Supplementary material for: Convergence Rate Analysis of MAP Coordinate Minimization Algorithms

Ofer Meshi
meshi@cs.huji.ac.il

Tommi Jaakkola
tommi@csail.mit.edu

Amir Globerson
gamir@cs.huji.ac.il

1 Primal Convergence Rate

For clarity, we define

$$
\begin{align*}
\mu \cdot \theta & =\sum_{i} \sum_{x_{i}} \mu_{i}\left(x_{i}\right) \theta_{i}\left(x_{i}\right)+\sum_{c} \sum_{x_{c}} \mu_{c}\left(x_{c}\right) \theta_{c}\left(x_{c}\right) \tag{1}\\
H(\mu) & =\sum_{i} H\left(\mu_{i}(\cdot)\right)+\sum_{c} H\left(\mu_{c}(\cdot)\right) \tag{2}
\end{align*}
$$

Theorem 1.1. Denote by P_{τ}^{*} the optimum of the smoothed primal $P M A P_{\tau}$. Then for any set of dual variables δ, if $\|\nabla F(\delta)\|_{\infty} \leq \epsilon \in R(\tau)$ (for a range of values $R(\tau)$), then $P_{\tau}^{*}-P_{\tau}(\tilde{\mu}) \leq C_{0} \epsilon$, where C_{0} is a constant that depends only on the parameters θ, independent of τ, and $\tilde{\mu}$ represents the set of locally consistent marginals from Algorithm 1 in response to $\mu=\mu(\delta)$.

Proof. $\|\nabla F(\delta)\|_{\infty} \leq \epsilon$ guarantees that $\mu=\mu(\delta)$ are ϵ-consistent in the sense that $\mid \mu_{i}\left(x_{i}\right)-$ $\mu_{c}\left(x_{i}\right) \mid \leq \epsilon$ for all $c, i \in c$ and x_{i}. Algorithm 1 maps any such ϵ-consistent μ to locally consistent marginals $\tilde{\mu}$ such that

$$
\begin{equation*}
\left|\mu_{i}\left(x_{i}\right)-\tilde{\mu}_{i}\left(x_{i}\right)\right| \leq 3 \epsilon N_{\max }, \quad\left|\mu_{c}\left(x_{c}\right)-\tilde{\mu}_{c}\left(x_{c}\right)\right| \leq 2 \epsilon N_{\max }^{2} \tag{3}
\end{equation*}
$$

for all i, x_{i}, c, and x_{c}, where $N_{\max }=\max \left\{\max _{i} N_{i}, \max _{c} N_{c}\right\}$. In other words, $\|\mu-\tilde{\mu}\|_{\infty} \leq K \epsilon$. This can be easily derived from the update in Algorithm 1 and the fact that $\left|\mu_{i}\left(x_{i}\right)-\mu_{c}\left(x_{i}\right)\right| \leq \epsilon$.
Next, it can be shown that $F(\delta)=P_{\tau}(\mu(\delta))$. And it follows that $P_{\tau}^{*} \leq F(\delta) \leq P_{\tau}(\mu)$, where the first inequality follows from weak duality.

Thus we have:

$$
\begin{align*}
P_{\tau}^{*} \leq P_{\tau}(\mu) & =\mu \cdot \theta+\frac{1}{\tau} H(\mu)=(\tilde{\mu}+\mu-\tilde{\mu}) \cdot \theta+\frac{1}{\tau} H(\tilde{\mu})+\frac{1}{\tau}(H(\mu)-H(\tilde{\mu})) \tag{4}\\
& \leq P_{\tau}(\tilde{\mu})+\|\mu-\tilde{\mu}\|_{\infty}\|\theta\|_{1}+\frac{1}{\tau}(H(\mu)-H(\tilde{\mu})) \tag{5}\\
& \leq P_{\tau}(\tilde{\mu})+K \epsilon\|\theta\|_{1}+\frac{1}{\tau}(H(\mu)-H(\tilde{\mu})) \tag{6}
\end{align*}
$$

Where we have used Holder's inequality for the first inequality and Eq. (3) for the second inequality.
It remains to bound $\frac{1}{\tau}(H(\mu)-H(\tilde{\mu}))$ by a linear function of ϵ. We note that it is impossible to achieve such a bound in general (e.g., see [1]). However, since the entropy is bounded the difference is also bounded. Now, if we also restrict ϵ to be large enough $\epsilon \geq \frac{1}{\tau}$, then we obtain the bound:

$$
\begin{equation*}
\frac{1}{\tau}(H(\mu)-H(\tilde{\mu})) \leq \frac{1}{\tau} H_{\max } \leq \epsilon H_{\max } \tag{7}
\end{equation*}
$$

We thus obtain that Eq. (6) is of the form $P_{\tau}(\tilde{\mu})+O(\epsilon)$ and the result follows.

For the high-accuracy regime (small ϵ) we provide a similar bound for the case $\epsilon \leq O\left(e^{-\tau}\right)$. Let $v=\mu-\tilde{\mu}$, so we have:

$$
\begin{aligned}
H(\mu)-H(\tilde{\mu}) & =H(\tilde{\mu}+v)-H(\tilde{\mu}) \\
& \leq H(\tilde{\mu})+\nabla H(\tilde{\mu})^{\top} v-H(\tilde{\mu}) \\
& =-\sum_{i} \sum_{x_{i}} v_{i}\left(x_{i}\right) \log \tilde{\mu}_{i}\left(x_{i}\right)-\sum_{c} \sum_{x_{c}} v_{c}\left(x_{c}\right) \log \tilde{\mu}_{c}\left(x_{c}\right)
\end{aligned}
$$

where the inequality follows from the concavity of entropy, and the second equality is true because $\sum_{x_{i}} v_{i}\left(x_{i}\right)=0$ and similarly for $v_{c}\left(x_{c}\right)$. Now, from the definition of $\mu_{i}\left(x_{i} ; \delta\right)$ we obtain the following bound:

$$
\mu_{i}\left(x_{i} ; \delta\right)=\frac{1}{Z_{i}} e^{\tau\left(\theta_{i}\left(x_{i}\right)+\sum_{c: i \in c} \delta_{c i}\left(x_{i}\right)\right)} \geq \frac{1}{\left|X_{i}\right|} e^{-2 \tau\left(\left\|\theta_{i}\right\|_{\infty}+\left\|\delta_{i}\right\|_{1}\right)}
$$

We will show below (Lemma 1.2) that $\left\|\delta_{i}\right\|_{1}$ remains bounded by a constant A independent of τ. Thus we can write:

$$
\mu_{i}\left(x_{i} ; \delta\right) \geq \frac{1}{\left|X_{\max }\right|} e^{-2 \tau\left(\left\|\theta_{i}\right\|_{\infty}+A\right)}
$$

where $\left|X_{\max }\right|=\max \left\{\max _{i}\left|X_{i}\right|, \max _{c}\left|X_{c}\right|\right\}$. We define $\gamma_{0}=\frac{1}{\left(2\left|X_{\max }\right|\right)^{\tau}} e^{-2 \tau\left(\left\|\theta_{i}\right\|_{\infty}+A\right)}$, and thus for any $\tau \geq 1$ we have that $\mu_{i}\left(x_{i} ; \delta\right)$ is bounded away from zero by $2^{\tau} \gamma_{0}$. Since we assume that $\epsilon \leq \gamma_{0}$, we can bound $\tilde{\mu}$ from below by γ_{0}. As a result, since $\left\|v_{i}\right\|_{\infty} \leq K \epsilon$,
$-\frac{1}{\tau} \sum_{i} \sum_{x_{i}} v_{i}\left(x_{i}\right) \log \tilde{\mu}_{i}\left(x_{i}\right) \leq-\frac{1}{\tau}\left(\log \gamma_{0}\right)\left|X_{i}\right| K \epsilon=\left(2\left(\left\|\theta_{i}\right\|_{\infty}+A\right)+\log \left(2\left|X_{\max }\right|\right)\right)\left|X_{i}\right| K \epsilon$
and similarly for the other entropy terms.
Again, we obtain that Eq. (6) is of the form $P_{\tau}(\tilde{\mu})+O(\epsilon)$ and the result holds.
In conclusion, we have shown that if $\|\nabla F(\delta)\|_{\infty} \leq \epsilon$, then for large values $\epsilon \geq \frac{1}{\tau}$ and small values $\epsilon \leq \frac{1}{\left(2\left|X_{\max }\right|\right)^{\tau}} e^{-2 \tau\left(\left\|\theta_{i}\right\|_{\infty}+A\right)}$ we have that: $P_{\tau}^{*}-P_{\tau}(\tilde{\mu}) \leq O(\epsilon)$. Our analysis does not cover values in the middle range, but we next argue that the covered range is useful.

The allowed range of ϵ (namely $\epsilon \in R(\tau)$) seems like a restriction. However, as we argue next taking $\epsilon \geq \frac{1}{\tau}$ (i.e., $\epsilon \in R(\tau)$) is all we need in order to obtain a desired accuracy in the nonsmoothed primal.
Suppose one wants to solve the original problem $P M A P$ to within accuracy ϵ^{\prime}. There are two sources of inaccuracy, namely the smoothing and suboptimality. To ensure the desired accuracy, we require that $P_{\tau}^{*}-P^{*} \leq \alpha \epsilon^{\prime}$ and likewise $P_{\tau}(\tilde{\mu})-P_{\tau}^{*} \leq(1-\alpha) \epsilon^{\prime}$. In other words, we allow $\alpha \epsilon^{\prime}$ suboptimality due to smoothing and $(1-\alpha) \epsilon^{\prime}$ due to suboptimality.

For the first condition, it is enough to set the smoothing constant as: $\tau \geq \frac{H_{\max }}{\alpha \epsilon^{\prime}}$. The second condition will be satisfied as long as we use an ϵ such that: $\epsilon \leq \frac{(1-\alpha) \epsilon^{\prime}}{\left(K\|\theta\|_{1}+H_{\max }\right)}$ (see Eq. (6) and Eq. (7)). If we choose $\alpha=\frac{H_{\max }}{K\|\theta\|_{1}+2 H_{\max }}$ we obtain that this ϵ satisfies $\epsilon \geq \frac{1}{\tau}$ and therefore $\epsilon \in R(\tau)$.

Lemma 1.2. Assume δ is a set of dual variables satisfying $F(\delta) \leq F(0)$ where $F(0)$ is the dual value corresponding to $\delta=0$. We can require $\sum_{c: i \in c} \delta_{c i}\left(x_{i}\right)=0$ since $F(\delta)$ is invariant to constant shifts. Then it holds that:

$$
\begin{equation*}
\sum_{c, i, x_{i}}\left|\delta_{c i}\left(x_{i}\right)\right|=\|\delta\|_{1} \leq A \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
A=2 \max _{i}\left|X_{i}\right|\left(F(0)+\sum_{i} \max _{x_{i}}\left|\theta_{i}\left(x_{i}\right)\right|+\sum_{c} \max _{x_{c}}\left|\theta_{c}\left(x_{c}\right)\right|\right) \tag{9}
\end{equation*}
$$

Proof. To show this, we bound

$$
\begin{align*}
\max _{\delta} & \sum_{c, i, x_{i}} r_{c i}\left(x_{i}\right) \delta_{c i}\left(x_{i}\right) \\
\text { s.t. } & F(\delta) \leq F(0) \tag{10}\\
& \sum_{c: i \in c} \delta_{c i}\left(x_{i}\right)=0
\end{align*}
$$

For any $r_{c i}\left(x_{i}\right) \in[-1,1]$. The dual problem turns out to be:

$$
\begin{array}{ll}
\min _{\mu, \gamma, \alpha} & \alpha\left(F(0)-\sum_{c, x_{c}} \mu_{c}\left(x_{c}\right) \theta_{c}\left(x_{c}\right)-\sum_{i, x_{i}} \mu_{i}\left(x_{i}\right) \theta_{i}\left(x_{i}\right)-\sum_{i} H\left(\mu_{i}\left(x_{i}\right)\right)-\sum_{c} H\left(\mu_{c}\left(x_{c}\right)\right)\right. \\
\text { s.t. } & \mu_{i}\left(x_{i}\right)-\mu_{c}\left(x_{i}\right)=\frac{r_{c i}\left(x_{i}\right)-\gamma_{c i}}{\alpha} \tag{11}\\
& \mu_{i}\left(x_{i}\right) \geq 0, \mu_{c}\left(x_{c}\right) \geq 0 \\
& \sum_{x_{i}} \mu_{i}\left(x_{i}\right)=1, \sum_{x_{c}} \mu_{c}\left(x_{c}\right)=1 \\
& \alpha \geq 0
\end{array}
$$

We will next upper bound this minimum with a constant independent of r and thus obtain an upper bound that holds for all r. To do this, we will present a feasible assignment to the variables α, μ, γ above and use the value they attain. First, we set $\alpha=\hat{\alpha}=2 \max _{i}\left|X_{i}\right|$. Next, we note that for this $\hat{\alpha}$, the objective of Eq. (11) is upper bounded by A (as defined in Eq. (9)). Thus we only need to show that $\hat{\alpha}=2 \max _{i}\left|X_{i}\right|$ is indeed a feasible value, and this will be done by showing feasible values for the other variables denoted by $\hat{\mu}, \hat{\gamma}$. First, we set:

$$
\hat{\mu}_{i}\left(x_{i}\right)=\frac{1}{\left|X_{i}\right|}
$$

and:

$$
\begin{equation*}
\hat{\gamma}_{c i}=\frac{1}{\left|X_{i}\right|} \sum_{x_{i}} r_{c i}\left(x_{i}\right) \tag{12}
\end{equation*}
$$

Next, we define $\nu_{c i}\left(x_{i}\right)$ (for all $\left.c, i, x_{i}\right)$ as follows:

$$
\begin{equation*}
\nu_{c i}\left(x_{i}\right)=\hat{\mu}_{i}\left(x_{i}\right)-\frac{r_{c i}\left(x_{i}\right)-\hat{\gamma}_{c i}}{\hat{\alpha}} \tag{13}
\end{equation*}
$$

It can easily be shown that $\nu_{c i}\left(x_{i}\right)$ is a valid distribution over x_{i} (i.e., non negative and sums to one). Thus we can define:

$$
\begin{equation*}
\hat{\mu}_{c}\left(x_{c}\right)=\prod_{i \in c} \nu_{c i}\left(x_{i}\right) \tag{14}
\end{equation*}
$$

Since $\hat{\mu}_{c}\left(x_{c}\right)$ is a product of distributions over the variables in c, it is also a valid distribution. Thus it follows that all constraints in Eq. (11) are satisfied by $\hat{\alpha}, \hat{\gamma}, \hat{\mu}$, and the desired bound holds.

2 Star improvement bound

We prove the following proposition:
Proposition 2.1. The star update for variable x_{i} satisfies:

$$
F\left(\delta^{t}\right)-F\left(\delta^{t+1}\right) \geq \frac{1}{4 \tau N_{i}}\left\|\nabla_{S_{i}} F\left(\delta^{t}\right)\right\|_{2}^{2}
$$

Proof. First, we know that the improvement associated with the star update for variable x_{i} is:

$$
F\left(\delta^{t}\right)-F\left(\delta^{t+1}\right)=-\frac{1}{\tau} \log \left(\sum_{x_{i}}\left(\mu_{i}^{t}\left(x_{i}\right) \cdot \prod_{c: i \in c} \mu_{c}^{t}\left(x_{i}\right)\right)^{\frac{1}{N_{i}+1}}\right)^{N_{i}+1}
$$

Therefore, for any probability distributions $p, q^{(1)}, \ldots, q^{(m)}$ we want to prove that:

$$
\left(\sum_{i}\left(p_{i} \cdot \prod_{k} q_{i}^{(k)}\right)^{\frac{1}{m+1}}\right)^{m+1} \leq \exp \left(-\frac{1}{4 m} \sum_{k} \sum_{i}\left(p_{i}-q_{i}^{(k)}\right)^{2}\right)
$$

Lemma 2.2. For any probability distributions $p, q^{(1)}, \ldots, q^{(m)}$ the following holds:

$$
\left(\sum_{i}\left(p_{i} \cdot \prod_{k} q_{i}^{(k)}\right)^{\frac{1}{m+1}}\right)^{m+1} \leq 1-\frac{1}{4 m} \sum_{k}\left(\sum_{i}\left|p_{i}-q_{i}^{(k)}\right|\right)^{2}
$$

Proof.

$$
\begin{aligned}
\sum_{k}\left(\sum_{i}\left|p_{i}-q_{i}^{(k)}\right|\right)^{2} & \leq \sum_{k}\left(\sum_{i}\left(\sqrt{p_{i}}-\sqrt{q_{i}^{(k)}}\right)^{2} \cdot \sum_{i}\left(\sqrt{p_{i}}+\sqrt{q_{i}^{(k)}}\right)^{2}\right) \\
& =\sum_{k}\left(4-4\left(\sum_{i} \sqrt{p_{i} q_{i}^{(k)}}\right)^{2}\right) \\
& =4 m-4 \sum_{k}\left(\sum_{i} \sqrt{p_{i} q_{i}^{(k)}}\right)^{2} \\
& \leq 4 m-4 \sum_{k}\left(\sum_{i}\left(p_{i} \cdot \prod_{k^{\prime}} q_{i}^{\left(k^{\prime}\right)}\right)^{\frac{1}{m+1}}\right)^{m+1} \\
\Rightarrow\left(\sum_{i}\left(p_{i} \cdot \prod_{k^{\prime}} q_{i}^{\left(k^{\prime}\right)}\right)^{\frac{1}{m+1}}\right)^{m+1} & =4 m-4 m\left(\sum_{i}\left(p_{i} \cdot \prod_{k^{\prime}} q_{i}^{\left(k^{\prime}\right)}\right)^{\frac{1}{m+1}}\right)^{m+1} \\
& \leq 1-\frac{1}{4 m} \sum_{k}\left(\sum_{i}\left|p_{i}-q_{i}^{(k)}\right|\right)^{2}
\end{aligned}
$$

For the first transition see [3] (also in [2] p. 57). The second inequality follows from Theorem 1 in [4].

Using Lemma 2.2 the desired result follows since:

$$
\begin{aligned}
\left(\sum_{i}\left(p_{i} \cdot \prod_{k} q_{i}^{(k)}\right)^{\frac{1}{m+1}}\right)^{m+1} & \leq 1-\frac{1}{4 m} \sum_{k}\left(\sum_{i}\left|p_{i}-q_{i}^{(k)}\right|\right)^{2} \\
& \leq 1-\frac{1}{4 m} \sum_{k} \sum_{i}\left(p_{i}-q_{i}^{(k)}\right)^{2} \\
& \leq \exp \left(-\frac{1}{4 m} \sum_{k} \sum_{i}\left(p_{i}-q_{i}^{(k)}\right)^{2}\right)
\end{aligned}
$$

3 Gradient-based algorithms

In this section we describe the gradient descent and FISTA algorithms used in the experiments.

Algorithm 1: Gradient descent
Algorithm 2: FISTA

```
\(\bar{\delta}^{1}=\delta^{0}, \quad \alpha^{1}=1\)
for \(t=1, \ldots\) do
    \(\delta^{t}=\bar{\delta}^{t}-\frac{1}{L} \nabla F\left(\bar{\delta}^{t}\right)\)
    \(\alpha^{t+1}=\frac{1+\sqrt{1+4\left(\alpha^{t}\right)^{2}}}{2}\)
    \(\bar{\delta}^{t+1}=\delta^{t}+\left(\frac{\alpha^{t}-1}{\alpha^{t+1}}\right)\left(\delta^{t}-\delta^{t-1}\right)\)
end for
```


References

[1] D. Berend and A. Kontorovich. A reverse pinsker inequality. CoRR, abs/1206.6544, 2012.
[2] T. Kailath. The divergence and bhattacharyya distance measures in signal selection. Communication Technology, IEEE Transactions on, 15(1):52-60, february 1967.
[3] C. Kraft. Some conditions for consistency and uniform consistency of statistical procedures. In Univ. of California Publ. in Statistics, vol. 1, pages 125-142. Univ. of California, Berkeley, 1955.
[4] K. Matusita. On the notion of affinity of several distributions and some of its applications. Annals of the Institute of Statistical Mathematics, 19:181-192, 1967. 10.1007/BF02911675.

