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1 Primal Convergence Rate

For clarity, we define
p-t = Z Z i ()0 (z4) + Z ZNC(xC)QC(xC) (D
H(p) = 3 H(ui() + 3 Hue()) )

Theorem 1.1. Denote by P} the optimum of the smoothed primal PM AP;. Then for any set of
dual variables §, if ||V F (6)|lco < € € R(7) (for a range of values R(7)), then P¥ — P.(fi) < Cye,
where Cy is a constant that depends only on the parameters 0, independent of T, and [i represents
the set of locally consistent marginals from Algorithm 1 in response to p = p(9).

Proof. |[VF(6)|lec < € guarantees that u = p(8) are e-consistent in the sense that |u;(z;) —
te(z;)| < eforall ¢,i € cand x;. Algorithm 1 maps any such e-consistent s to locally consistent
marginals fi such that

|/,61(.’L‘1) - ﬂz(‘rz)‘ < 3€Nmaxa |/”'C(xc) - ﬂc(xc)l < 2€Nr?nax7 (3)

for all i, z;, ¢, and x., where Ny, = max{max; N;, max. N.}. In other words, || — fi|lcc < Ke.
This can be easily derived from the update in Algorithm 1 and the fact that |u,;(z;) — pe(x;)| < e.

Next, it can be shown that F'(§) = P-(u(d)). And it follows that P < F(8) < P,(u), where the
first inequality follows from weak duality.

Thus we have:

PESPA) = po0+ H(u) = (a+p— )0+ HE) + ~(H(x) ~ H({E) @
< PoE) + i AllcllOll + - (H o) — H () )
< P+ Keloll + - (H(w) ~ H@) ©)

Where we have used Holder’s inequality for the first inequality and Eq. (3) for the second inequality.

It remains to bound % (H (y) — H(ji)) by a linear function of e. We note that it is impossible to
achieve such a bound in general (e.g., see [1]). However, since the entropy is bounded the difference
is also bounded. Now, if we also restrict € to be large enough € > % then we obtain the bound:
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7(H(/’L) - H(/])) S 7Hmax S 6I—Imax (7)
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We thus obtain that Eq. (6) is of the form P, (ft) + O(¢) and the result follows.



For the high-accuracy regime (small €) we provide a similar bound for the case ¢ < O(e™7). Let
v = W — [i, SO we have:

H(p) — H(j1)

H(p+wv) — H(f)
H(f) + VH() v — H(p)

_szz z; 1Ogﬂl l‘z ZZUC L IOg,uc CCC)

where the inequality follows from the concavity of entropy, and the second equality is true because
> e, Vi(zi) = 0 and similarly for v.(z.). Now, from the definition of y;(z;;J) we obtain the
following bound:
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(s 6 — 7(9 ($7)+ZC icc <‘7(~T7)) > _27'(||977||OO+H57?||1)
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We will show below (Lemma 1.2) that ||d;||; remains bounded by a constant A independent of 7.
Thus we can write:

i (253 0) >~ 20l )

‘ max

where | Xax| = max{max; | X;|, max. | X.|}. We define yg = me’%(”ei”xJ“A), and thus

for any 7 > 1 we have that p;(x;;d) is bounded away from zero by 27v. Since we assume that
€ < 7o, we can bound i from below by 7. As a result, since ||v;||o0 < Ke,

1 _ 1
== D wilw)logfii(zi) < ——(log0)|XiKe = (2([10illo + A) +10g(2| Ximax|) | Xi Ke

and similarly for the other entropy terms.
Again, we obtain that Eq. (6) is of the form P, (i) + O(¢) and the result holds.

In conclusion, we have shown that if | VF(§) o < e, then for large values € > 1 and small values
e < ﬁe”““ai lloc+4) we have that: P* — P,(ji) < O(e). Our analy31s does not cover
values in the middle range, but we next argue that the covered range is useful. O

The allowed range of € (namely e € R(7)) seems like a restriction. However, as we argue next
taking € > % (i.e., € € R(7)) is all we need in order to obtain a desired accuracy in the non-
smoothed primal.

Suppose one wants to solve the original problem PM AP to within accuracy €¢’. There are two
sources of inaccuracy, namely the smoothing and suboptimality. To ensure the desired accuracy, we
require that P} — P* < ae’ and likewise P, (1) — P < (1 — a)€’. In other words, we allow ae’
suboptimality due to smoothing and (1 — «)€’ due to suboptimality.

For the first condition, it is enough to set the smoothing constant as: 7 > HO‘;:,“‘. The second
condition will be satisfied as long as we use an € such that: € < ((17@ (see Eq. (6) and Eq.

K||0]]1+Hmax)
(7)). If we choose o = we obtain that this € satisfies € > 1 + and therefore € € R(7).

Hinax
K|10]l1+2Hmax
Lemma 1.2. Assume § is a set of dual variables satisfying F(5) < F(0) where F(0) is the dual

value corresponding to 6 = 0. We can require (x;) = Osince F' () is invariant to constant
shifts. Then it holds that:

ciiEc Cl

> beizi) =6l < A (8)

1,25

where

A = 2max | X;]| (F(O) +) max [0; (z;)| + > max Hc(xc)|> 9)



Proof. To show this, we bound

mgix Z Tei (1) i (24)
C,1,T;

st. F(6) < F(0) (10)

cii€c

For any r.;(z;) € [—1, 1]. The dual problem turns out to be:

min - «(F(0) = > pe(we)be(we) — 30 pi(wi)0i(wi) = 30 H(pi(w:)) — 50 H (pe(xe))

o G Te 4,5 i c

st pi(z) — C(xz) — % an
i (@i) >0, pe(wc) >
Z Hz(%) =1 Z ,up(xp) =1
e’ > 0

We will next upper bound this minimum with a constant independent of  and thus obtain an upper
bound that holds for all r. To do this, we will present a feasible assignment to the variables «, i,y
above and use the value they attain. First, we set « = & = 2max; |X;|. Next, we note that for
this &, the objective of Eq. (11) is upper bounded by A (as defined in Eq. (9)). Thus we only need
to show that & = 2max; |X;| is indeed a feasible value, and this will be done by showing feasible
values for the other variables denoted by /i, 4. First, we set:

) 1
i\li) = 7%
and: ]
Nei = 757 Tci(xz‘) (12)
| Xl ;
Next, we define v,;(x;) (for all ¢, 4, x;) as follows:
Tei(Ts) — Yei
ch( 1) ,Ufz( 1) % (13)
It can easily be shown that v.;(z;) is a valid distribution over z; (i.e., non negative and sums to one).
Thus we can define:
= [[vei(z:) (14)

i€c
Since fi.(z.) is a product of distributions over the variables in c, it is also a valid distribution. Thus
it follows that all constraints in Eq. (11) are satisfied by &, 4, {, and the desired bound holds.

O

2 Star improvement bound
We prove the following proposition:
Proposition 2.1. The star update for variable x; satisﬁeS'
F(6") = F(s) > Vs F(")I3

Proof. First, we know that the improvement associated with the star update for variable x; is:
1 N;+1

1 N, F1
F((Sf) - F(6t+1) = —;lOg Z (Iu’z x’b H /’(’c T )

Zq ciiEc

Therefore, for any probability distributions p, g1, ..., ¢™ we want to prove that:

1 m+1
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Lemma 2.2. For any probability distributions p, ¢V, ..., ¢"™ the following holds:
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Proof.

; (Z pi — qzk)l>2
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For the first transition see [3] (also in [2] p. 57). The second inequality follows from Theorem 1 in
[4]. O

Using Lemma 2.2 the desired result follows since:

m+1
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3 Gradient-based algorithms

In this section we describe the gradient descent and FISTA algorithms used in the experiments.



Algorithm 1: Gradient descent Algorithm 2: FISTA

—_

1: fort=1,...do s ol=460 al=1

2: 5t =5t — LVF(6") 2: fort=1,...do
3: end for 3: §t =0t — LVF(5")
4 ot = HV1+4@)?
2
5. firt = ot + (25t ) (60 - 5
6: end for
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