

tion, A* must be able to search through many more con-

formations compared to less accurate CSPD methods. In

the section above entitled “Protein Design with Mini-

mization,” we showed that our new algorithms were able

to reduce the number of nodes A* expanded by at least

five orders of magnitude.

CSPD has the ability to search large portions of protein

conformational and sequence space faster than either

experimental or competing computational methods. There

have been many successful protein designs, but as the field

progresses the demand for larger designs with increased

complexity, as well as protein backbone and side-chain

flexibility, will continue to grow. The A* algorithm com-

bined with DEE pruning is an effective methodology that

can incorporate both continuous flexibility and low-energy

ensembles into CSPD. The A* search techniques presented

here optimally solve a large class of biomedically relevant

CSPD problems that were previously intractable for A*.

This facilitates the development of increasingly accurate

CSPD methods that can solve challenging design problems.

A relationship between f-score methods and
proof that the LP-based f-score always
improves upon the traditional A* f-score

As we showed in the “Results” Section, the performance

of provable branch-and-bound algorithms improves radi-

cally if they can compute tight f-score lower bounds on

the energy of partial conformations. Tight f-score lower

bounds can often be computed by polynomial-time algo-

rithms. In this work we have presented four methods to

calculate f-score lower bounds (Trad-A*, A*-LP, A*-MPLP,

and A*-LoC). Readers interested in optimization techni-

ques will appreciate that all four f-score lower bounds are

related and explore the same optimization space. By

understanding this relationship, we can understand why

some methods perform better than others. In this Appen-

dix we describe the relationship between the different f-

score methods, and prove that the A*-LP f-score always

improves upon the traditional Trad-A* f-score.

Before understanding the relationship between f-score

methods, however, it is essential to understand the dual-

ity property of LPs (for a more complete explanation,

see47–49). Every LP (called the primal LP) is associated

with a dual LP. If the primal LP is a minimization, then

PROTEINS 1873

Fast Conformation Search for Protein Design



the dual LP is a maximization and vice-versa. For exam-

ple, the LP relaxation for protein design presented in Eq.

(11) minimizes the protein design objective function. The

dual to the protein design LP is a related LP that maxi-

mizes its objective function. There are two important

properties associated with duality. The weak duality prop-

erty of LPs states that any feasible solution to the dual

(that is, any solution that satisfies the constraints) is a

bound on the solution of the primal. In the case of the

protein design primal and dual programs, any feasible

solution to the dual program is a lower bound on the pri-

mal problem. The strong duality property of LPs,49 which

is satisfied for the protein design problem, states that the

optimal solution to the primal is equivalent to the opti-

mal solution to the dual. Thus, any feasible solution of

the dual program that approximates the optimal of the

dual program is a tight lower bound on the LP solution.

The f-scores used by A*-MPLP, A*-LoC, and Trad-A*

are computed by optimization algorithms that approxi-

mate the dual LP of the protein design LP [Eq. (11)].

First, as we described in Section “Message Passing-Based

f-score Bounds,” MPLP directly approximates the opti-

mal solution to the dual of the LP program, and there-

fore provides an f-score lower bound. In addition, it has

also been shown that enforcement of LoC (used by A*-

LoC) searches through the LP dual and approximates the

optimal LP relaxation.59 MPLP and LoC algorithms are

often more efficient than algorithms that find the exact

LP relaxation solution. Therefore, there is a clear tradeoff

between speed of the f-score computation and tightness

of the f-score bound. In addition to these established

optimization techniques, in this Appendix we prove that

the traditional A* f-score also lies within the dual of the

LP formulation of the CSPD problem. This guarantees

that the LP solution better estimates protein conforma-

tion energies than the traditional A* f-score, and in prac-

tice the LP solution is usually a much better bound

(Section 3). Figure A1 presents an illustrative toy exam-

ple showing how all four f-score methods explore the

dual of the protein design LP.

To prove that the LP f-score is guaranteed to improve

upon the Trad-A* f-score we show that the Trad-A* f-

score [as presented in Eq. (2)] is always a feasible point

in the dual. Since the LP f-score is the optimal value in

this dual space, the LP f-score is therefore always higher

(and tighter) or equal to the Trad-A* f-score (Fig. 1).

We first present the dual of the LP program in Eq.

(11). The dual derivation of Eq. (11) is as straightfor-

ward as any dual derivation for an LP, but for conven-

ience, we use the dual derived in 38. Using this

derivation, the dual LP of Eq. (11) can be written as a

maximization of minimizations:

max
b

X
i

min
ri

X
j

min
rj

ðbjiðrj ; riÞÞ (13)

subject to the constraints

8i; ri; j; rj : ðbijðri; rjÞÞ1ðbjiðrj ; riÞÞ5uijðri; rjÞ ;

where b is the vector of all bij variables that are opti-

mized by the dual program. A distinct bijðri; rjÞ variable

is defined for each (ri, rj) pair, i 6¼ j. Therefore, the feasi-

ble space of solutions to the dual program are all possi-

ble values of the dual objective function such that all bij

values still satisfy the dual program constraints:

f ðbÞ5
X

i

min
ri

X
j

min
rj

ðbjiðrj ; riÞÞ (14)

subject to the constraints

8i; ri; j; rj : ðbijðri; rjÞÞ1ðbjiðrj ; riÞÞ5uijðri; rjÞ :

We now show that the minimization performed by the

f-score of Trad-A* [Eq. (2)] always returns a point in the

feasible space of the protein design dual LP [Eq. (14)].

We first slightly change the f-score of Eq. (2). At the root

x0 of the tree, g 5 0 and thus f 5 h:

f ðx0Þ5
Xn

i51

min
ri

ðEðriÞ1
Xn

j5i11

min
rj

Eðri; rjÞÞ: (15)

Before we show the relationship to the dual of Eq.

(13), note the second sum in Eq. (15) goes from i 1 1 to

n. However, our dual formulation goes from 1 to n so

we will reconcile this by introducing a new term,

kijðri; rjÞ5
Eðri; rjÞ if i < j;

0 if i � j:

(

Because kij is zero for all i � j, we can replace Eðri; rjÞ
with kij in the inner sum of Eq. (15) and change the

inner sum to add all terms from 1 to n:

f ðx0Þ5
Xn

i51

min
ri

ðEðriÞ1
Xn

j51

min
rj

kijðri; rjÞÞ: (16)

In addition, we can move the intra-energy term EðriÞ
into the inner sum. Since the inner minimization is inde-

pendent of the variable ri, we can move EðriÞ inside the

inner minimization as well:

f ðx0Þ5
Xn

i51

min
ri

Xn

j51

min
rj

EðriÞ
n

1kij ðri; rjÞ
 !

: (17)

It is now straightforward to see that
EðriÞ

n
1kijðri; rjÞ1

EðrjÞ
n

1kjiðrj ; riÞ5uijðri; rjÞ: Thus, if we set bij5
EðriÞ

n
1kijðri;

rjÞ and bji5
EðrjÞ

n
1kjiðrj ; riÞ, then the minimization of Eq.

(17) always meets the constraint of the dual in Eq. (13)

1874 PROTEINS

K.E. Roberts et al.



and is therefore a point in the feasible space of the dual.

Since the LP in Eq. (13) maximizes the minimization of

Eq. (15), this proves that the LP solution is always greater

than or equal to the Trad-A* f-score. Empirically we show

in Sec. 3 and Figure 5 that the LP f-score always results in

much tighter bounds. For the difficult designs tested, on

average the bounds computed by A*-LP were > threefold

better (tighter) than Trad-A*, and tighter bounds greatly

increase the efficiency of A* (Figs. 4 and 6).

Software availability

All the new A* algorithms were implemented in the

Osprey CSPD software suite. Osprey is free and open

source under a Lesser GPL license. The program, user

manual, and source code are available at www.cs.duke.

edu/donaldlab/software.php.

ACKNOWLEDGMENTS

The authors would like to thank Seydou Traor�e and

Vincent Conitzer for helpful discussions, as well as all

members of the Donald laboratory for their comments.

REFERENCES

1. Donald BR. Algorithms in Structural Molecular Biology. Cambridge,

MA: MIT Press; 2011.

2. Gainza P, Roberts KE, Donald BR. Protein design using continuous

rotamers. PLOS Comput Biol 2012; 8:e1002335

3. Hallen MA, Keedy DA, Donald BR. Dead-end elimination with per-

turbations (DEEPer): a provable protein design algorithm with con-

tinuous sidechain and backbone flexibility. Proteins 2013;81:18–39.

4. Georgiev I, Donald BR. Dead-end elimination with backbone flexi-

bility. Bioinformatics 2007;23:185–194.

5. Georgiev I, Keedy D, Richardson JS, Richardson DC, Donald BR.

Algorithm for backrub motions in protein design. Bioinformatics

2008;24:196–204.

6. Georgiev I, Lilien RH, Donald BR. The minimized dead-end elimi-

nation criterion and its application to protein redesign in a hybrid

scoring and search algorithm for computing partition functions

over molecular ensembles. J Comput Chem 2008;29:1527–1542.

7. Roberts KE, Cushing PR, Boisguerin P, Madden DR, Donald BR.

Computational design of a PDZ domain peptide inhibitor that res-

cues CFTR activity. PLOS Comput Biol 2012;8:e1002477

8. Gainza P, Roberts KE, Georgiev I, Lilien RH, Keedy DA, Chen C,

Reza F, Anderson AC, Richardson DC, Richardson JS, Donald BR.

OSPREY: protein design with ensembles, flexibility, and provable

algorithms. Methods Enzymol 2013;523:87–107.

9. Chen C, Georgiev I, Anderson AC, Donald BR. Computational

structure-based redesign of enzyme activity. Proc Natl Acad Sci U S

A 2009;106:3764–3769.

10. Stevens BW, Lilien RH, Georgiev I, Donald BR, Anderson AC. Rede-

signing the PheA domain of gramicidin synthetase leads to a new

understanding of the enzyme’s mechanism and selectivity. Biochem-

istry 2006;45:15495–15504.

11. Gorczynski MJ, Grembecka J, Zhou Y, Kong Y, Roudaia L, Douvas

MG, Newman M, Bielnicka I, Baber G, Corpora T, Shi J, Sridharan

M, Lilien R, Donald BR, Speck NA, Brown ML, Bushweller JH.

Allosteric inhibition of the protein-protein interaction between the

leukemia-associated proteins Runx1 and CBFbeta. Chem Biol 2007;

14:1186–1197.

12. Frey KM, Georgiev I, Donald BR, Anderson AC. Predicting resist-

ance mutations using protein design algorithms. Proc Natl Acad Sci

U S A 2010;107:13707–13712.

13. Reeve SM, Gainza P, Frey KM, Georgiev I, Donald BR, Anderson

AC. Protein design algorithms predict viable resistance to an experi-

mental antifolate. Proc Natl Acad Sci 2015;112:749–754.

14. Rudicell RS, Kwon YD, Ko S, Pegu A, Louder MK, Georgiev IS, Wu

X, Zhu J, Boyington JC, Chen X, Shi W, Yang Z, Doria-Rose NA,

McKee K, O’Dell S, Schmidt SD, Chuang G, Druz A, Soto C, Yang Y,

Zhang B, Zhou T, Todd J, Lloyd KE, Eudailey J, Roberts KE, Donald

BR, Bailer RT, Ledgerwood J, Mullikin JC, Shapiro L, Koup RA,

Graham BS, Nason MC, Connors M, Haynes BF, Rao SS, Roederer

M, Kwong PD, Mascola JR, Nabel GJ. Enhanced potency of a broadly

neutralizing HIV-1 antibody in vitro improves protection against len-

tiviral infection in vivo. J Virol 2014;88:12669–12682.

15. Georgiev IS, Rudicell RS, Saunders KO, Shi W, Kirys T, McKee K,

O’Dell S, Chuang G, Yang Z, Ofek G, Connors M, Mascola JR,

Nabel GJ, Kwong PD. Antibodies VRC01 and 10e8 Neutralize HIV-1

with High Breadth and Potency Even with Ig-Framework Regions

Substantially Reverted to Germline. J Immunol (Baltimore, Md.:

1950) 2014;192:1100–1106.

16. Georgiev I, Acharya P, Schmidt SD, Li Y, Wycuff D, Ofek G, Doria-

Rose N, Luongo TS, Yang Y, Zhou T, Donald BR, Mascola JR,

Kwong PD. Design of epitope-specific probes for sera analysis and

antibody isolation. Retrovirology 2012;9:P50

17. Lovell SC, Word JM, Richardson JS, Richardson DC. The penulti-

mate rotamer library. Proteins 2000;40:389–408.

18. Shapovalov MV, Dunbrack RL. A smoothed backbone-dependent

rotamer library for proteins derived from adaptive kernel density

estimates and regressions. Structure 2011;19:844–858.

19. Pierce NA, Winfree E. Protein design is NP-hard. Protein Eng 2002;

15:779–782.

20. Chazelle B, Kingsford C, Singh M. A semidefinite programming

approach to side chain positioning with new rounding strategies.

Informs J Comput 2004;16:380–392.

21. Leach AR, Lemon AP. Exploring the conformational space of pro-

tein side chains using dead-end elimination and the A* algorithm.

Proteins 1998;33:227–239.

22. Kingsford CL, Chazelle B, Singh M. Solving and analyzing side-

chain positioning problems using linear and integer programming.

Bioinformatics 2005;21:1028–1039.

23. Traore S, Allouche D, Andre I, de Givry S, Katsirelos G, Schiex T,

Barbe S. A new framework for computational protein design

through cost function network optimization. Bioinformatics 2013;

29:2129–2136.

24. Hong E, Lippow SM, Tidor B, Lozano-P�erez T. Rotamer optimiza-

tion for protein design through MAP estimation and problem-size

reduction. J Comput Chem 2009;30:1923–1945.

25. Hart PE, Nilsson NJ, Raphael B. A formal basis for the heuristic

determination of minimum cost paths. IEEE Trans Syst Sci Cybern

1968;4:100–107.

26. Desmet J, De Maeyer M, Hazes B, Lasters I. The dead-end elimina-

tion theorem and its use in protein side-chain positioning. Nature

1992;356:539–542.

27. Goldstein R. Efficient rotamer elimination applied to protein side-

chains and related spin glasses. Biophys J 1994;66:1335–1340.

28. Silver NW, King BM, Nalam MNL, Cao H, Ali A, Kiran Kumar

Reddy GS, Rana TM, Schiffer CA, Tidor B. Efficient Computation

of Small-Molecule Configurational Binding Entropy and Free

Energy Changes by Ensemble Enumeration. J Chem Theory Com-

put 2013;9:5098–5115.

29. Joh NH, Wang T, Bhate MP, Acharya R, Wu Y, Grabe M, Hong M,

Grigoryan G, DeGrado WF. De novo design of a transmembrane

Zn21-transporting four-helix bundle. Science 2014;346:1520–1524.

30. Grigoryan G, Reinke AW, Keating AE. Design of protein-interaction

specificity gives selective bZIP-binding peptides. Nature 2009;458:

859–864.

PROTEINS 1875

Fast Conformation Search for Protein Design

http://www.cs.duke.edu/donaldlab/software.php
http://www.cs.duke.edu/donaldlab/software.php


31. Patsalo V, Raleigh DP, Green DF. Rational and computational design

of stabilized variants of cyanovirin-n that retain affinity and speci-

ficity for glycan ligands. Biochemistry 2011;50:10698–10712.

32. Clark LA, Boriack-Sjodin P, Eldredge J, Fitch C, Friedman B, Hanf

KJM, Jarpe M, Liparoto SF, Li Y, Lugovskoy A, Miller S, Rushe M,

Sherman W, Simon K, Van Vlijmen H. Affinity enhancement of an

in vivo matured therapeutic antibody using structure-based compu-

tational design. Protein Sci 2006;15:949–960.

33. Green DF, Dennis AT, Fam PS, Tidor B, Jasanoff A. Rational design

of new binding specificity by simultaneous mutagenesis of calmodu-

lin and a target peptide. Biochemistry 2006;45:12547–12559.

34. Parai MK, Huggins DJ, Cao H, Nalam MNL, Ali A, Schiffer CA,

Tidor B, Rana TM. Design, synthesis, and biological and structural

evaluations of novel hiv-1 protease inhibitors to combat drug resist-

ance. J Med Chem 2012;55:6328–6341.

35. Sarkar CA, Lowenhaupt K, Horan T, Boone TC, Tidor B,

Lauffenburger DA. Rational cytokine design for increased lifetime

and enhanced potency using ph-activated histidine switching. Nat

Biotechnol 2002;20:908–913.

36. Lipov�sek D, Antipov E, Armstrong KA, Olsen MJ, Klibanov AM,

Tidor B, Wittrup KD. Selection of horseradish peroxidase variants

with enhanced enantioselectivity by yeast surface display. Chem Biol

2007;14:1176–1185.

37. Fu X, Apgar JR, Keating AE. Modeling backbone flexibility to

achieve sequence diversity: the design of novel a-helical ligands for

bcl-x l. J Mol Biol 2007;371:1099–1117.

38. Globerson A, Jaakkola TS. Fixing max-product: convergent message

passing algorithms for MAP LP-relaxations. Adv Neural Inf Process

Syst 2008;553–560.

39. Applegate D, Bixby R, Chvatal V, Cook W. Finding cuts in the TSP

(A preliminary report). DIMACS Technical Report 95-05. 1995.

40. Achterberg T, Koch T, Martin A. Branching rules revisited. Oper

Res Lett 2005;33:42–54.

41. Gilpin A, Sandholm T. Information-theoretic approaches to branch-

ing in search. Discrete Optimization 2011;8:147–159.

42. De Givry S, Heras F, Zytnicki M, Larrosa J. Existential arc consis-

tency: getting closer to full arc consistency in weighted CSPs. IJCAI

2005;5:84–89.

43. Althaus E, Kohlbacher O, Lenhof H, M€uller P. A combinatorial

approach to protein docking with flexible side chains. J Comput

Biol 2002;9:597–612.

44. Eriksson O, Zhou Y, Elofsson A. Side chain-positioning as an inte-

ger programming problem. Algorithms in Bioinformatics. Springer;

2001. pp 128–141.

45. Karmarkar N. A New Polynomial-time Algorithm for Linear Pro-

gramming. Combinatorica 1984;4:373–395.

46. Spielman DA, Teng SH. Smoothed Analysis of Algorithms: Why the

Simplex Algorithm Usually Takes Polynomial Time. J. Acm 2004;51:

385–463.

47. Bradley SP, Hax AC, Magnanti TL. Applied mathematical program-

ming. MA: Addison-Wesley Reading; 1977.

48. Tind J, Wolsey LA. An elementary survey of general duality theory

in mathematical programming. Math Program 1981;21:241–261.

49. Boyd S, Vandenberghe L. Convex optimization. Cambridge Univer-

sity Press; 2004.

50. Wainwright MJ, Jaakkola TS, Willsky AS. MAP estimation via agree-

ment on trees: message-passing and linear programming. IEEE

Trans Inf Theory 2005;51:3697–3717.

51. Kolmogorov V. Convergent tree-reweighted message passing for

energy minimization. IEEE Trans Pattern Anal Machine Intell 2006;

28:1568–1583.

52. Yanover C, Meltzer T, Weiss Y. Linear programming relaxations and

belief propagation–an empirical study. J Machine Learn Res 2006;7:

1887–1907.

53. Weiss Y, Yanover C, Meltzer T. MAP estimation, linear program-

ming and belief propagation with convex free energies. CoRR 2012;

abs/1206.5286.

54. Larrosa J, Schiex T. Solving weighted CSP by maintaining arc con-

sistency. Artif Intell 2004;159:1–26.

55. Russell SJ, Norvig P. Artificial Intelligence: A Modern Approach, 2

ed. Pearson Education; 2003.

56. Mackworth AK. Consistency in networks of relations. Artif Intell

1977;8:99–118.

57. Larrosa J. Node and arc consistency in weighted CSP. Proc AAAI02

2002;2002:48–53.

58. Cooper M, Schiex T. Arc consistency for soft constraints. Artif Intell

2004;154:199–227.

59. Cooper MC, de Givry S, Schiex T. Optimal soft arc consistency.

IJCAI 2007;7:68–73.

60. Wang G, Dunbrack RL. PISCES: a protein sequence culling server.

Bioinformatics 2003;19:1589–1591.

61. Hubbard SJ, Thornton JM. NACCESS. Computer Program, Depart-

ment of Biochemistry and Molecular Biology, University College

London, 1993.

62. Henikoff S, Henikoff JG. Amino acid substitution matrices from

protein blocks. Proc Natl Acad Sci U S A 1992;89:10915–10919.

63. Word JM, Lovell SC, LaBean TH, Taylor HC, Zalis ME, Presley BK,

Richardson JS, Richardson DC. Visualizing and quantifying molecu-

lar goodness-of-fit: small-probe contact dots with explicit hydrogen

atoms. J Mol Biol 1999;285:1711–1733.

64. Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE,

DeBolt S, Ferguson D, Seibel G, Kollman P. AMBER, a package of

computer programs for applying molecular mechanics, normal

mode analysis, molecular dynamics and free energy calculations to

simulate the structural and energetic properties of molecules. Com-

put Phys Commun 1995;91:1–41.

65. Lazaridis T, Karplus M. Effective energy function for proteins in

solution. Proteins 1999;35:133–152.

66. Kortemme T, Morozov AV, Baker D. An orientation-dependent hydrogen

bonding potential improves prediction of specificity and structure for

proteins and protein–protein complexes. J Mol Biol 2003;326:1239–1259.

67. Abagyan R, Totrov M. Biased probability monte carlo conforma-

tional searches and electrostatic calculations for peptides and pro-

teins. J Mol Biol 1994;235:983–1002.

68. Lippow SM, Wittrup KD, Tidor B. Computational design of

antibody-affinity improvement beyond in vivo maturation. Nat Bio-

technol 2007;25:1171–1176.

69. Gurobi Optimization Inc. Gurobi optimizer reference manual. 2013.

70. Allouche D, de Givry S, Schiex T. Toulbar2, an open source exact

cost function network solver. Technical report, INRIA, 2010.

71. Villali J, Kern D. Choreographing an enzyme’s dance. Curr Opin

Chem Biol 2010;14:636–643.

72. Babor M, Mandell DJ, Kortemme T. Assessment of flexible backbone

protein design methods for sequence library prediction in the therapeu-

tic antibody Herceptin: HER2 interface. Protein Sci 2011;20:1082–1089.

73. Mandell DJ, Kortemme T. Backbone flexibility in computational

protein design. Curr Opin Biotechnol 2009;20:420–428.

74. Jou JD, Jain S, Georgiev I, Donald BR. BWM*: a novel, provable,

ensemble-based dynamic programming algorithm for sparse approxi-

mations of computational protein design. Proceedings of the Annual

International Conference on Research in Computational Molecular

Biology (RECOMB),Warsaw, April 12–15, 2015. In Res Comp Mol

Biol, Lecture Notes in Computer Science, Springer-Verlag (Berlin),

2015;9029:154–166.

75. Gordon D, Benjamin Mayo SL. Radical performance enhancements

for combinatorial optimization algorithms based on the dead-end

elimination theorem. J Comput Chem 1998;19:1505–1514.

76. Pierce NA, Spriet JA, Desmet J, Mayo SL. Conformational splitting:

a more powerful criterion for dead-end elimination. J Comput

Chem 2000;21:999–1009.

77. Georgiev I, Lilien RH, Donald BR. Improved Pruning algorithms

and Divide-and-Conquer strategies for Dead-End Elimination,

with application to protein design. Bioinformatics 2006;22:

e174–83.

1876 PROTEINS

K.E. Roberts et al.



APPENDIX

Figure A1
Several algorithms compute f-score bounds based on the dual of the protein design program. In the relaxation of the LP formulation of the

CSPD problem (the primal problem), the feasible space of solutions is a high-dimensional convex polyhedron. The dual of this formulation is also
a convex polyhedron (cartooned here in 2 dimensions in gray) and any solution to the dual is a lower bound on the primal (an f-score lower

bound). These f-scores can be used by algorithms, such as A* to find the optimal integer solution to the CSPD problem. The traditional A* algo-
rithm (shown in blue) uses a simple pairwise summation [Eq. (4)] to bound the protein design score. We show that the traditional A* f-score is a

point in the dual of the LP and it is therefore a worse bound than the LP solution (Appendix). The EDAC algorithm42 (red) based on LoC and

used in WCSP solvers,70 and the MPLP algorithm38 (green) approximate the optimal LP relaxation solution. These algorithms are often more effi-
cient than algorithms that find the exact LP solution, such as simplex (in black). Note that in this example simplex finds the optimal solution to

the LP dual, which is equivalent to the optimal solution of the LP primal. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

PROTEINS 1877

Fast Conformation Search for Protein Design

http://wileyonlinelibrary.com

	l
	l
	l
	l
	l
	l
	l

