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Abstract

Relational Markov Random Fields are a general
and flexible framework for reasoning about the
joint distribution over attributes of a large num-
ber of interacting entities. The main computa-
tional difficulty in learning such models is infer-
ence. Even when dealing with complete data,
where one can summarize a large domain by suf-
ficient statistics, learning requires one to com-
pute the expectation of the sufficient statistics
given different parameter choices. The typical
solution to this problem is to resort to approx-
imate inference procedures, such as loopy be-
lief propagation. Although these procedures are
quite efficient, they still require computation that
is on the order of the number of interactions (or
features) in the model. When learning a large re-
lational model over a complex domain, even such
approximations require unrealistic running time.

In this paper we show that for a particular class of
relational MRFs, which have inherent symmetry,
we can perform the inference needed for learning
procedures using atemplate-level belief propa-
gation. This procedure’s running time is propor-
tional to the size of the relational model rather
than the size of the domain. Moreover, we show
that this computational procedure is equivalent to
sychronous loopy belief propagation. This en-
ables a dramatic speedup in inference and learn-
ing time. We use this procedure to learn rela-
tional MRFs for capturing the joint distribution
of large protein-protein interaction networks.

1 Introduction

Relational probabilistic models are a rich framework for
reasoning about structured joint distributions [6, 9]. Such
models are used to model many types of domains like the
web [22], gene expression measurements [20] and protein-
protein interaction networks [11]. In these domains, they
can be used for diverse tasks, such as prediction of missing

values given some observations [11], classification [22],
and model selection [20]. All of these tasks require the
ability to perform inference in these models. Since in many
models exact inference is infeasible, most studies resort to
approximate inference such as variational approximations
[12] and sampling [8]. Unfortunately in many cases even
these approximations are computationally expensive. This
is especially problematic in settings where inference is per-
formed many times, such as parameter estimation.

In this paper we show that we can exploit symmetry
properties of relational models to perform efficient approx-
imate inference. Our basic observation is that symmetry
in the relational model implies that many of the interme-
diate results of approximate inference procedures, such as
loopy belief propagation, are identical. Thus, instead of
recalculating the same terms over and over, we can per-
form inference at the template level. We define formally a
large class of relational models that have these symmetry
properties, show how we can use them to perform efficient
approximate inference and compare our results with other
methods. This is, to the best of our knowledge, the first ap-
proximate inference algorithm that works on the template
level of the model. However, this efficient inference proce-
dure is limited to cases were we have no evidence on the
model, since such evidence can break the symmetry prop-
erties. Nevertheless, we show that in many cases, inference
with no evidence is useful, especially in learning tasks. Fi-
nally, we show a real life application by learning the prop-
erties of a model for protein-protein interactions.

2 Symmetric relational models

Relational probabilistic models [6, 9, 18, 21] provide a lan-
guage for defining how to construct models from reoccur-
ring sub-components. Depending on the specificinstantia-
tion, these sub-components are duplicated to create the ac-
tual probabilistic model. We are interested in models that
can be applied for reasoning about the relations between
entities. Our motivating example will be reasoning about
the structure of interaction networks (e.g., social interaction
networks or protein-protein interaction networks). We now
define a class of relational models that will be convenient
for reasoning about these domains. We define a language
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that is similar to ones previously defined [19], but also a bit
different, to make our claims in the following section more
clear.

As with most relational models in the literature we dis-
tinguish thetemplate-level model that describe the types of
objects and components of the model and how they can be
applied, from theinstantiation-level that describes a par-
ticular model which is an instantiation of the template to a
specific set of entities.

To define a template-level model we first set up the dif-
ferent types of entities we reason about in the model. We
distinguishbasic entity types that describe atomic entities
from complex types that describe composite entities.

Definition 2.1: Given a setTbasic = (T1, . . . , Tn) of basic
entity types we define two kinds ofcomplex types:

• If T1, . . . , Tk are basic types, thenT1 × · · · × Tk de-
notes the type ofordered tuples of entities of these
types. If e1, . . . , ek are entities of typesT1, . . . , Tk,
respectively, then〈e1, . . . , ek〉 is of typeT1×· · ·×Tk.

• If T is a basic type, thenT k denotes the type ofun-
ordered tuples of entities of typeT . If e1, . . . , ek are
entities of typeT , then [e1, . . . , ek] is of type T k.
When considering ordered tuples, permutations of the
basic elements still refer to the same complex entity.
Thus, if e1, e2 are of typeT , then both[e1, e2] and
[e2, e1] refer to the same complex entity of typeT 2.

For example, suppose we want to reason about undirected
graphs. If we define a typeTv for vertices then an undi-
rected edge is of typeTe ≡ T 2

v since an edge is a compos-
ite object that consists of two vertices. Note that we use
unordered tuples since the edge does not have a direction.
That is, both[v1, v2] and [v2, v1] refer to the same rela-
tionship between the two vertices. If we want to model
directed edges, we need to reason about ordered tuples
Te ≡ Tv × Tv. Now 〈v1, v2〉 and〈v2, v1〉 refer to two dis-
tinct edges. We can also consider social networks, where
vertices correspond to people. Now we might also add a
typeTl of physical locations. In order to reason about rela-
tionships between vertices (people) and locations we need
to define pairs of typeTp ≡ Tv × Tl. Note that tuples that
relate between different types are by definition ordered.

Once we define the template-level set of typesT over
some set of basic typesTbasic, we can consider particular
instantiations in terms of entities.

Definition 2.2: An entity instantiation I for (Tbasic, T )
consists of a set ofbasic entities E and a mappingσ : E 7→
Tbasic that assigns a basic type to each basic entity.

Based on an instantiation, we create all possible instantia-
tions of each type inT :

• if T ∈ Tbasic thenI(T ) = {e ∈ E : σ(e) = T }

V 2 V 3V 1 [ V 1 , V 3 ]1 2 [ V 2 , V 3 ]
Figure 1: An instantiation of the graph scheme over a domain of
three vertices.

• If T = T1×· · ·×Tk thenI(T ) = I(T1)×· · ·×I(Tk).

• If T = T k
1 thenI(T ) = {[e1, . . . , ek] : e1, . . . ek ∈

I(T1), e1 ≤ · · · ≤ ek} where≤ is some (arbitrary)
order overI(T ) 1.

Once we define a set of basic entities, we assume that all
possible complex entities of the given type are defined (see
Figure 1 for an instantiation of the graph example).

The basic and complex entities define the structure of
our domain of interest. Our goal, however, is to reason
about the properties of these entities. We refer to these
properties asattributes. Again, we start by the definition
at the template level, and proceed to examine their applica-
tion to a specific instantiation:

Definition 2.3: A template attribute A(T ) defines a prop-
erty of entities of typeT . The set of values the attribute can
take is denotedVal(A(T )).

A template attribute denotes a specific property we ex-
pect each object of the given type to have. In general,
we can consider attributes of basic objects or attributes of
complex objects. In our example, we can reason about the
color of a vertex, by having an attributeColor(Tv). We can
also create an attributeExist(Te) that denotes whether the
edge between two vertices exists. We can consider other at-
tributes such as the weight of an edge and so on. All these
template attribute are defined at the level of the scheme and
we will denote byA the set of template attributes in our
model.

Given a concrete entity instanceI we consider all the at-
tributes of each instantiated type. We view the attributes of
objects as random variables. Thus, each template attribute
in A defines a set of random variables:

XI(A(T )) = {XA(e) : e ∈ I(T )}

We defineXI = ∪A(T )∈AXI(A(T )) to be the set of all
random variables that are defined over the instantiation
I. For example, if we consider the attributesColor

over vertices andExist over unordered pairs of vertices,

1For example, considering undirected edges again, we think
of [v1, v2] and[v2, v1] as two different names of the same entity.
Our definition ensures that only one of these two objects is in the
set of entities and we view the other as an alternative reference to
the same entity.
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and suppose thatE = {v1, v2, v3} are all of typeTv,
then we have three random variables inX (Color(Tv))
which are XColor(v1), XColor(v2), XColor(v3), and
four random variables inX (Exist(Te)) which are
XExist([v1, v2]), XExist([v1, v3]), and so on.

Given a set of types, their attributes and an instantia-
tion, we defined a universe of discourse, which is the set
XI of random variables. Anattribute instantiation ω (or
just instantiation) is an assignment of values to all random
variables inXI . We use bothω(XA(e)) andxA(e) to refer
to the assigned value to the attributeA of the entitye.

We now turn to the final component of our relational
model. To define a log-linear model over the random vari-
ablesXI , we need to introducefeatures that capture pref-
erences for specific combinations of values to small groups
of related random variables. In our graph example, we can
introduce a univariate feature for edges that describes the
prior potential for the existence of an edge in the graph. A
more complex feature can describe preferences over triplets
of interactions (e.g., prefer triangles over open chains).

We start by defining template level features as a recipe
that will be assigned to a large number of specific sets of
random variables in the instantiated model. Intuitively, a
template feature defines a function that can be applied to a
set of attributes of related entities. To do so, we need to pro-
vide a mechanism to capture sets of entity attributes with
particular relationships. For example, to put a feature over
triangle-like edges, we want a feature over the variables
XExist([v1, v2]), XExist([v1, v3]), andXExist([v2, v3]) for
every choice of three verticesv1, v2, andv3. The actual
definition, thus involves entities that we quantify over (e.g.,
v1, v2, andv3), the complex entities over these arguments
we examine (e.g.,[v1, v2], [v1, v3], and [v2, v3]), the at-
tributes of these entities, and the actual feature.

Definition 2.4: Template FeatureA template feature F is
defined by four components:

• A tuple of arguments 〈ξ1, . . . , ξk〉 with a correspond-
ing list of type signature 〈T q

1 , . . . , T q
k 〉, such thatξi

denotes an entity of basic typeT q
i .

• A list of formal entitiesε1, . . . , εj , with correspond-
ing typesT f

1 , . . . , T f
j such that each formal entityε is

either one of the arguments, or a complex entity con-
structed from the arguments. (For technical reasons,
we require that formal entities refer to each argument
at most once.)

• A list of attributesA1(T
f
1
), . . . , Aj(T

f
j ).

• A functionf : Val(A1(T
f
1
))× · · · × Val(Aj(T

f
j )) 7→ IR.

For example, Table 1 shows such a formalization for a
graph model with two such template level features.

Arguments Formal Attr. Function
entities

Fe 〈ξ1, ξ2〉 [ξ1, ξ2] Exist fδ(z) = 11{z = 1}
〈Tv, Tv〉 Te

Ft 〈ξ1, ξ2, ξ3〉 [ξ1, ξ2] Exist f3(z1, z2, z3) =
[ξ1, ξ3] Exist 11{(z1 = 1) ∧
[ξ2, ξ3] Exist (z2 = 1) ∧

〈Tv, Tv, Tv〉 Te, Te, Te (z3 = 1) }

Table 1: Example of two template-level features for a graph
model. The first is a feature over single edges, and the second
is one over triplets of coincident edges (triangles).

We view a template-level feature as a recipe for gen-
erating multiple instance-level features by applying dif-
ferent bindings of objects to the arguments. For exam-
ple, in our three vertices instantiation, we could create in-
stances of the featureFe such asfδ(XExist([v1, v2])) and
fδ(XExist([v1, v3])). We now formally define this process.

Definition 2.5: Let F be a template feature with compo-
nents as in Definition 2.4, and letI be an entity instan-
tiation. A binding of F is an ordered tuple ofk entities
β = 〈e1, . . . , ek〉 such thatei ∈ I(T q

i ). A binding islegal
if each entity in the binding is unique. We define

Bindings(F) = {β ∈ I(T q
1 )× · · · × I(T q

k )

: β is legal for F}

Given a bindingβ = 〈e1, . . . , ek〉 ∈ Bindings(F), we
define the entityεi|β to be the entity corresponding toεi

when we assignei to the argumentξi. Finally, we define
theground feature F|β to be the function overω:

F|β(ω) = f
(
ω(XA1(ε1|β)), . . . , ω(XAj (εj |β)

)

For example, consider the binding〈v1, v2, v3〉 forFt of Ta-
ble 1. This binding is legal since all three entities are of the
proper type and are different from each other. This binding
defines the ground feature

Ft|〈v1,v2,v3〉(ω) =

f3(xExist([v1, v2]), xExist([v1, v3]), xExist([v2, v3]))

That is,Ft|〈v1,v2,v3〉(ω) = 1 iff there is a triangle of edges
between the verticesv1, v2, andv3. Note that each bind-
ing defines a ground feature. However, depending on the
choice of feature function, some of these ground features
might be equivalent. In our last example, the binding
〈v1, v3, v2〉 creates the same feature. While this creates a
redundancy, it does not impact the usefulness of the lan-
guage. We now have all the components in place.

Definition 2.6: A Relational MRF scheme S is defined by
a set of typesT , their attributesA and a set of template
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featuresFF = {F1, . . . ,Fk}. A model is a scheme com-
bined with a vector ofparameters θ = 〈θi, . . . , θk〉 ∈ IRk.
Given an entity instantiationI a scheme uniquely defines
the universe of discourseXI . Given all this together we
can define the joint distribution of a full assignmentω as:

P (ω : S, I, θ) =
1

Z(θ, I) exp

k∑
i=1

θiFi(ω) (1)

where (with slight abuse of notation)

Fi(ω) =
∑

β∈Bindings(Fi)

Fi|β(ω)

is the total weight of all grounding of the featureFi, andZ
is the normalizing constant.

This definition of a joint distribution is similar to stan-
dard log-linear models, except that all groundings of a tem-
plate feature share the same parameter [4].

3 Compact Approximate Inference

One broad class of approximate inference procedure are
variational methods [12]. Roughly speaking, in such meth-
ods we approximate the joint distribution by introducing
additionalvariational parameters. Depending on the par-
ticular method, these additional parameters can be thought
of as capturing approximation of marginal beliefs about se-
lected subsets of variables. Although the general idea we
present here can be applied to almost all variational meth-
ods, for concreteness and simplicity we focus here onloopy
belief propagation [16, 23] which is one of the most com-
mon approaches in the field.

To describe loopy belief propagation we consider the
data structure of afactor graph [14]. A factor graph is a bi-
partite graph that consists of two layers. In the first layer,
we have for each random variable in the domain avariable
node X . In the second layer we havefactor nodes. Each
factor nodeω is associated with a setCω of random vari-
ables and a featureπω . If X ∈ Cω, then we connect the
variable nodeX to the factor nodeω. Graphically we draw
variable nodes as circles and factor nodes as squares (see
Figure 2(a)).

A factor graph isfaithful to a log-linear model if each
feature is assigned to a node whose scope contains the
scope of the feature. Adding these features multiplied by
their parameters defines for each potential nodeω a poten-
tial functionπω[cω ] that assigns a real value for each value
of Cω. There is usually a lot of flexibility in defining the
set of potential nodes. For simplicity, we focus now on fac-
tor graphs where we have a factor node for each ground
feature.

For example, let us consider a model over a graph
where we also depict the colors of the vertices. We cre-
ate for each vertexvi a variable nodeXColor(vi) and for

each pair of vertices[vi, vj ] a variable nodeXExist([vi, vj ]).
We consider two template features - the triangle feature
we described earlier, and a co-colorization feature that de-
scribes a preference of two vertices that are connected by
an edge to have the same color. To instantiate the trian-
gle feature, we go over all directed tuples of three vertices
β = 〈vi, vj , vk〉 ∈ Bindings(Ft) and defineωβ with scope
Cβ = {XExist([vi, vj ]), XExist([vi, vk]), XExist([vj , vk])}.
See Figure 2(a) to see such a factor graph for an instan-
tiation of4 vertices. This factor graph is faithful since each
ground feature is assigned to a dedicated feature node.

Loopy belief propagation over a factor graph is defined
as repeatedly updating messages of the following form:

mX→ω(x) ←
∏

ω′:X∈Cω′ ,ω′ 6=ω

mω′→X(x)

mω→X(x) ←
∑

cω〈X〉=x


eπω[cω ]

∏
X 6=X′∈Cω

mX′→ω(x′)




wherecω〈X〉 is the value ofX in the assignment of values
cω to Cω. When these messages converge, we can define
belief about variables as

bω(cω) ∝ eπω[x]
∏

X′∈C

mX→ω(cω〈X ′〉)

where the beliefs overCω are normalized to sum to1.
These beliefs are the approximation of the marginal proba-
bility over the variables inCω [23].

Unfortunately, trying to reason about a network over
1000 vertices with the features we described earlier, will
produce

(
1000

2

)
variable nodes (one for each edge),2·

(
1000

2

)
edge feature nodes and3 ·

(
1000

3

)
triplet feature nodes2.

Building such a graph and performing loopy belief propa-
gation with it is a time consuming task. However, our main
insight is that we can exploit some special properties of this
model for much efficient representation and inference. The
basic observation is that the factor graphs for the class of
models we defined satisfy basic symmetry properties.

Specifically, consider the structure of the factor graph
we described earlier. An instantiation of graph vertices de-
fines both the list of random variables and of features that
will be created. Each feature node represents a ground fea-
ture that originates from a legal binding to a template fea-
ture. The groundings for an edge feature and for an edge
random variable span two vertices, while the grounding of
triplet feature covers three vertices. Since we are consid-
ering all legal bindings (i.e., all 2-mers and 3-mers of ver-
tices) while spanning the factor graph, each edge variable
node will be included in the scope of2 edge feature nodes
and (n − 2) · 3 triplet feature nodes. More importantly,

2Since we defined the template feature using ordered tuples
and our edges are defined using unordered tuples, we will have
two features over each edge and three features over each triplet.
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since all the edge variables have the same “local neighbor-
hood”, they will also compute the same messages during
belief propagation over and over again. We now formalize
this idea and show we can use it to enable efficient repre-
sentation and inference.

Definition 3.1: We say that two nodes in the factor graph
have the sametype if they were instantiated from the same
template (either template attribute or template feature).

Given this definition, we can present our main claim for-
mally:

Theorem 3.2: In every staget of synchronous belief prop-
agation that is initiated with uniform messages, ifvi, vk are
from the same type and alsovj , vl are from the same type
thenmt

vi→vj
(x) = mt

vk→vl
(x).

We start by proving the local properties of symmetry of the
model:

Lemma 3.3: In a model created according to Defini-
tion 2.6, if two nodes in the factor graph have the same
type, then they have the samelocal neighborhood. That
is, they have the same number of neighbors of each type.

The proof of Theorem 3.2 is a direct consequence of
Lemma 3.3 by induction over the stage of the belief propa-
gation. We now turn to prove Lemma 3.3:

Proof: If vi andvj are feature nodes, then since they are of
the same type, they are instantiations of the same template
feature. From Definition 2.4 and Definition 2.5 we can see
that this means that they are defined over variables from
the same type. Since each feature is connected only to the
variables in its scope, this proves our claim. However, ifvi

andvj are variable nodes, it suffices to show that they take
part in the same kind of features, and in the same number of
features of each such kind. Note that Definition 2.6 shows
that we use all legal binding for each feature. For simplic-
ity, we will assume thatvi is instantiated from the attribute
of some basic typeT (the proof in case it is a complex type
is similar). We need to compute how many ground features
containvi in their scope, and do not containvj . From Defi-
nition 2.5 we can see that all the legal bindings that include
vi and do not includevj are legal also if we replacevi with
vj .

After showing that many calculations are done over and
over again, we now show how we can use a more efficient
representation to enable much faster inference.

Definition 3.4: A template factor graph over a template
log-linear model is a bi-partite graph, with one level corre-
sponding to attributes and the other corresponding to tem-
plate features. Each template attributeT that corresponds
to a formal entity in some template featureF is mapped to a
template attribute node on one side of the graph. And each
template feature is mapped to atemplate feature node on
the other side of the graph. Each template attribute node is

E 1 , 2
C 1C 2C 3C 4E 1 , 3E 1 , 4E 2 , 3E 2 , 4E 3 , 4

E 1 , 2 C 1 C 2E 1 , 3 C 1 C 3E 2 , 4 C 2 C 4E 2 , 3 C 2 C 3E 1 , 4 C 1 C 4E 3 , 4 C 3 C 4E 1 , 2 E 1 , 3 E 2 , 3E 1 , 2 E 2 , 4 E 1 , 4E 2 , 3 E 2 , 4 E 3 , 4E 1 , 3 E 3 , 4 E 1 , 4
E i , jC i C iC jE i , jE i , jE j , kE i , k

| V | ! 1| V | ! 2
E i , jC i C iC jE i , jE i , jE j , kE i , k

(a) Full factor graph (b) Compact factor graph

Figure 2: Shown are the full (a) and compact (b) factor graphs
modeling a colored graph. We have basic types for colors and
vertices, and a complex type for edges. We consider two template
features - the triangle feature and a co-colorization feature. For
clarity, XExist([vi, vj ]) is shown asEi,j andXColor(vi) is shown
asCi. Orange edges show the edges connected to edge variables
and green edges are connected to color variables.|V | shows the
number of vertices in the graph.

connected with an edge to all the template feature nodes
that contain this feature in their scope. A feature node
needs to distinguish between its neighbors, since each mes-
sage refers to a message about different variable. Hence,
in the template factor graph we term an association to a
variable inside a template feature nodeport . If a factor
contains more than one variable of the same type, the cor-
responding edge splits to the corresponding ports when ar-
riving to the factor node. In addition, each ground variable
node takes part in many features that were instantiated by
the same template feature with different bindings. Hence,
each edge from a template feature node to a template at-
tribute node in the template factor graph is assigned with
a number indicating the number of repetitions it has in the
full factor graph.

Figure 2(b) shows such a template factor graph for our run-
ning example.

Running loopy belief propagation on this template fac-
tor graph is straightforward. The algorithm is similar to the
standard belief propagation only that when an edge in the
template-graph represents many edges in the instance-level
factor graph, we interpret this by multiplying the appropri-
ate message the appropriate number of times. Since Theo-
rem 3.2 shows that at all stages in the standard synchronous
belief propagation the messages between nodes of the same
type are similar, running belief propagation on the template
factor graph is equivalent to running synchronous belief
propagation on the full factor graph. However, we reduced
the cost of representation and inference from being propor-
tional to the size of the instantiated model, to be propor-
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tional to the size of the domain. Specifically, this represen-
tation does not depend on the size of the instantiations and
can deal with a huge number of variables.

4 Evaluation

4.1 Inference

We start by evaluating our method in inference tasks. We
build a model representing a graph using the univariate and
triangle features described in the previous section and per-
form inference with various parameter combinations. In the
first step we consider instantiations of small graphs where
we can also perform exact inference. We compared ex-
act inference, MCMC (Gibbs sampling) [8], standard asyn-
chronous belief propagation [23], and compact belief prop-
agation on the template-level model. A simple way to com-
pare inference results is by examining the marginal be-
liefs. Such a comparison is possible since in all methods
the computed marginal probabilities for all edge variables
were equal. Hence, Figure 3 shows a comparison of the
marginal distributions over edge variables for different pa-
rameter settings and different inference methods. We ob-
serve that in small graphs the marginal beliefs are very sim-
ilar for all inference methods. To quantify the similarity we
calculate the relative deviation from the true marginal. We
find that on average MCMC deviates by0.0118 from the
true marginal (stdev:0.0159), while both belief propaga-
tion methods deviate on average by0.0143 (stdev:0.0817)
and are virtually indistinguishable. However, in the graph
over 7 vertices we notice that exact inference and MCMC
are slightly different from the two belief propagation meth-
ods in the case where the univariate parameter is small and
the triplet parameter is large (lower right corner).

An alternative measurement of inference quality is the
estimate of the partition function. This is especially im-
portant for learning applications, as this quantity serves to
compute the likelihood function. When performing loopy
belief propagation, we can approximate the log-partition
function using the Bethe approximation [23]. As seen in
Figure 4, the estimate of the log partition function by belief
propagation closely tracks the exact solution. Moreover, as
in the marginal belief test, the two variants of belief propa-
gation are almost indistinguishable. It is important to stress
that running times are substantially different between the
methods. For example, using exact inference with the 7
vertices graph (i.e., one pixel in the matrices shown in Fig-
ure 3) takes80 seconds on a 2.4 GHz Dual Core AMD
based machine. Approximating the marginal probability
using MCMC takes0.3 seconds, standard BP takes12 sec-
onds, and compact BP takes0.07 seconds.

On larger graphs, where exact inference and standard
belief propagation are infeasible, we compare only the
compact belief propagation and MCMC (see Figure 5).
While there are some differences in marginal beliefs, we
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Figure 3: Comparison of inference methods via marginal beliefs.
Each panel visualizes the the probability of an interaction when
we vary two parameters: the univariate potential for interaction
(y-axis) and the the potential over closed triplet (x-axis). The
color indicates probability where blue means probability closer to
0 and red means probability closer to1. The first row of panels
shows exact computation, the second MCMC, the third standard
asynchronous belief propagation, and the fourth our compact be-
lief propagation.

see again that in general there is good agreement between
the two inference procedures. As the graph becomes larger
the gain in run-time increases. Since the mixing time of
MCMC should depend on the size of the graph (if accuracy
is to be conserved), running MCMC inference on a 100-
node graph takes5 minutes. As expected, compact BP still
runs for only0.07 seconds since it depends on the size of
the scheme which remains the same. For protein-protein
interaction networks over hundreds of vertices (see below),
all inference methods become infeasible except for com-
pact belief propagation.

4.2 Parameter estimation

Consider the task of learning the parametersΘ =
〈θ1 . . . θk〉 for each template feature. To learn such param-
eters from real-life data we can use theMaximum Likeli-
hood (ML) estimation [4]. In this method we look for the
parameters that best explain the data in the sense that they
find argmaxθ∈Θp(D|θ). Since there is no closed form for
finding the maximum likelihood parameters of a log-linear
model, a common approach is to resort to greedy search
methods such as gradient ascent. In such approaches an ef-
ficient calculation of the derivative is needed. The partial
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Figure 4: Comparison of inference methods for computing the
log-partition function. Each panel visualizes the log-partition
function (or its approximation) for different parameter setting (as
in Figure 3). In the belief propagation methods, the log-partition
function is approximated using the Bethe free energy approxima-
tion. On the first row is the exact computation, the second row
shows standard asynchronous belief propagation and the third row
shows our compact belief propagation.

derivative of the log likelihoodℓ(D) for a parameterθj that
corresponds to a template featureFj can be described as:

∂ℓ(D)

∂θj
= Ê [Fj ]−Eθ [Fj] (2)

WhereÊ [Fj] is the number of times we actually see the
featurej in D, and

E [Fj ] =
∑

β∈Bindings(Fj)

E [Fj|β ]

is the sum of times we expect to see each grounding of
the featurej according toΘ (see [4]). The first term is
relatively easy to compute in cases where we learn from
fully observed instances, since it is simply the count of each
feature inD. And the second term can be approximated
efficiently by our inference algorithm.

To evaluate this learning procedure we start by generat-
ing samples from a model using a Gibbs sampler [8]. We
then use these samples to estimate the original parameters
using exact and approximate inference. In this synthetic
context, we model a graph over seven vertices using only
triplet (Ft) and open chain (Fc) features and try to recover
the parameter of these features. As can be seen in Figure 6,
using both approximate and exact inference retrieved pa-
rameter values that are close to these we used to generate
the data. However, we can see that since the approximate
and exact likelihoods create a different scenery, the trace
of the exact search is much shorter, and retrieves better pa-
rameters.

We now proceed to learning a real-life model over inter-
actions between proteins. We build on a model described
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Figure 5: Comparison of approximate inference methods on
larger graph instances. As before, we show the probability of an
interaction as a function of parameter settings. On the first row is
MCMC and the second row shows our compact belief propaga-
tion.
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Figure 6: Learning trace of the parameters using exact (a) and
approximate (b) inference on a 7 vertex graph. In both panels
values ofθ111 are shown on thex-axis while values ofθ011 are
shown on they-axis. The dark line shows the advancement of
the conjugate gradient learning procedure, and the bright asterix
in the middle shows the original parameters used for generating
the samples. Color scale shows the exact and approximate log-
likelihood respectively

in [11] for protein-protein interactions. This model is anal-
ogous to our running example, where the vertices of the
graph are proteins and the edges are interactions. We de-
fine the basic typeTp for proteins and the complex type
Ti = [Tp, Tp] for interactions between proteins. As with
edges, we consider the template attributeXe(Ti) that equals
one if the two proteins interact and zero otherwise. We rea-
son about an instantiation for a set of813 proteins related
to DNA transcription and repair [2]. We collected statis-
tics over interactions between these proteins from various
experiments [1, 7, 13, 15].

We adopt an incremental approach considering only the
simplest template feature at the beginning and adding more
complex features later on (this approach is somewhat sim-
ilar to Della Pietraet al. [4]). We start by learning a
model with only univariate features over interactions. As
expected, the parameters we learn reflect the probability
of an interaction in the data. We can now consider more
complex features to the model by fixing the univariate pa-
rameter and adding various features. We start by adding
two features,Ft andFc that describe the closed triangle of
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Figure 7: Exploration of the approximate log-likelihood land-
scape. In this example, the univariate parameter is fixed, the
weights of two features over three interactions, triangle and
chains, are varied. Thex-axis shows the triangle parameter (θ111)
and they-axis shows the chain parameter (θ011). The dark lines
show traces of conjugate gradient runs initiated from arbitrary
starting points. The bright triangles mark the final parameter val-
ues returned by the algorithm.

interactions and open chain of interactions respectively.

Using our efficient inference approximation we can
reevaluate the likelihood and its derivative for many param-
eter values and thereby gain an unprecedented view of the
likelihood landscape of the model. For example, Figure 7
shows the log-likelihood calculated for a grid of parameter
values and traces of a conjugate gradient learning proce-
dure initialized from different starting points. We find that
this view of the likelihood function is highly informative
as it shows the influence of different parameter values on
the model behavior. Specifically, the results show that the
likelihood sensitivity to each parameter is quite different.
This can be seen as a horizontal ridge in the upper part of
the region, meaning that changes inθ111 have smaller ef-
fect on likelihood value than changes inθ011. This behav-
ior might reflect the fact that there are 3-times more occur-
rences of open chains than occurrences of closed triangles
in the graph. Furthermore, our unique view of the likeli-
hood landscape, and especially the horizontal ridge we see,
illustrate that there is a strong relation between the param-
eters. As each of the gradient ascent runs converge to a
different local maxima, we can use the landscape to de-
termine whether this a consequence of rough landscape of
the approximate likelihood or is due to redundancies in the
parametrization that result in an equi-probable region.

We repeated the same exploration technique for other
features such as colocalization of proteins [11], star-2 and
star-3 [10], and quadruplets of interactions (results not
shown). We find that the overall gain in terms of likeli-
hood is smaller than in the case of triplet features. Again,
we find that whenever one of the features is more abundant
in the network, its influence on the approximate marginal
beliefs and likelihood is much larger. In such cases the in-
teresting region - where likelihood is high - narrows to a
small range of parameter values of the abundant feature.

5 Discussion

We have shown how we exploit symmetry in relational
MRFs to perform approximate inference at the template-
level. This results in an extremely efficient approximate
inference procedure. We have shown that this proce-
dure is equivalent to synchronous belief propagation in the
ground model. We have also empirically shown that on
small graphs our inference algorithm approximates the true
marginal probability very well. Furthermore, other approx-
imation methods, such as MCMC and asynchronous BP
yield inference results that are similar to ours. Note that
other works show that synchronous and asynchronous be-
lief propagation are not always equivalent [5].

Other works attempted to exploit relational structure for
more efficient inference. For example, Pfefferet al. [17]
used the relational structure to cache repeated computa-
tions of intermediate terms that are identical in different in-
stances of the same template. Several recent works [3, 18]
derive rules as to when variable elimination can be per-
formed at the template level rather than the instance level,
which saves duplicate computations at the instance levels.
These methods focus on speeding exact inference, and are
relevant in models where the intermediate calculations of
exact inference have tractable representations. These ap-
proaches cannot be applied to models, such as the ones we
consider, where the tree-width is large, and thus intermedi-
ate results of variable elimination are exponential. In con-
trast, our method focuses on template level inference for
approximate inference in such intractable models.

We stress that the main ideas developed here can be ap-
plied in other variational methods such as generalized be-
lief propagation or structured mean field. Furthermore, it
is clear that the class of relational models we defined is not
the only one that has symmetry properties that can be ex-
ploited by our procedure. In fact, all the relational models
that obey Lemma 3.3 can be run in template level. For ex-
ample, it can be shown that a square wrap-around grid also
obeys such symmetry.

The key limitation of our procedure is that it relies on
the lack of evidence. Once we introduce evidence the sym-
metry is disrupted and our method does not apply. While
this seems to be a serious limitation, we note that inference
without evidence is the main computational step in learn-
ing such models from data. We showed how this proce-
dure enables us to deal with learning problems in large re-
lational models that were otherwise infeasible. Though the
search space proves to be very difficult [10], our method
allows us to perform many iterations of parameter estima-
tion in different settings and thereby get a good overview
of the likelihood landscape. This brings us one step closer
towards successful modeling of networks using relational
probabilistic models.
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