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Abstract. Practical protein design problems require designing sequences
with a combination of affinity, stability, and specificity requirements. Mul-
tistate protein design algorithms model multiple structural or binding
“states” of a protein to address these requirements. COMETS provides a
new level of versatile, efficient, and provable multistate design. It provably
returns the minimum with respect to sequence of any desired linear com-
bination of the energies of multiple protein states, subject to constraints
on other linear combinations. Thus, it can target nearly any combination
of affinity (to one or multiple ligands), specificity, and stability (for multi-
ple states if needed). Empirical calculations on 52 protein design problems
showed COMETS is far more efficient than the previous state of the art for
provable multistate design (exhaustive search over sequences). COMETS
can handle a very wide range of protein flexibility and can enumerate a
gap-free list of the best constraint-satisfying sequences in order of objec-
tive function value.

1 Introduction

Protein design is the prediction and selection of protein sequences with desired
properties, generally some combination of structure stability, binding to desired
ligands, and lack of binding to undesired ligands. The gold standard for protein
design is natural evolution, in which protein mutations confer fitness advantages
only if several desired properties are all present: mutants must be sufficiently
stable, effective at binding or catalysis, and selective for their fitness-conferring
function [6]. Researchers have tried to emulate this process by directed evolution
experiments [1]. But methods to optimize these properties computationally [5]
allow enormous sequence spaces to be searched without enormous resource expen-
ditures, and thus greatly expand the space of possible designs. Such searches require
algorithms that do not analyze each candidate sequence separately: large sequence
spaces are too expensive to analyze one by one. Computational protein designers
have used three different strategies to achieve the desired properties with their new

© Springer International Publishing Switzerland 2015
T. Przytycka (Ed.): RECOMB 2015, LNBI 9029, pp. 122-135, 2015.
DOI: 10.1007/978-3-319-16706-0_14



CoMETS (Constrained Optimization of Multistate Energies by Tree Search) 123

sequences: energy minimization of a single desired protein or complex structure
(“single-state design” ); heuristic minimization of some function combining multi-
ple desired properties (“traditional multistate design methods”); and analysis of
one sequence at a time in detail (“single-sequence analysis”).

Single-state design is the most developed class of dedicated protein design
algorithms. It is commonly used to improve fold stability by selecting mutants
that minimize the protein’s total energy [4,5,10,17,24], and to increase binding
affinity by selecting mutants that minimize the energy of a complex [15,22]. Some
of these methods are provable: given a sequence space to search, a model of the
protein’s conformational space, and an energy function, they are guaranteed to
return the lowest-energy sequence and conformation (the global minimum-energy
conformation, or GMEC). The dead-end elimination (DEE) [4] and A* [25]
algorithms have this guarantee. In their original form, they assume a discrete
conformational space, but they have been extended to include both continuous
sidechain [10,15] and backbone [13,19] flexibility. Provable single-state meth-
ods can also enumerate either a gap-free list of the lowest-energy sequences and
conformations [10,19,25], or of the sequences with the lowest-energy optimal con-
formations [33]. Other single-state methods are not provable, most prominently
Metropolis Monte Carlo-based methods [24,27], but are popular for reasons of
computational speed. All these methods use some simplified model of protein
conformational flexibility. A popular but highly approximate model is to allow
the conformation of each amino acid to be selected from a discrete set, referred
to as rotamers. This model can be made substantially more accurate by allowing
small, continuous conformational adjustments around the rotameric conforma-
tions, which can be incorporated while maintaining provable accuracy [10,15,19].

Single-state design can be thought of as the stabilization of a desired “state”
of a protein—essentially, its fold, overall conformation, and ligand-binding mode.
This paradigm can be extended to include multiple states, possibly with dif-
ferent ligands, in order to specify multiple desired properties for the designed
sequence. This strategy is known as multistate protein design [3]. DEE has been
extended to multistate design in the type-dependent DEE algorithm [39]. This
algorithm prunes rotamers that are guaranteed not to be part of the optimal
conformation of a state of the protein. It offers a significant advantage in effi-
ciency, but does not reduce the number of sequences that must be considered,
because it only eliminates rotamers by comparison to more favorable rotamers
of the same amino-acid type. On the other hand, non-provable methods have
also been developed to try to optimize objective functions based on the energies
of multiple states, without considering each sequence separately. Genetic algo-
rithms have been used to optimize differences in energy between states [29] as
well as other objective functions [26], and belief propagation has been used to
optimize sums of energies of different states, in order to design a binding partner
appropriate for multiple ligands [7-9]. Type-dependent DEE can also be com-
bined with such techniques, to reduce the conformational space that is searched
heuristically [8,39]. However, previous multistate design algorithms cannot pro-
vide any guarantees about the optimality of their designed sequences without
an exhaustive search over sequence space.
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Methods that consider each candidate sequence explicitly are another impor-
tant and highly versatile category of computational protein design methods.
They are the most similar to natural evolution, in the sense that natural selection
generates each “candidate” mutation explicitly and then subjects it to various
selective pressures. However, the computational costs can be very high—Ilinear
in the number of sequences, and thus exponential in the number of simultane-
ously mutable positions. Molecular dynamics can be applied for single-sequence
analysis in protein design [28,40], using simulations over time to investigate the
properties of a candidate sequence. Molecular dynamics readily models all types
of protein flexibility with many different energy functions, including effects like
solvent polarization [36] or explicit solvent. It also allows the user to account
for entropic contributions to binding energies. More recent algorithms account
for entropy without the steep costs of simulation over time. The K* algorithm
in OSPREY [10,11,15,30] predicts the binding of a mutant protein sequence to
a ligand by computing an ensemble of low-energy protein states to provably
approximate the binding constant K, within a desired relative error for the
user-specified flexibility model and energy function. Though it provides a vast
speedup relative to exhaustive search over all conformations at each sequence, it
does require explicit consideration of each sequence sufficient to bound the ener-
gies in its ensemble. K* in OSPREY [11] has yielded several multistate protein
designs that were successful experimentally. The calculations have involved both
comparisons of the bound and unbound states of a single complex [18,34,35]
and of multiple complexes [2,6,12,37], and the OSPREY-designed proteins have
performed well in vitro [2,6,12,18,34,35,37] and in vivo [6,18,34,35] as well as
in non-human primates [35].

We now present an algorithm distinct from these three traditional strategies
that combines advantages from all three: COMETS. Like other multistate methods,
it optimizes an energy measure that considers multiple states: for example, it can
directly optimize the binding energy (the difference in energy between the bound
and unbound states), or the difference in binding energy between two different
ligands. Like single-sequence analysis, it allows consideration of a wide variety of
stability, affinity, and specificity requirements during sequence selection. This is
facilitated by its accommodation of optimization constraints: for example, it can
optimize binding to one ligand while constraining binding energy for other lig-
ands. It provably returns the best sequence for its specified optimization problem,
without performing an exhaustive search over the possible sequences. Some pre-
vious methods can do this for single-state design problems, but before COMETS it
was impossible for multistate problems. As a result, COMETS provides a vast per-
formance improvement over the previous state-of-the-art for provable multistate
design, which is exhaustive search over sequence space.

By presenting COMETS, this paper makes the following contributions:

1. A novel and versatile framework for multistate protein design, allowing con-
strained optimization of any linear combinations of state energies.

2. An algorithm to solve problems in this framework that provably obtains
the same results as exhaustive search over sequences but is combinatorially
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faster than this exhaustive search, as shown by empirical measurements on
52 protein design problems.

3. Support for continuous sidechain and backbone flexibility in COMETS.

4. The ability to enumerate as many constraint-satisfying sequences as desired,
in a gap-free list in ascending order of the desired objective function.

5. An implementation of COMETS in our laboratory’s open-source OSPREY
protein-design software package [2,6,15], available for download at [16] as
free software.

2 Methods

2.1 Problem Formulation

Fig. 1. Flexible and mutable residues in a design for specificity. The apoptotic regulator
CED4 forms two different dimers, one to block apoptosis (left; PDB id 2a5y [38])
and one to induce it (right; PDB id 3lgr [32]). We want to design for specificity (to
block apoptosis), so we allow mutations to some residues in the binding site (blue). To
accurately model the conformational changes induced by the mutations, we also model
residues on the other side of each interface that interact with the mutable residues as
flexible (orange, pink). Analysis of this calculation and others is described in Section 3.

Let us consider a protein design problem where we wish to consider mutat-
ing n residues. The output of our calculation will be a sequence s: an ordered
list of n amino acid types. We have a set A of states. Each state is a protein
structure containing our n mutable residues, along with a (possibly continuous)
conformation space for each sequence assignment, which we call the flexibility
model for the state. We consider functions of the form

fls)=co+ Y caFals) (1)

where the ¢, are real coefficients. We call these functions linear multistate ener-
gies (LMEs). COMETS is an algorithm to minimize any LME f(s) with respect
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to sequence s, with constraints of the form ¢;(s) < 0, where each ¢; is also
an LME. LMEs are suitable for representing stability, affinity, and selectivity
requirements in protein design. For example, to optimize a binding energy, we
set A to consist of the bound state b and the unbound state u, and optimize
f(s) = Ey — E,. That is, we set ¢, = 1, ¢, = —1 and ¢y = 0 for our objective
function. A highly simplified, “toy” example of this setup is in Supplementary
Information (SI) A [20].

The choice of objective function and constraints defines the physical problem
we wish to solve. We require a computational model of proteins to convert this
into a computational problem. To model protein flexibility, we use the very gen-
eral model of the DEEPer algorithm [19] in OSPREY. The protein in each state
is allowed to have any number of degrees of freedom, which can be either con-
tinuous or discrete, and which fully specify both the sequence and conformation
of the protein. Each residue in each state has a set of “residue conformations”
(RCs) [19]. An RC is a portion of conformational space defined by bounds on
every conformational degree of freedom available to the residue. A residue con-
formation is associated with a specific amino acid type. Residue conformations
are chosen to be small enough that once a residue conformation is assigned to
every residue, the energy minimum over this limited conformational space can
be found by local minimization. This framework is suitable for accommodating
both continuous sidechain and backbone flexibility, but it reduces to the model of
continuous sidechain flexibility of [10,15] if only sidechain dihedrals are used as
continuous degrees of freedom. If each sidechain dihedral is confined to a single
value within each residue conformation, then this special case is just the com-
monly used rigid-rotamer approximation [4,25]. In both of these special cases,
each residue conformation represents a single sidechain rotamer.

The model of flexibility may differ between states; in fact, different residues
may be made flexible. For example, in a calculation with a bound and an
unbound state of a protein, the ligand will have flexibility in the bound state,
but will be absent from the unbound state (Fig. 1). But all states have the same
set of mutable residues, and the same set of allowed amino-acid types at each
mutable residue. This way, COMETS outputs a sequence applicable to all states.

To model energy, we must have an “energy function” that estimates the
energy of a given sequence and conformation. Our implementation of COMETS
uses a pairwise additive energy function, meaning that it is a sum of terms
that depend on the conformations of at most two residues. This property is
only used in the computation of lower bounds for LMEs over subsets of the
sequence space and state conformational spaces (Section 2.2; SI B [20]), so a non-
pairwise energy function that admits such lower-bound computations would also
be compatible with COMETS. COMETS will return optimal results for the given
model of flexibility and energy function.

2.2 A* Over Sequences

COMETS uses the A* [21] search algorithm to search sequence space. In most pre-
vious applications of A* to protein design [15,25], nodes of the tree correspond
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to partially defined conformations. Each partially defined conformation is spec-
ified by RC assignments for one or more residues. Thus, each node corresponds
to the conformational space made up of all conformations consistent with the
partial definition. A node’s score is a lower bound on all the conformational ener-
gies in this space. COMETS is similar, but nodes correspond to partially defined
sequences and thus to a sequence space. A node’s score is a lower bound on the
objective function for all sequences in the node’s sequence space (Fig. 2).

In A*, we repeatedly process the lowest-scoring node in the tree. Processing
a node means either splitting it into several nodes that partition its sequence
space, or computing a higher score (i.e., tighter bound) for it (that is still a valid
lower bound). Score computation may involve conformational search (Fig. 2),
and some nodes will be processed until their sequence is fully defined and
the optimal conformation for each state is fully determined. These nodes are
termed fully processed, and their objective function and constraint LMEs can
be evaluated exactly. When the lowest-scoring node is fully processed, we can
return its sequence as optimal, because its objective function value (at optimal
conformations for each state) is better than any sequence in any of the sequence
spaces of the other nodes in the tree. This is because the other nodes’ scores are
lower bounds on their optimal objective function values.

Types of Nodes. We will store two types of nodes in our tree (Fig. 2). Examples
of each type of node in the toy example are given in ST A [20].

The first type has a sequence that is not fully defined: not all mutable residues
have an assigned amino-acid type. At these nodes, we store information on which
RCs are pruned at each residue in each state (for the assigned amino-acid types
if assigned; for all amino acid types if not assigned). The pruned RCs are those
that cannot be part of the optimal conformation for that state for any sequence
in the sequence space of the node. We store pruned pairs of RCs as well as
individual pruned RCs.

The second type of node has a fully defined sequence: an amino-acid type
assigned for each mutable residue. At each such node, for each state, we store an
A* tree expanding the conformational space for that sequence. These trees are
identical to those used in DEEPer in OSPREY [19]: their nodes each represent
a subset of conformational space, defined by RC assignments to some of the
residues, which restrict the values of the proteins’ degrees of freedom to the
bounds associated with the assigned RCs. The score of each node is a lower
bound on the energy of all conformations in its allowed conformational space.
If a node has a fully-defined sequence and the lowest-scoring node of each of its
conformational trees has an RC assignment to each residue, then the lowest node
score in each conformational tree will be the optimal energy of its state for the
node’s sequence. Thus, by evaluating the objective function and constraints using
these optimal state energies, we obtain the exact values of the objective function
and constraint LMEs. So the node is fully processed, and will be removed from
consideration if it violates any constraints.
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Return NO ‘ Child node sequences fully defined? ~_YES
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Fig. 3. COMETS is a sequence of node-processing operations

Node-processing Operations. For either
type of node, node processing consists of two
steps: an “expansion” step and a “bounding”
step (Fig. 3). Every time we draw a node from
the priority queue, meaning it is the lowest score
in the tree, we choose the appropriate processing
operation and perform it (Fig. 3).

Ezpansion step. For a node without a fully
defined sequence, the expansion step splits the
node n into several nodes whose sequence spaces
partition the sequence space of n. If the first
mutable residue without an amino-acid type
assigned in n is residue r, then this partition can
be performed by creating a node for each amino-
acid type a allowed at r. These child nodes will
each have a sequence space identical to that of n,
except with the amino-acid a assigned to residue
r. For a node n with fully defined sequence, we
split the lowest-scoring node in one of n’s confor-
mational trees: each child node has a different
RC assignment for a residue whose RC is not
assigned at the parent node. This is the same
type of split used in DEEPer [19], and essen-
tially as in previous protein design applications
of A*,

Bounding step. In the bounding step, a lower
bound is computed for the objective function
and for each of the constraint LMEs. If the lower

Sequence: Nodes also store
XXXXX score, pruned RCs

N
Sequence: Sequence:
VXXXX AXXXX

Sequence: VFYWI
Conformation tree for each state:

RCs: X X X X X

RCs: 0 X XXX H RCs: 1 XXX X ‘

Sequence node
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RCs: conformation
051202 K

tree is expanded

Fig. 2. Expansion steps during
node processing generate nodes
with partially and then fully
defined sequences. Once a node
has a fully defined sequence, con-
formational trees are built for
it for all states. Then confor-
mational tree expansions lead to
fully processed nodes. X, unas-
signed amino acid or RC; V, Val;
A, Ala; F, Phe; Y, Tyr; W, Trp;
I, Tle.
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bound for any of the constraint LMEs ¢; is greater than 0, then we know all
sequences at the node violate that constraint, and we eliminate the node. Oth-
erwise, the node score is set to be the lower bound on the objective function.
Previous A*-based protein design algorithms include methods to compute a lower
bound on the energy of a single protein state over a sequence space [15,19,21].
These methods can be modified to provide a lower bound on an LME over a
sequence space, with complexity as follows:

Theorem 1. For any sequence space S defined by specifying the allowed set of
amino acid types S(i) at each mutable residue i, the lower bound on the LME
Eq. (1) can be computed in time O(n?r?s), where n is the number of flexible or
mutable residues in the system, s is the number of states, and r is the mazimum
number of RCs available at a given residue.

Details of the method for computing lower bounds, including a proof of The-
orem 1, are provided in SI B [20].

For nodes without fully-defined sequences, we update the list of pruned RCs
for the child node before computing bounds. Pruning is performed by type-
dependent DEE [39]—in our implementation, the various pruning algorithms
available in OSPREY [11,14,15] are used.

2.3 Starting and Finishing the Calculation

Hence, to perform COMETS, we create a priority queue of A* tree nodes and
initialize it with a node representing the entire sequence space we are searching.
We then repeatedly draw the lowest-scoring node from the priority queue and
process it with the appropriate node-processing operation.

Each operation will define either the sequence or the conformation in one of
the states at a residue where it was previously not defined, so in a finite number
of steps, we will achieve a fully processed node: that is, a node whose sequence is
fully defined, and whose conformation trees are sufficiently expanded to be fully
processed (see SI Fig. S1 for a toy example). If our lower-bounding techniques
are adequate, very few sequences will need to be fully processed in this way,
so this sequence A* tree will return the optimal sequence with great efficiency
compared to exhaustive search over sequences.

Running COMETS until n sequences have been returned will yield the n
sequences that have the lowest objective function values among all sequences
satisfying the constraints.

3 Results

Protein design calculations were performed in order to measure the efficiency
of COMETS and its ability to design proteins with properties undesignable by
single-state methods. Systems of four types were used: designs for specificity on
a protein that can form two or more different complexes; optimization of the
binding energy for a single complex; stabilization of a single protein robust to
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choice of force field; and stabilization of the reduced form of angiotensinogen
relative to the oxidized form or vice versa. Details of these test cases are in SI
C [20].

3.1 Measurement of Efficiency

COMETS was run on 52 protein design test cases to measure its efficiency advan-
tages across a range of different objective functions and constraints. The test
cases used 44 protein structures, and 25 modeled flexibility using rigid rotamers
while the other 27 used continuous flexibility.
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Fig. 4. Number of state GMECs calculated in COMETS runs with (A) rigid or (B)
continuous flexibility (g), compared to the number sN of state GMECs in the entire
design space (sN is the number of sequences in the design space times the number of
states). Results are shown both for calculation of the best sequence and for enumeration
of the best five, when possible under the design constraints. Exhaustive search would
have to calculate all state GMECs (green curve).

Exhaustive search, the only other provable algorithm for multistate design,
must calculate the GMEC for each sequence in each state. For a s-state design
space with N sequences, this means that IV sequences must be considered explic-
itly and sN state GMECs must be calculated—a formidable proposition, since NV
grows exponentially with the number of mutable residues and each state GMEC
calculation is NP-hard [31]. To measure the ability of COMETS to avoid these cal-
culations, the number g of state GMECs calculated by each run of COMETS was
measured and compared to sN. Also, COMETS provably need not even consider
each sequence explicitly, even briefly. To determine if this reduced considera-
tion of sequences provides a significant advantage in efficiency, the number m of
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sequence tree nodes created in each COMETS run was measured and compared
to N. Hence, m is the number of partial sequences explicitly considered in a
COMETS run.

Many provable algorithms, including A* [25] and integer linear programming
[23], and non-provable methods like Monte Carlo [24] can perform the GMEC calcu-
lation using an exhaustive search over sequences without also exhaustively search-
ing over conformations. So even without COMETS there is no need for an exhaustive
search over conformational space. However, all previous provable methods must
still compute the GMEC for every sequence when performing multistate design,
because they are intended to calculate the minimum of an energy function (with
respect to sequence and conformation). In contrast, COMETS calculates the con-
strained minimum (over all sequences) of a linear combination of minima (over all
conformations) of energy functions. Hence, in this paper, we measure the ability
of COMETS to avoid computing GMECs for most of the sequences, and sometimes
even to avoid any explicit consideration of most of the remaining sequences. These
are the main novel abilities of COMETS.

Reduction in Number of State GMECs Calculated. COMETS calculates
only a very small portion of state GMECs (Fig. 4)—often only the state GMECs
for the sequences being returned as optimal. To calculate the best sequence
in rigid designs, the average run needed to calculate only 0.05% of the state
GMECS in the design space. This portion increased to 0.1% for enumeration of
the best five sequences. For continuous designs, 2% of the state GMECs were
calculated for runs finding only the best sequence, and 4% were calculated for
runs enumerating the best five sequences.

Reduction in Number of Sequences Considered Explicitly. Reduced
explicit consideration of sequences was found to provide a significant combina-
torial speedup in COMETS runs without continuous flexibility. For calculation of
the best sequence in these rigid designs, the median m/N was 0.02, and many
runs with larger design spaces generated significantly fewer sequence tree nodes
relative to the design space size (Fig. 5)—the largest sequence space to return
a constraint-satisfying sequence had 47 million sequences with m/N = 2 x 1076
(i.e., a 5 x 10°-fold speedup). The median increased to 0.03 for enumeration of
the best five sequences. For continuous designs, the median m/N values were
0.63 for the best sequence and 0.69 for the best five.

Provably Finding Unsatisfiable Constraints. The statistics above exclude
runs for which no sequences can satisfy the constraints. COMETS can provably
verify the absence of satisfying sequences, usually more quickly than it finds the
best sequence for similar design spaces (likely because pruning can take place at
early tree levels). It did so for 8 of the 27 continuous runs and 5 of the 25 rigid
runs. Also, several runs with a constraint-satisfying sequence (9 of 19 continuous;
3 of 20 rigid) had less than five constraint-satisfying sequences. This indicates
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that satisfaction of biophysically relevant energy constraints can depend on small
alterations to the sequence, highlighting the importance of a provable design
algorithm that will return the optimal sequence for each problem.

3.2 Differences in Sequences Returned by Multistate Designs and
Single-state Proxies

Single-state design is often

10°

< Best sequence . used as a proxy or a
o Best 5 sequences “first step” in multistate
10° design. To test whether
this approximation yields
. sequences similar to the
- 10 optimal ones from mul-
§ : . tistate design, sequence
‘%’ 103 . . divergences were calculated
3 ° s between optimal sequences
& . from multistate design and
10° . optimal sequences from cor-
! responding proxy single-

104 . s state designs.
. .. Our results indicate that
single-state approaches are
10° > likely to yield sequences far
10° 10° 10° 10° 10° 10’ 10°  from the optimal one. For

. s .
ize (N) specificity design problems

favoring a complex P:A over
a complex P:B, mutable-
residue sequence divergence
between the single-state

Fig. 5. Speedup due to reduced explicit considera-
tion of sequences in COMETS, compared to exhaustive
search (green line), for designs with rigid rotamers. m:
number of sequence tree nodes created in COMETS. N:
number of sequences in the design space. Magnifying optimal sequence for com-
this speedup, COMETS handles sequences that it con- plex P:A and the multistate
siders explicitly very efficiently (Fig. 4). optimal sequence was 33%
(averaged over 13 designs).
Similarly, for multispecificity designs (optimizing the sum of binding energies
for complexes P:A and P:B), the best sequence averaged 36% sequence diver-
gence from the single-state optimum for complex P:A (10 designs). These diver-
gences are nearly as high as the 39% (8 design pairs) average sequence divergence
between comparable specificity and multispecificity designs—that is, between a
protein optimally designed to bind A while not binding B, and a protein opti-
mally designed to bind both A and B. So the difference is quite functionally
significant.
Further details on the test cases are provided in SI C [20].
These results show that explicit, provable multistate design provides signif-
icant advantages in the calculation of optimal sequences for a wide range of
problems, and that COMETS provides an efficient way to perform such designs.
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The number of sequences and of state GMECs considered could likely be reduced
substantially further by improved bounding heuristics. Thus, COMETS liberates
provable multistate protein design from the efficiency barrier imposed by exhaus-
tive search.

4 Conclusions

COMETS fills an important lacuna in protein design. A designer can now optimize
any linear combination of optimal state energies, using constraints to ensure the
desired combination of stability, affinity, and specificity. This can all be done
with provable guarantees of optimality, both for the output sequence and for the
state conformational energies of each candidate sequence. A wide range of confor-
mational flexibility, both continuous and discrete, can be accommodated. Thus,
COMETS offers a wide range of advantages to the molecular design community.
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