Supplementary material for: Convergence Rate Analysis of MAP Coordinate Minimization Algorithms

Ofer Meshi

Tommi Jaakkola

Amir Globerson

meshi@cs.huji.ac.il

tommi@csail.mit.edu

gamir@cs.huji.ac.il

1 Primal Convergence Rate

For clarity, we define

$$\mu \cdot \theta = \sum_{i} \sum_{x_i} \mu_i(x_i) \theta_i(x_i) + \sum_{c} \sum_{x_c} \mu_c(x_c) \theta_c(x_c)$$
 (1)

$$H(\mu) = \sum_{i} H(\mu_i(\cdot)) + \sum_{c} H(\mu_c(\cdot))$$
 (2)

Theorem 1.1. Denote by P_{τ}^* the optimum of the smoothed primal $PMAP_{\tau}$. Then for any set of dual variables δ , if $\|\nabla F(\delta)\|_{\infty} \leq \epsilon \in R(\tau)$ (for a range of values $R(\tau)$), then $P_{\tau}^* - P_{\tau}(\tilde{\mu}) \leq C_0 \epsilon$, where C_0 is a constant that depends only on the parameters θ , independent of τ , and $\tilde{\mu}$ represents the set of locally consistent marginals from Algorithm 1 in response to $\mu = \mu(\delta)$.

Proof. $\|\nabla F(\delta)\|_{\infty} \leq \epsilon$ guarantees that $\mu = \mu(\delta)$ are ϵ -consistent in the sense that $|\mu_i(x_i) - \mu_c(x_i)| \leq \epsilon$ for all $c, i \in c$ and x_i . Algorithm 1 maps any such ϵ -consistent μ to locally consistent marginals $\tilde{\mu}$ such that

$$|\mu_i(x_i) - \tilde{\mu}_i(x_i)| \le 3\epsilon N_{\text{max}}, \quad |\mu_c(x_c) - \tilde{\mu}_c(x_c)| \le 2\epsilon N_{\text{max}}^2, \tag{3}$$

for all i, x_i, c , and x_c , where $N_{\max} = \max\{\max_i N_i, \max_c N_c\}$. In other words, $\|\mu - \tilde{\mu}\|_{\infty} \leq K\epsilon$. This can be easily derived from the update in Algorithm 1 and the fact that $|\mu_i(x_i) - \mu_c(x_i)| \leq \epsilon$.

Next, it can be shown that $F(\delta) = P_{\tau}(\mu(\delta))$. And it follows that $P_{\tau}^* \leq F(\delta) \leq P_{\tau}(\mu)$, where the first inequality follows from weak duality.

Thus we have:

$$P_{\tau}^{*} \leq P_{\tau}(\mu) = \mu \cdot \theta + \frac{1}{\tau}H(\mu) = (\tilde{\mu} + \mu - \tilde{\mu}) \cdot \theta + \frac{1}{\tau}H(\tilde{\mu}) + \frac{1}{\tau}(H(\mu) - H(\tilde{\mu}))$$
(4)

$$\leq P_{\tau}(\tilde{\mu}) + \|\mu - \tilde{\mu}\|_{\infty} \|\theta\|_{1} + \frac{1}{\tau} (H(\mu) - H(\tilde{\mu}))$$
 (5)

$$\leq P_{\tau}(\tilde{\mu}) + K\epsilon \|\theta\|_{1} + \frac{1}{\tau} (H(\mu) - H(\tilde{\mu})) \tag{6}$$

Where we have used Holder's inequality for the first inequality and Eq. (3) for the second inequality.

It remains to bound $\frac{1}{\tau}(H(\mu) - H(\tilde{\mu}))$ by a linear function of ϵ . We note that it is impossible to achieve such a bound in general (e.g., see [1]). However, since the entropy is bounded the difference is also bounded. Now, if we also restrict ϵ to be large enough $\epsilon \geq \frac{1}{\tau}$, then we obtain the bound:

$$\frac{1}{\tau}(H(\mu) - H(\tilde{\mu})) \le \frac{1}{\tau} H_{\text{max}} \le \epsilon H_{\text{max}} \tag{7}$$

We thus obtain that Eq. (6) is of the form $P_{\tau}(\tilde{\mu}) + O(\epsilon)$ and the result follows.

For the high-accuracy regime (small ϵ) we provide a similar bound for the case $\epsilon \leq O(e^{-\tau})$. Let $v = \mu - \tilde{\mu}$, so we have:

$$H(\mu) - H(\tilde{\mu}) = H(\tilde{\mu} + v) - H(\tilde{\mu})$$

$$\leq H(\tilde{\mu}) + \nabla H(\tilde{\mu})^{\top} v - H(\tilde{\mu})$$

$$= -\sum_{i} \sum_{x_{i}} v_{i}(x_{i}) \log \tilde{\mu}_{i}(x_{i}) - \sum_{c} \sum_{x_{c}} v_{c}(x_{c}) \log \tilde{\mu}_{c}(x_{c})$$

where the inequality follows from the concavity of entropy, and the second equality is true because $\sum_{x_i} v_i(x_i) = 0$ and similarly for $v_c(x_c)$. Now, from the definition of $\mu_i(x_i; \delta)$ we obtain the following bound:

$$\mu_i(x_i; \delta) = \frac{1}{Z_i} e^{\tau(\theta_i(x_i) + \sum_{c: i \in c} \delta_{ci}(x_i))} \ge \frac{1}{|X_i|} e^{-2\tau(\|\theta_i\|_{\infty} + \|\delta_i\|_1)}$$

We will show below (Lemma 1.2) that $\|\delta_i\|_1$ remains bounded by a constant A independent of τ . Thus we can write:

$$\mu_i(x_i; \delta) \ge \frac{1}{|X_{\text{max}}|} e^{-2\tau(\|\theta_i\|_{\infty} + A)}$$

where $|X_{\max}| = \max\{\max_i |X_i|, \max_c |X_c|\}$. We define $\gamma_0 = \frac{1}{(2|X_{\max}|)^{\tau}} e^{-2\tau(\|\theta_i\|_{\infty} + A)}$, and thus for any $\tau \geq 1$ we have that $\mu_i(x_i; \delta)$ is bounded away from zero by $2^{\tau} \gamma_0$. Since we assume that $\epsilon \leq \gamma_0$, we can bound $\tilde{\mu}$ from below by γ_0 . As a result, since $\|v_i\|_{\infty} \leq K\epsilon$,

$$-\frac{1}{\tau} \sum_{i} \sum_{x_{i}} v_{i}(x_{i}) \log \tilde{\mu}_{i}(x_{i}) \leq -\frac{1}{\tau} (\log \gamma_{0}) |X_{i}| K \epsilon = (2(\|\theta_{i}\|_{\infty} + A) + \log(2|X_{\max}|)) |X_{i}| K \epsilon$$

and similarly for the other entropy terms.

Again, we obtain that Eq. (6) is of the form $P_{\tau}(\tilde{\mu}) + O(\epsilon)$ and the result holds.

In conclusion, we have shown that if $\|\nabla F(\delta)\|_{\infty} \leq \epsilon$, then for large values $\epsilon \geq \frac{1}{\tau}$ and small values $\epsilon \leq \frac{1}{(2|X_{\max}|)^{\tau}}e^{-2\tau(\|\theta_i\|_{\infty}+A)}$ we have that: $P_{\tau}^* - P_{\tau}(\tilde{\mu}) \leq O(\epsilon)$. Our analysis does not cover values in the middle range, but we next argue that the covered range is useful. \square

The allowed range of ϵ (namely $\epsilon \in R(\tau)$) seems like a restriction. However, as we argue next taking $\epsilon \geq \frac{1}{\tau}$ (i.e., $\epsilon \in R(\tau)$) is all we need in order to obtain a desired accuracy in the non-smoothed primal.

Suppose one wants to solve the original problem PMAP to within accuracy ϵ' . There are two sources of inaccuracy, namely the smoothing and suboptimality. To ensure the desired accuracy, we require that $P_{\tau}^* - P^* \leq \alpha \epsilon'$ and likewise $P_{\tau}(\tilde{\mu}) - P_{\tau}^* \leq (1 - \alpha)\epsilon'$. In other words, we allow $\alpha \epsilon'$ suboptimality due to smoothing and $(1 - \alpha)\epsilon'$ due to suboptimality.

For the first condition, it is enough to set the smoothing constant as: $\tau \geq \frac{H_{\max}}{\alpha\epsilon'}$. The second condition will be satisfied as long as we use an ϵ such that: $\epsilon \leq \frac{(1-\alpha)\epsilon'}{(K\|\theta\|_1 + H_{\max})}$ (see Eq. (6) and Eq. (7)). If we choose $\alpha = \frac{H_{\max}}{K\|\theta\|_1 + 2H_{\max}}$ we obtain that this ϵ satisfies $\epsilon \geq \frac{1}{\tau}$ and therefore $\epsilon \in R(\tau)$.

Lemma 1.2. Assume δ is a set of dual variables satisfying $F(\delta) \leq F(0)$ where F(0) is the dual value corresponding to $\delta = 0$. We can require $\sum_{c:i \in c} \delta_{ci}(x_i) = 0$ since $F(\delta)$ is invariant to constant shifts. Then it holds that:

$$\sum_{c,i,x_i} |\delta_{ci}(x_i)| = ||\delta||_1 \le A \tag{8}$$

where

$$A = 2 \max_{i} |X_{i}| \left(F(0) + \sum_{i} \max_{x_{i}} |\theta_{i}(x_{i})| + \sum_{c} \max_{x_{c}} |\theta_{c}(x_{c})| \right)$$
(9)

Proof. To show this, we bound

$$\max_{\delta} \sum_{c,i,x_i} r_{ci}(x_i) \delta_{ci}(x_i)$$
s.t. $F(\delta) \leq F(0)$

$$\sum_{c:i \in c} \delta_{ci}(x_i) = 0$$
(10)

For any $r_{ci}(x_i) \in [-1, 1]$. The dual problem turns out to be:

$$\min_{\mu,\gamma,\alpha} \quad \alpha(F(0) - \sum_{c,x_c} \mu_c(x_c)\theta_c(x_c) - \sum_{i,x_i} \mu_i(x_i)\theta_i(x_i) - \sum_i H(\mu_i(x_i)) - \sum_c H(\mu_c(x_c))$$
s.t.
$$\mu_i(x_i) - \mu_c(x_i) = \frac{r_{ci}(x_i) - \gamma_{ci}}{\alpha}$$

$$\mu_i(x_i) \ge 0, \mu_c(x_c) \ge 0$$

$$\sum_{x_i} \mu_i(x_i) = 1, \sum_{x_c} \mu_c(x_c) = 1$$

$$\alpha \ge 0$$
(11)

We will next upper bound this minimum with a constant independent of r and thus obtain an upper bound that holds for all r. To do this, we will present a feasible assignment to the variables α, μ, γ above and use the value they attain. First, we set $\alpha = \hat{\alpha} = 2 \max_i |X_i|$. Next, we note that for this $\hat{\alpha}$, the objective of Eq. (11) is upper bounded by A (as defined in Eq. (9)). Thus we only need to show that $\hat{\alpha} = 2 \max_i |X_i|$ is indeed a feasible value, and this will be done by showing feasible values for the other variables denoted by $\hat{\mu}, \hat{\gamma}$. First, we set:

$$\hat{\mu}_i(x_i) = \frac{1}{|X_i|}$$

and:

$$\hat{\gamma}_{ci} = \frac{1}{|X_i|} \sum_{x_i} r_{ci}(x_i)$$
 (12)

Next, we define $\nu_{ci}(x_i)$ (for all c, i, x_i) as follows:

$$\nu_{ci}(x_i) = \hat{\mu}_i(x_i) - \frac{r_{ci}(x_i) - \hat{\gamma}_{ci}}{\hat{\alpha}}$$
(13)

It can easily be shown that $\nu_{ci}(x_i)$ is a valid distribution over x_i (i.e., non negative and sums to one). Thus we can define:

$$\hat{\mu}_c(x_c) = \prod_{i \in c} \nu_{ci}(x_i) \tag{14}$$

Since $\hat{\mu}_c(x_c)$ is a product of distributions over the variables in c, it is also a valid distribution. Thus it follows that all constraints in Eq. (11) are satisfied by $\hat{\alpha}, \hat{\gamma}, \hat{\mu}$, and the desired bound holds.

2 Star improvement bound

We prove the following proposition:

Proposition 2.1. The star update for variable x_i satisfies:

$$F(\delta^t) - F(\delta^{t+1}) \ge \frac{1}{4\tau N_i} \|\nabla_{S_i} F(\delta^t)\|_2^2$$

Proof. First, we know that the improvement associated with the star update for variable x_i is:

$$F(\delta^t) - F(\delta^{t+1}) = -\frac{1}{\tau} \log \left(\sum_{x_i} \left(\mu_i^t(x_i) \cdot \prod_{c: i \in c} \mu_c^t(x_i) \right)^{\frac{1}{N_i + 1}} \right)^{N_i + 1}$$

Therefore, for any probability distributions $p,q^{(1)},...,q^{(m)}$ we want to prove that:

$$\left(\sum_{i} \left(p_i \cdot \prod_{k} q_i^{(k)}\right)^{\frac{1}{m+1}}\right)^{m+1} \leq \exp\left(-\frac{1}{4m} \sum_{k} \sum_{i} \left(p_i - q_i^{(k)}\right)^2\right)$$

Lemma 2.2. For any probability distributions $p, q^{(1)}, ..., q^{(m)}$ the following holds:

$$\left(\sum_{i} \left(p_{i} \cdot \prod_{k} q_{i}^{(k)}\right)^{\frac{1}{m+1}}\right)^{m+1} \le 1 - \frac{1}{4m} \sum_{k} \left(\sum_{i} |p_{i} - q_{i}^{(k)}|\right)^{2}$$

Proof.

$$\sum_{k} \left(\sum_{i} |p_{i} - q_{i}^{(k)}| \right)^{2} \leq \sum_{k} \left(\sum_{i} (\sqrt{p_{i}} - \sqrt{q_{i}^{(k)}})^{2} \cdot \sum_{i} (\sqrt{p_{i}} + \sqrt{q_{i}^{(k)}})^{2} \right) \\
= \sum_{k} \left(4 - 4 \left(\sum_{i} \sqrt{p_{i} q_{i}^{(k)}} \right)^{2} \right) \\
= 4m - 4 \sum_{k} \left(\sum_{i} \sqrt{p_{i} q_{i}^{(k)}} \right)^{2} \\
\leq 4m - 4 \sum_{k} \left(\sum_{i} \left(p_{i} \cdot \prod_{k'} q_{i}^{(k')} \right)^{\frac{1}{m+1}} \right)^{m+1} \\
= 4m - 4m \left(\sum_{i} \left(p_{i} \cdot \prod_{k'} q_{i}^{(k')} \right)^{\frac{1}{m+1}} \right)^{m+1} \\
\Rightarrow \left(\sum_{i} \left(p_{i} \cdot \prod_{k'} q_{i}^{(k')} \right)^{\frac{1}{m+1}} \right)^{m+1} \leq 1 - \frac{1}{4m} \sum_{k} \left(\sum_{i} |p_{i} - q_{i}^{(k)}| \right)^{2}$$

For the first transition see [3] (also in [2] p. 57). The second inequality follows from Theorem 1 in [4]. \Box

Using Lemma 2.2 the desired result follows since:

$$\left(\sum_{i} \left(p_{i} \cdot \prod_{k} q_{i}^{(k)}\right)^{\frac{1}{m+1}}\right)^{m+1} \leq 1 - \frac{1}{4m} \sum_{k} \left(\sum_{i} |p_{i} - q_{i}^{(k)}|\right)^{2}$$

$$\leq 1 - \frac{1}{4m} \sum_{k} \sum_{i} \left(p_{i} - q_{i}^{(k)}\right)^{2}$$

$$\leq \exp\left(-\frac{1}{4m} \sum_{k} \sum_{i} \left(p_{i} - q_{i}^{(k)}\right)^{2}\right)$$

3 Gradient-based algorithms

In this section we describe the gradient descent and FISTA algorithms used in the experiments.

$$\begin{array}{lll} \text{1: } \textbf{for } t = 1, \dots \textbf{do} \\ \text{2: } & \delta^{t+1} = \delta^t - \frac{1}{L} \nabla F(\delta^t) \\ \text{3: } \textbf{end for} \\ \end{array} \qquad \begin{array}{ll} \text{1: } \overline{\delta}^1 = \delta^0, \quad \alpha^1 = 1 \\ \text{2: } \textbf{for } t = 1, \dots \textbf{do} \\ \text{3: } & \delta^t = \overline{\delta}^t - \frac{1}{L} \nabla F(\overline{\delta}^t) \\ \text{4: } & \alpha^{t+1} = \frac{1 + \sqrt{1 + 4(\alpha^t)^2}}{2} \\ \text{5: } & \overline{\delta}^{t+1} = \delta^t + \left(\frac{\alpha^t - 1}{\alpha^{t+1}}\right) \left(\delta^t - \delta^{t-1}\right) \\ \text{6: } \textbf{end for} \\ \end{array}$$

6: end for

References

- [1] D. Berend and A. Kontorovich. A reverse pinsker inequality. CoRR, abs/1206.6544, 2012.
- [2] T. Kailath. The divergence and bhattacharyya distance measures in signal selection. Communication Technology, IEEE Transactions on, 15(1):52 -60, february 1967.
- [3] C. Kraft. Some conditions for consistency and uniform consistency of statistical procedures. In Univ. of California Publ. in Statistics, vol. 1, pages 125-142. Univ. of California, Berkeley, 1955.
- [4] K. Matusita. On the notion of affinity of several distributions and some of its applications. Annals of the Institute of Statistical Mathematics, 19:181–192, 1967. 10.1007/BF02911675.