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Abstract

Relational Markov Random Fields are a general
and flexible framework for reasoning about the
joint distribution over attributes of a large num-
ber of interacting entities. The main computa-
tional difficulty in learning such models is infer-
ence. Even when dealing with complete data,
where one can summarize a large domain by suf-
ficient statistics, learning requires one to com-
pute the expectation of the sufficient statistics
given different parameter choices. The typical
solution to this problem is to resort to approx-
imate inference procedures, such as loopy be-
lief propagation. Although these procedures are
quite efficient, they still require computation that
is on the order of the number of interactions (or
features) in the model. When learning a large re-
lational model over a complex domain, even such
approximations require unrealistic running time.

In this paper we show that for a particular class of
relational MRFs, which have inherent symmetry,
we can perform the inference needed for learning
procedures using template-level belief propa-
gation. This procedure’s running time is propor-
tional to the size of the relational model rather
than the size of the domain. Moreover, we show
that this computational procedure is equivalent to
sychronous loopy belief propagation. This en-
ables a dramatic speedup in inference and learn-
ing time. We use this procedure to learn rela-
tional MRFs for capturing the joint distribution
of large protein-protein interaction networks.

1 Introduction

values given some observations [11], classification
and model selection [20]. All of these tasks require
ability to perform inference in these models. Since in n
models exact inference is infeasible, most studies res
approximate inference such as variational approxima
[12] and sampling [8]. Unfortunately in many cases ¢
these approximations are computationally expensive.
is especially problematic in settings where inference is
formed many times, such as parameter estimation.

In this paper we show that we can exploit symm
properties of relational models to perform efficient app
imate inference. Our basic observation is that symn
in the relational model implies that many of the inter
diate results of approximate inference procedures, st
loopy belief propagation, are identical. Thus, instea
recalculating the same terms over and over, we car
form inference at the template level. We define forma
large class of relational models that have these symi
properties, show how we can use them to perform effi
approximate inference and compare our results with -
methods. This is, to the best of our knowledge, the firs
proximate inference algorithm that works on the temj
level of the model. However, this efficient inference pr
dure is limited to cases were we have no evidence o
model, since such evidence can break the symmetry
erties. Nevertheless, we show that in many cases, infe
with no evidence is useful, especially in learning tasks
nally, we show a real life application by learning the pi
erties of a model for protein-protein interactions.

2 Symmetric relational models

Relational probabilistic models [6, 9, 18, 21] provide a
guage for defining how to construct models from reoc
ring sub-components. Depending on the spedaifitantia-
tion, these sub-components are duplicated to create tl
tual probabilistic model. We are interested in models

Relational probabilistic models are a rich framework for can be applied for reasoning about the relations bet
reasoning about structured joint distributions [6, 9]. Suchentities. Our motivating example will be reasoning al
models are used to model many types of domains like théhe structure of interaction networlesd., social interactio
web [22], gene expression measurements [20] and proteimetworks or protein-protein interaction networks). We
protein interaction networks [11]. In these domains, theydefine a class of relational models that will be conver
can be used for diverse tasks, such as prediction of missinigr reasoning about these domains. We define a lang
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that is similar to ones previously defined [19], but also a bit
different, to make our claims in the following section more
clear.

As with most relational models in the literature we dis-
tinguish thetemplate-level model that describe the types of
objects and components of the model and how they can be
applied, from thanstantiation-level that describes a par-
ticular model which is an instantiation of the template to a
specific set of entities.

To define a template-level model we first set up the dif-
ferent types of entities we reason about in the model. We ® f7 =Tix---xTj thenZ(T) = Z(Ty)x - X I(Th).
distinguishbasic entity types that describe atomic entities o If 7' = T} thenZ(T) = {[e1,...,ex] : €1,...€x €
from complex types that describe composite entities. I(Th),e1 < --- < e} where< is some (arbitran
order overZ(T) .

Figure 1: An instantiation of the graph scheme over a dome
three vertices.

Definition 2.1: Given a setlysic = (11, - .., Ty) of basic

entity typeswe define two kinds ofomplex types Once we define a set of basic entities, we assume tt

e If Ty,..., T} are basic types, thef, x --- x T, de-  possible complex entities of the given type are definec
notes the type obrdered tuples of entities of these Figure 1 for an instantiation of the graph example).
types. Ifey,..., e are entities of typed?, ..., Ty, The basic and complex entities define the structu
respectively, thefey, . .., ex) is of typeTy x - - - x Tj. our domain of interest. Our goal, however, is to re:

e If T is a basic type, thefi’* denotes the type ain-  about the properties of these entities. We refer to |
ordered tuples of entities of typel’. If ey, ..., e, are  Properties asitributes. Again, we start by the definitic
entities of typeT’, then|ei,...,e;] is of typeT*.  atthe template level, and proceed to examine their ap

When considering ordered tuples, permutations of thdion to a specific instantiation:
basic elements still refer to the same complex entity.
Thus, ife1,eo are of typeT, then bothle, e2] and
[e2, e1] refer to the same complex entity of ty@e.

Definition 2.3: A template attribute A(T") defines a proy
erty of entities of typd". The set of values the attribute «
take is denote¥al(A(T)). 1

i A template attribute denotes a specific property we
For example, suppose we want to reason about undirectqubct each object of the given type to have. In gen
graphs. If we define a typ@&, for vertices then an undi- we can consider attributes of basic objects or attribut
rected edge is of typ€, = 77 since an edge is a compos- complex objects. In our example, we can reason abol
ite object that consists of two vertices. Note that we usecolor of a vertex, by having an attribuf®lor(T,). We cat
unordered tuples since the edge does not have a directioalso create an attributexist(7.) that denotes whether t
That is, both[vi, v2] and [ve, v1] refer to the same rela- edge between two vertices exists. We can consider otf
tionship between the two vertices. If we want to modeltributes such as the weight of an edge and so on. All
directed edges, we need to reason about ordered tuplésmplate attribute are defined at the level of the schem
T. =T, x T,. Now (v, v2) and(vz, v ) refer to two dis-  we will denote by.A the set of template attributes in «
tinct edges. We can also consider social networks, whereodel.

vertices correspond to people. Now we might also add a  Gijyen a concrete entity instanZeve consider all the &
typeT; of physical locations. In order to reason about rela-tripytes of each instantiated type. We view the attribut
tionships between vertices (people) and locations we ”eeéibjects as random variables. Thus, each template att

to define pairs of typé), = T;, x T;. Note that tuples that i, 4 defines a set of random variables:
relate between different types are by definition ordered.

Once we define the template-level set of tygesver Xz(A(T)) = {Xale) e € Z(T)}
some set of basic typeg, .sic, we can consider particular

instantiations in terms of entities. We defineXs = Ua(r)cadz(A(T)) to be the set of &

o o o random variables that are defined over the instanti
Definition 2.2: An entity instantiation 7 for (Tvasic,7) 7. For example, if we consider the attribut€slor
consists of a set dfasic entities £ and amapping : £ —  over vertices andxist over unordered pairs of vertic
Thasic that assigns a basic type to each basic erlity.

. o ) . . 1For example, considering undirected edges again, we
Based on an instantiation, we create all possible instantiasf [, v,] and[v2, v1] as two different names of the same en

tions of each type iff”: Our definition ensures that only one of these two objects is i
set of entities and we view the other as an alternative refere
o if T € ThasicthenZ(T) ={ec & :0(e) =T} the same entity.
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and suppose thaf = {v1,v2,v3} are all of typeT,, Arguments Formal Attr. | Function

then we have three random variables A#{(Color(T},)) entities

which are XCO]OI‘(’UI)jXCOIOI‘(UQ)jXCOIOI‘(US)! and F Exist —Mz=1
four random variables inX(Exist(7.)) which are ‘ (%:%}) [ng’le ast | fo(z) = Bz =1)

Xexist ([v1,v2]), XExist ([v1, v3]), and so on. '
Given a set of types, their attributes and an instantia- 7 (€1,€2,83) E“?} Ei::: figf;’zi’ f‘;’)/\:
tion, we defined a universe of discourse, which is the set [5:75:;] Exict (Z; —1)A
X7 of random variables. Amttribute instantiation w (or (T, Ty, Ty) Te,T7€,Te (z3=1) }
just instantiation) is an assignment of values to all random
variables in¥z. We use botu(Xa(e)) andza(e) torefer  rapje 1: Example of two template-level features for a gre
to the assigned value to the attribdtef the entitye. model. The first is a feature over single edges, and the se
We now turn to the final component of our relational IS ©ne over triplets of coincident edges (triangles).
model. To define a log-linear model over the random vari-
ablesxz, we need to introducteatures that capture pref- We view a template-level feature as a recipe for g
erences for specific cqmbmaﬂons of values to small 9roUPgrating multiple instance-level features by applying ¢
of related random variables. In our graph example, we cafarant bindings of objects to the arguments. For exal
introduce a univariate feature for edges that describes th&e in our three vertices instantiation. we could create

prior potential for the existence of an edge in the graph. Agiances of the featur®, such asfs(Xexist([v1, v2])) and
more complex feature can describe preferences overtripIeTjsé(XExist ([v1, v3])). We now formally define this proces:
of interactions €.g., prefer triangles over open chains). ’

We start by defining template level features as a recip@ef'n't'on_z'& L_et. f be a template feature V\{lth.comp1
that will be assigned to a large number of specific sets oﬂer_]ts as in Dgflmtlon 24 and Igt be an entity m_s_tan-
random variables in the instantiated model. Intuitively, atiation. A binding of 7 is an ordeqred t“P'e _0% _ent|t|es
template feature defines a function that can be applied to 4 = (¢1:- - -»¢x) such thae; € Z(T7'). A binding islegal
set of attributes of related entities. To do so, we need to proll €ach entity in the binding is unique. We define
vide a mechanism to capture sets of entity attributes with
particular relationships. For example, to put a feature over

triangle-like edges, we want a feature over the variables : B is legal for F}
Ko (01, v2]), Xosise (01, va)), @A X (02, 03]) TOF G0 4 pinding = (e, ex) € Bindings(F), we

every choice of three verticas, v, andvs. The actual = goo e entity:;| 5 to be the entity corresponding o
definition, thus involves entities that we quantify over (e.g., . : .
when we assigm; to the argumeng;. Finally, we define

V1, V2, anc_zlvg), the complex entities over these argumentstheground feature 7 ; o be the function oves:
we examine (e.g.[v1,v2], [v1,vs], and [v2,vs]), the at-

tributes of these entities, and the actual feature. Flaw) = f (w(Xa, (€1]8)), - - - w(Xa, (g5]5))

Bindings(F) = {8e€Z(T{) x --- x I(T})

Definition 2.4: Template FeatureA template feature F is I
defined by four components:
For example, consider the bindifig, , vo, vs) for F; of Ta-

e Atuple ofarguments (¢y, ..., &) with a correspond-  ble 1. This binding is legal since all three entities are of
ing list of type signature (T7, ..., T}!), such that; proper type and are different from each other. This bind
denotes an entity of basic tyfé. defines the ground feature

o A list of formal entitiese, ..., ;, with correspond- Fitl s im0y (@) =

ing typesTlf, e ,ij such that each formal entityis
either one of the arguments, or a complex entity con-
structed from the arguments. (For technical reasonsThat IS, (01,02,05) (w) = 1iff there is a triangle of edge
we require that formal entities refer to each argumenyetween the vertices;, v,, andvs. Note that each bind
at most once.) ing defines a ground feature. However, depending on
o Alist of attributesA, (77),..., A; (). chpice of featgre function, some of these ground f(_aatll
_ ; ; might be equivalent. In our last example, the bindi
o Afunction f : Val(Ai(T7)) x -+ x Val(A;(T})) — R.  (y;, v, v5) creates the same feature. While this create
redundancy, it does not impact the usefulness of the

i guage. We now have all the components in place.

f3(IExist([Ul, 112]), IExist([Ul, 03]), IExist([Uz, ’03]))

For example, Table 1 shows such a formalization for aDefinition 2.6: A Relational MRF scheme S is defined by
graph model with two such template level features. a set of typesr, their attributes4 and a set of templat
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features# = {F1,...,Fr}. A model is a scheme com-
bined with a vector oparameters8 = (6;,...,0;) € R*.
Given an entity instantiatio a scheme uniquely defines
the universe of discours&z. Given all this together we
can define the joint distribution of a full assignmenas:

k
Z(; ) exp Z 0;Fi(w) (1)
’ i=1

Pw:S8,Z,0) =

where (with slight abuse of notation)

>

B€Bindings(F;)

Fi(w) = Fils(w)

is the total weight of all grounding of the featufg, andZ
is the normalizing constarll.

This definition of a joint distribution is similar to stan-

dard log-linear models, except that all groundings of atem- .

plate feature share the same parameter [4].

3 Compact Approximate Inference

UAI 2007

each pair of verticely;, v;] a variable nod& gyist ([vs, v5])-
We consider two template features - the triangle featu
we described earlier, and a co-colorization feature that ¢
scribes a preference of two vertices that are connected
an edge to have the same color. To instantiate the tri
gle feature, we go over all directed tuples of three vertic
B = (v;,v;,vx) € Bindings(F;) and defineus with scope
Cs = {Xeust([vi,v5]), Xesist ([vi, vi]), Xexist([v5, v&]) }-
See Figure 2(a) to see such a factor graph for an inst:
tiation of4 vertices. This factor graph is faithful since eacl|
ground feature is assigned to a dedicated feature node.

Loopy belief propagation over a factor graph is define
as repeatedly updating messages of the following form:

[]

w: XeC, /,w'#w

>

cy(X)=z

mxe(x) My —x ()

— Tw [Cw]

e mxs ()

[I

X#X'€C,

wﬂX(x)

wherec,, (X)) is the value ofX in the assignment of values
c, to C,. When these messages converge, we can def

One broad class of approximate inference procedure arggjief about variables as

variational methods[12]. Roughly speaking, in such meth-

ods we approximate the joint distribution by introducing
additionalvariational parameters. Depending on the par-

Tw [z]

H mx —w(Cw <X/>)
X'eC

bo(cw) x e

ticular method, these additional parameters can be thought

of as capturing approximation of marginal beliefs about sewhere the beliefs ove€,, are normalized to sum ta.
lected subsets of variables. Although the general idea wéhese beliefs are the approximation of the marginal prok
present here can be applied to almost all variational methbility over the variables irC., [23].

ods, for concreteness and simplicity we focus herkoopy
belief propagation [16, 23] which is one of the most com-
mon approaches in the field.

To describe loopy belief propagation we consider theedge feature nodes arid- ('

data structure of gactor graph [14]. A factor graph is a bi-

Unfortunately, trying to reason about a network ove
1000 vertices with the features we described earlier, wi
produce('%) variable nodes (one for each edge),"%")

1099) triplet feature nodés
Building such a graph and performing loopy belief prope

partite graph that consists of two layers. In the first layergation with it is a time consuming task. However, our mai

we have for each random variable in the domaiaraable
node X. In the second layer we havactor nodes. Each
factor nodew is associated with a s€f,, of random vari-
ables and a feature,,. If X € C,, then we connect the
variable nodeX to the factor node. Graphically we draw

insight is that we can exploit some special properties of tt
model for much efficient representation and inference. T
basic observation is that the factor graphs for the class
models we defined satisfy basic symmetry properties.

Specifically, consider the structure of the factor graf

variable nodes as circles and factor nodes as squares (sg@ described earlier. An instantiation of graph vertices d

Figure 2(a)).
A factor graph isfaithful to a log-linear model if each

fines both the list of random variables and of features tr
will be created. Each feature node represents a ground f

feature is assigned to a node whose scope contains there that originates from a legal binding to a template fe
scope of the feature. Adding these features multiplied byture. The groundings for an edge feature and for an ec
their parameters defines for each potential nodepoten-  random variable span two vertices, while the grounding
tial functionn,[c,,] that assigns a real value for each valuetriplet feature covers three vertices. Since we are cons
of C,. There is usually a lot of flexibility in defining the ering all legal bindingsi(e., all 2-mers and 3-mers of ver-
set of potential nodes. For simplicity, we focus now on fac-tices) while spanning the factor graph, each edge varial
tor graphs where we have a factor node for each grountiode will be included in the scope dfedge feature nodes
feature. and(n — 2) - 3 triplet feature nodes. More importantly,

For example, let us consider a model over a graph 2Since we defined the template feature using ordered tupl

where we also depict the colors of the vertices. We creéand our edges are defined using unordered tuples, we will h:
ate for each vertex; a variable nodeXcqo(v;) and for  two features over each edge and three features over each tripl
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since all the edge variables have the same “local neighbor-
hood”, they will also compute the same messages during

this idea and show we can use it to enable efficient repre-
sentation and inference.

Definition 3.1: We say that two nodes in the factor graph
have the samiype if they were instantiated from the same
template (either template attribute or template featlire).

Given this definition, we can present our main claim for- i) (512 E1sEes)

md|y Ez3 E12Ez4E14

Theorem 3.2:In every stagée of synchronous belief prop- | Ez) EisBsaBis

agation that is initiated with uniform messages;ifv;, are Esa E23E24Es4 £,
from the same type and alsg, v; are from the same type -
thenm?, _, (x) =m!,__, (z). (a) Full factor graph (b) Compact factor gra

We start by proving the local properties of symmetry of theFigure 2: Shown are the full (a) and compact (b) factor gr

model: modeling a colored graph. We have basic types for color:

. . .. vertices, and a complex type for edges. We consider two ten
Lemma3.3: In a model created according to Defini- features - the triangle feature and a co-colorization feature

tion 2.6, if two nodes in the factor graph have the samexarity, Xg,ic:([v:, v;]) is shown asE; ; and Xcoior (v:) is showr
type, then they have the sarfezal neighborhood That asC;. Orange edges show the edges connected to edge va

is, they have the same number of neighbors of each type. and green edges are connected to color variajiésshows th
number of vertices in the graph.

The proof of Theorem 3.2 is a direct consequence of

Lemma 3.3 by induction over the stage of the belief propa-
gation. We now turn to prove Lemma 3.3: connected with an edge to all the template feature r

Proof: If v; andv; are feature nodes, then since they are ofthat conta!n .th|s.feature n the|r SCOpE. A -feature !
eeds to distinguish between its neighbors, since eact

the same type, they are instantiations of the same templaﬂe fers t bout diff tvariable. I
feature. From Definition 2.4 and Definition 2.5 we can see>2 3¢ €1€rs 10 a message about difiérent variable.

that this means that they are defined over variables fron! t_h iltemp_lgte faictor lgrtapfh v¥e term ar: as|?00|fat|(t)n
the same type. Since each feature is connected only to th@iravbie Inside a template teature noplet . If a factol

variables in its scope, this proves our claim. However; if contains more than one variable of the same type, the

andv; are variable nodes, it suffices to show that they takergspondlng edge splits to the corresponding ports wh

part in the same kind of features, and in the same number Jving to the factor node. In addition, each ground vari

features of each such kind. Note that Definition 2.6 showé']Ode takes part in many feat_ures_ that were |r?stant|atw
that we use all legal binding for each feature. For simplic-the same template feature with different bindings. He
ity, we will assume that; is instantiated from the attribute egch edge frpm a template feature node-to a tgmpla
of some basic typ#@' (the proofin case it is a complex type tribute node n the template factor graph IS as_S|gneq
is similar). We need to compute how many ground feature? number indicating the number of repetitions it has ir
containw; in their scope, and do not contain From Defi- ull factor graphAl

nition 2.5 we can see that all the legal bindings that includq:igure 2(b) shows such a template factor graph for our
v; and do not include; are legal also if we replacg with ning example.

vj- Running loopy belief propagation on this template

After showing that many calculations are done over anc}or graph is straightforward. The algorithm is similar to

. . . _standard belief propagation only that when an edge i
over again, we now show how we can use a more efﬂmenfem late-araph represents manv edaes in the instance
representation to enable much faster inference. P graph rep y edg

factor graph, we interpret this by multiplying the appro
Definition 3.4: A template factor graph over a template ate message the appropriate number of times. Since
log-linear model is a bi-partite graph, with one level corre-rem 3.2 shows that at all stages in the standard synchr
sponding to attributes and the other corresponding to tembelief propagation the messages between nodes of the
plate features. Each template attribtit¢hat corresponds type are similar, running belief propagation on the tem|
to a formal entity in some template featufeés mappedtoa factor graph is equivalent to running synchronous b
template attribute node on one side of the graph. And each propagation on the full factor graph. However, we redi
template feature is mapped taamplate feature node on  the cost of representation and inference from being pr
the other side of the graph. Each template attribute node isonal to the size of the instantiated model, to be prc
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tional to the size of the domain. Specifically, this represen-
tation does not depend on the size of the instantiations and

-
Q
IS

n

can deal with a huge number of variables.

b L o m owm
ﬂ
L L o = 0~
I

s
s
o
-
~

4 Evaluation

4.1 Inference

We start by evaluating our method in inference tasks. We
build a model representing a graph using the univariate and I
triangle features described in the previous section and per-
forminference with various parameter combinations. In the N
first step we consider instantiations of small graphs where m
we can also perform exact inference. We compared ex-
actinference, MCMC (Gibbs sampling) [8], standard asyn- e
chronous belief propagation [23], and compact belief prop-

agation on the template-level model. A simple way to com- o j
pare inference results is by examining the marginal be- 8 .
liefs. Such a comparison is possible since in all methods -

the computed marginal probabilities for all edge variables - —
were equal. Hence, Figure 3 shows a comparison of the 3 vertice 5 vertices
marginal distributions over edge variables for different pa-

rameter settings and different inference methods. We obFigure 3: Comparison of inference methods via marginal beli
serve that in small graphs the marginal beliefs are very simEach panel visualizes the the probability of an interaction w
ilar for all inference methods. To quantify the similarity we We vary two parameters: the univariate potential for interac

. . : (y-axis) and the the potential over closed tripletgxis). The
calculate the relative deviation from the true marginal. Wecolor indicates probability where blue means probability close

find that on average MCMC deviates By118 from the  ( and red means probability closer to The first row of panels
true marginal (stdev.0159), while both belief propaga- shows exact computation, the second MCMC, the third stan:
tion methods deviate on average(y143 (stdev:0.0817)  asynchronous belief propagation, and the fourth our compac
and are virtually indistinguishable. However, in the graphlief propagation.

over 7 vertices we notice that exact inference and MCMC

are slightly different from the two belief propagation meth-

ods in the case where the univariate parameter is small amf® agan that in general there is good agreement bet
the triplet parameter is large (lower right corner). the two inference procedures. As the graph becomes I
the gain in run-time increases. Since the mixing time

An alternative measurement of inference quality is theyy~yc should depend on the size of the graph (if accur
estimate of the partition function. This is especially im- ¢ {5 peo conserved), running MCMC inference on a 1
portant for qurniqg applicatipns, as this quantity serves tq, 4e graph takesminutes. As expected, compact BP s
compute the I|k¢||hood function. W_hen performing '°‘?Py runs for only0.07 seconds since it depends on the size
bellef propagation, we can approximate the Iog'p""rt't'(,)'ﬁ'the scheme which remains the same. For protein-prc
function using the Bethe approximation [23]. As Seen injperaction networks over hundreds of vertices (see beli

Figure 4, the estimate of the log partition function by beliefa" inference methods become infeasible except for ¢
propagation closely tracks the exact solution. Moreover, aﬁact belief propagation.

in the marginal belief test, the two variants of belief propa-
gation are almost indistinguishable. It is important to stress

that running times are substantially different between the4'2 Parameter estimation

methods. For example, using exact inference with the Tconsider the task of learning the paramet@s =
vertices graphi(e., one pixel in the matrices shown in Fig- (6 ... 0;,) for each template feature. To learn such par:
ure 3) takes80 seconds on a 2.4 GHz Dual Core AMD gters from real-life data we can use thkeximum Likeli-

based machine. Approximating the marginal probabilitypgog (ML) estimation [4]. In this method we look for th
using MCMC takes).3 seconds, standard BP takiessec-  parameters that best explain the data in the sense thai
onds, and compact BP take$7 seconds. find argmax,.p(D|0). Since there is no closed form fc

On larger graphs, where exact inference and standarfinding the maximum likelihood parameters of a log-line
belief propagation are infeasible, we compare only themodel, a common approach is to resort to greedy se
compact belief propagation and MCMC (see Figure 5).methods such as gradient ascent. In such approaches
While there are some differences in marginal beliefs, weficient calculation of the derivative is needed. The par

MCMC

~

L o e
J U o = ~N
I

~

b L o m owm

~

2 -1 0 . 1 2
7 vertices
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Exact
MCMC

CBP

BP

2

1

0
-1
-2l

' 8 '\ 20 vertices 50 vertices 100 vertices

CBP

o Figure 5: Comparison of approximate inference methods
RS larger graph instances. As before, we show the probability o

3 vertices 5 vertices 7 vertices interaction as a function of parameter settings. On the first ro
MCMC and the second row shows our compact belief propz
Figure 4: Comparison of inference methods for computing thellon-

log-partition function. Each panel visualizes the log-partition

function (or its approximation) for different parameter setting (as o-s 0 o5 - -10
in Figure 3). In the belief propagation methods, the log-partition o 0
function is approximated using the Bethe free energy approxima- -os -5 o5 -15
tion. On the first row is the exact computation, the second row _, : i .
shows standard asynchronous belief propagation and the third row._, 20 s 20
shows our compact belief propagation. ,2 S

-2.5 | | 25 -25 -25

0

derivative of the log likelihood(D) for a parametef; that _ (@) 7 (b)
corresponds to a template featufecan be described as:
90D Figure 6: Learning trace of the parameters using exact (a)
(D) - B [Fi] — Eq [F;] 2) approximate (b) inference on a 7 vertex graph. In both par
0, values offy11 are shown on the-axis while values ofly1; are

. . . shown on they-axis. The dark line shows the advancement
Where E [F;] is the number of times we actually see the the conjugate gradient learning procedure, and the bright as

featurej in D, and in the middle shows the original parameters used for geners
the samples. Color scale shows the exact and approximate
E[F;] = Z E [Fj|5] likelihood respectively

B€Bindings(F;)

is the sum of times we expect to see each grounding of, [11] for protein-protein interactions. This model is an:
the featurej according to© (see [4]). The first term is ogous to our running example, where the vertices of
relatively easy to compute in cases where we learn fronyraph are proteins and the edges are interactions. We
fully obs_erved instances, since itis simply the count_of eachine the basic typd’, for proteins and the complex typ
fea_\tl_Jre inD. An(_JI the second term can be approximatedz, — [T,,T,] for interactions between proteins. As wif
efficiently by our inference algorithm. edges, we consider the template attribGtér’;) that equals

To evaluate this learning procedure we start by generatene if the two proteins interact and zero otherwise. We t
ing samples from a model using a Gibbs sampler [8]. Weson about an instantiation for a set&if3 proteins related
then use these samples to estimate the original parametedrs DNA transcription and repair [2]. We collected stati
using exact and approximate inference. In this synthetigics over interactions between these proteins from vari
context, we model a graph over seven vertices using onlgxperiments[1, 7, 13, 15].

triplet (#;) and open chainX.) features and try to recover We adopt an incremental approach considering only
the parameter of these features. As can be seen in Figuregmplest template feature at the beginning and adding n
using both approximate and exact inference retrieved Paomplex features later on (this approach is somewhat <
rameter values that are close to these we used to generaigr io Della Pietraet al. [4]). We start by learning a
the data. However, we can see that since the approximai@odel with only univariate features over interactions.
and exact likelihoods create a different scenery, the traC@ypected, the parameters we learn reflect the probat
of the exact search is much shorter, and retrieves better pas an interaction in the data. We can now consider m
rameters. complex features to the model by fixing the univariate |
We now proceed to learning a real-life model over inter-rameter and adding various features. We start by adt
actions between proteins. We build on a model describetivo featuresF; andF. that describe the closed triangle |
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x 10" 5 Discussion

We have shown how we exploit symmetry in relatic
4 MRFs to perform approximate inference at the temp
-5 level. This results in an extremely efficient approxin
inference procedure. We have shown that this pi
dure is equivalent to synchronous belief propagation i
ground model. We have also empirically shown tha
Figure 7: Exploration of the approximate log-likelihood land small graphs our inference algorithm approximates the
scape. In this example, the univariate parameter is fixed, thenarginal probability very well. Furthermore, other app!

weights of two features over three interactions, triangle anqmation methods, such as MCMC and asynchronou
chains, are varied. The-axis shows the triangle parametér () X

and they-axis shows the chain parameté(). The dark lines yield inference results that are similar to ours. Note
show traces of conjugate gradient runs initiated from arbitraryother works show that synchronous and asynchronot
starting points. The bright triangles mark the final parameter vallief propagation are not always equivalent [5].

ues returned by the algorithm. Other works attempted to exploit relational structure
more efficient inference. For example, Pfeféral. [17]
used the relational structure to cache repeated con
tions of intermediate terms that are identical in differen
interactions and open chain of interactions respectively. stances of the same template. Several recent works [

Using our efficient inference approximation we can derive rules as to when variable elimination can be
reevaluate the likelihood and its derivative for many paramformed at the template level rather than the instance
eter values and thereby gain an unprecedented view of thihich saves duplicate computations at the instance I
likelihood landscape of the model. For example, Figure 7These methods focus on speeding exact inference, a
shows the log-likelihood calculated for a grid of parameter€lévant in models where the intermediate calculatiol
values and traces of a conjugate gradient learning procéXact inference have tra_ctable representations. The:
dure initialized from different starting points. We find that Proaches cannot be applied to models, such as the or
this view of the likelihood function is highly informative Cconsider, where the tree-width is large, and thus interr
as it shows the influence of different parameter values o€ results of variable elimination are exponential. In
the model behavior. Specifically, the results show that thdrast, our method focuses on template level inferenc
likelihood sensitivity to each parameter is quite different.@PProximate inference in such intractable models.
This can be seen as a horizontal ridge in the upper part of We stress that the main ideas developed here can |
the region, meaning that changesdin,; have smaller ef- plied in other variational methods such as generalize
fect on likelihood value than changesfs ;. This behav- lief propagation or structured mean field. Furthermoi
ior might reflect the fact that there are 3-times more occuris clear that the class of relational models we defined i
rences of open chains than occurrences of closed trianglele only one that has symmetry properties that can b
in the graph. Furthermore, our unique view of the likeli- ploited by our procedure. In fact, all the relational mo
hood landscape, and especially the horizontal ridge we se#hat obey Lemma 3.3 can be run in template level. Fo
illustrate that there is a strong relation between the paramample, it can be shown that a square wrap-around gri
eters. As each of the gradient ascent runs converge to @beys such symmetry.
different local maxima, we can use the landscape t0 de- The key limitation of our procedure is that it relies

termine whether this a consequence of rough landscape @fe |ack of evidence. Once we introduce evidence the
the approximate likelihood or is due to redundancies in thf?netry is disrupted and our method does not apply. V
parametrization that result in an equi-probable region.  this seems to be a serious limitation, we note that infer

We repeated the same exploration technique for othewithout evidence is the main computational step in le
features such as colocalization of proteins [11], star-2 anihg such models from data. We showed how this pr
star-3 [10], and quadruplets of interactions (results notlure enables us to deal with learning problems in larg
shown). We find that the overall gain in terms of likeli- lational models that were otherwise infeasible. Thoug|
hood is smaller than in the case of triplet features. Againsearch space proves to be very difficult [10], our me
we find that whenever one of the features is more abundaratilows us to perform many iterations of parameter est
in the network, its influence on the approximate marginattion in different settings and thereby get a good over
beliefs and likelihood is much larger. In such cases the inof the likelihood landscape. This brings us one step ¢
teresting region - where likelihood is high - narrows to atowards successful modeling of networks using relati
small range of parameter values of the abundant feature. probabilistic models.
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