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1 Primal Convergence Rate

For clarity, we define

µ · θ =
∑
i

∑
xi

µi(xi)θi(xi) +
∑
c

∑
xc

µc(xc)θc(xc) (1)

H(µ) =
∑
i

H(µi(·)) +
∑
c

H(µc(·)) (2)

Theorem 1.1. Denote by P ∗τ the optimum of the smoothed primal PMAPτ . Then for any set of
dual variables δ, if ‖∇F (δ)‖∞ ≤ ε ∈ R(τ) (for a range of values R(τ)), then P ∗τ − Pτ (µ̃) ≤ C0ε,
where C0 is a constant that depends only on the parameters θ, independent of τ , and µ̃ represents
the set of locally consistent marginals from Algorithm 1 in response to µ = µ(δ).

Proof. ‖∇F (δ)‖∞ ≤ ε guarantees that µ = µ(δ) are ε-consistent in the sense that |µi(xi) −
µc(xi)| ≤ ε for all c, i ∈ c and xi. Algorithm 1 maps any such ε-consistent µ to locally consistent
marginals µ̃ such that

|µi(xi)− µ̃i(xi)| ≤ 3εNmax, |µc(xc)− µ̃c(xc)| ≤ 2εN2
max, (3)

for all i, xi, c, and xc, where Nmax = max{maxiNi,maxcNc}. In other words, ‖µ− µ̃‖∞ ≤ Kε.
This can be easily derived from the update in Algorithm 1 and the fact that |µi(xi)− µc(xi)| ≤ ε.
Next, it can be shown that F (δ) = Pτ (µ(δ)). And it follows that P ∗τ ≤ F (δ) ≤ Pτ (µ), where the
first inequality follows from weak duality.

Thus we have:

P ∗τ ≤ Pτ (µ) = µ · θ +
1

τ
H(µ) = (µ̃+ µ− µ̃) · θ +

1

τ
H(µ̃) +

1

τ
(H(µ)−H(µ̃)) (4)

≤ Pτ (µ̃) + ‖µ− µ̃‖∞‖θ‖1 +
1

τ
(H(µ)−H(µ̃)) (5)

≤ Pτ (µ̃) +Kε‖θ‖1 +
1

τ
(H(µ)−H(µ̃)) (6)

Where we have used Holder’s inequality for the first inequality and Eq. (3) for the second inequality.

It remains to bound 1
τ (H(µ) − H(µ̃)) by a linear function of ε. We note that it is impossible to

achieve such a bound in general (e.g., see [1]). However, since the entropy is bounded the difference
is also bounded. Now, if we also restrict ε to be large enough ε ≥ 1

τ , then we obtain the bound:

1

τ
(H(µ)−H(µ̃)) ≤ 1

τ
Hmax ≤ εHmax (7)

We thus obtain that Eq. (6) is of the form Pτ (µ̃) +O(ε) and the result follows.
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For the high-accuracy regime (small ε) we provide a similar bound for the case ε ≤ O(e−τ ). Let
v = µ− µ̃, so we have:

H(µ)−H(µ̃) = H(µ̃+ v)−H(µ̃)

≤ H(µ̃) +∇H(µ̃)>v −H(µ̃)

= −
∑
i

∑
xi

vi(xi) log µ̃i(xi)−
∑
c

∑
xc

vc(xc) log µ̃c(xc)

where the inequality follows from the concavity of entropy, and the second equality is true because∑
xi
vi(xi) = 0 and similarly for vc(xc). Now, from the definition of µi(xi; δ) we obtain the

following bound:

µi(xi; δ) =
1

Zi
eτ(θi(xi)+

∑
c:i∈c δci(xi)) ≥ 1

|Xi|
e−2τ(‖θi‖∞+‖δi‖1)

We will show below (Lemma 1.2) that ‖δi‖1 remains bounded by a constant A independent of τ .
Thus we can write:

µi(xi; δ) ≥
1

|Xmax|
e−2τ(‖θi‖∞+A)

where |Xmax| = max{maxi |Xi|,maxc |Xc|}. We define γ0 = 1
(2|Xmax|)τ e

−2τ(‖θi‖∞+A), and thus
for any τ ≥ 1 we have that µi(xi; δ) is bounded away from zero by 2τγ0. Since we assume that
ε ≤ γ0, we can bound µ̃ from below by γ0. As a result, since ‖vi‖∞ ≤ Kε,

−1

τ

∑
i

∑
xi

vi(xi) log µ̃i(xi) ≤ −1

τ
(log γ0)|Xi|Kε = (2(‖θi‖∞ +A) + log(2|Xmax|))|Xi|Kε

and similarly for the other entropy terms.

Again, we obtain that Eq. (6) is of the form Pτ (µ̃) +O(ε) and the result holds.

In conclusion, we have shown that if ‖∇F (δ)‖∞ ≤ ε, then for large values ε ≥ 1
τ and small values

ε ≤ 1
(2|Xmax|)τ e

−2τ(‖θi‖∞+A) we have that: P ∗τ − Pτ (µ̃) ≤ O(ε). Our analysis does not cover
values in the middle range, but we next argue that the covered range is useful.

The allowed range of ε (namely ε ∈ R(τ)) seems like a restriction. However, as we argue next
taking ε ≥ 1

τ (i.e., ε ∈ R(τ)) is all we need in order to obtain a desired accuracy in the non-
smoothed primal.

Suppose one wants to solve the original problem PMAP to within accuracy ε′. There are two
sources of inaccuracy, namely the smoothing and suboptimality. To ensure the desired accuracy, we
require that P ∗τ − P ∗ ≤ αε′ and likewise Pτ (µ̃) − P ∗τ ≤ (1 − α)ε′. In other words, we allow αε′

suboptimality due to smoothing and (1− α)ε′ due to suboptimality.

For the first condition, it is enough to set the smoothing constant as: τ ≥ Hmax

αε′ . The second

condition will be satisfied as long as we use an ε such that: ε ≤ (1−α)ε′
(K‖θ‖1+Hmax)

(see Eq. (6) and Eq.

(7)). If we choose α = Hmax

K‖θ‖1+2Hmax
we obtain that this ε satisfies ε ≥ 1

τ and therefore ε ∈ R(τ).

Lemma 1.2. Assume δ is a set of dual variables satisfying F (δ) ≤ F (0) where F (0) is the dual
value corresponding to δ = 0. We can require

∑
c:i∈c δci(xi) = 0 since F (δ) is invariant to constant

shifts. Then it holds that: ∑
c,i,xi

|δci(xi)| = ‖δ‖1 ≤ A (8)

where

A = 2 max
i
|Xi|

(
F (0) +

∑
i

max
xi
|θi(xi)|+

∑
c

max
xc
|θc(xc)|

)
(9)
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Proof. To show this, we bound

max
δ

∑
c,i,xi

rci(xi)δci(xi)

s.t. F (δ) ≤ F (0) (10)∑
c:i∈c

δci(xi) = 0

For any rci(xi) ∈ [−1, 1]. The dual problem turns out to be:
min
µ,γ,α

α(F (0)−
∑
c,xc

µc(xc)θc(xc)−
∑
i,xi

µi(xi)θi(xi)−
∑
i

H(µi(xi))−
∑
c
H(µc(xc))

s.t. µi(xi)− µc(xi) = rci(xi)−γci
α

µi(xi) ≥ 0, µc(xc) ≥ 0∑
xi
µi(xi) = 1,

∑
xc
µc(xc) = 1

α ≥ 0

(11)

We will next upper bound this minimum with a constant independent of r and thus obtain an upper
bound that holds for all r. To do this, we will present a feasible assignment to the variables α, µ, γ
above and use the value they attain. First, we set α = α̂ = 2 maxi |Xi|. Next, we note that for
this α̂, the objective of Eq. (11) is upper bounded by A (as defined in Eq. (9)). Thus we only need
to show that α̂ = 2 maxi |Xi| is indeed a feasible value, and this will be done by showing feasible
values for the other variables denoted by µ̂, γ̂. First, we set:

µ̂i(xi) =
1

|Xi|

and:
γ̂ci =

1

|Xi|
∑
xi

rci(xi) (12)

Next, we define νci(xi) (for all c, i, xi) as follows:

νci(xi) = µ̂i(xi)−
rci(xi)− γ̂ci

α̂
(13)

It can easily be shown that νci(xi) is a valid distribution over xi (i.e., non negative and sums to one).
Thus we can define:

µ̂c(xc) =
∏
i∈c

νci(xi) (14)

Since µ̂c(xc) is a product of distributions over the variables in c, it is also a valid distribution. Thus
it follows that all constraints in Eq. (11) are satisfied by α̂, γ̂, µ̂, and the desired bound holds.

2 Star improvement bound

We prove the following proposition:
Proposition 2.1. The star update for variable xi satisfies:

F (δt)− F (δt+1) ≥ 1

4τNi
‖∇SiF (δt)‖22

Proof. First, we know that the improvement associated with the star update for variable xi is:

F (δt)− F (δt+1) = −1

τ
log

∑
xi

(
µti(xi) ·

∏
c:i∈c

µtc(xi)

) 1
Ni+1

Ni+1

Therefore, for any probability distributions p, q(1), ..., q(m) we want to prove that:∑
i

(
pi ·
∏
k

q
(k)
i

) 1
m+1

m+1

≤ exp

(
− 1

4m

∑
k

∑
i

(
pi − q(k)i

)2)
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Lemma 2.2. For any probability distributions p, q(1), ..., q(m) the following holds:

∑
i

(
pi ·
∏
k

q
(k)
i

) 1
m+1

m+1

≤ 1− 1

4m

∑
k

(∑
i

|pi − q(k)i |

)2

Proof.

∑
k

(∑
i

|pi − q(k)i |

)2

≤
∑
k

(∑
i

(
√
pi −

√
q
(k)
i )2 ·

∑
i

(
√
pi +

√
q
(k)
i )2

)

=
∑
k

4− 4

(∑
i

√
piq

(k)
i

)2


= 4m− 4
∑
k

(∑
i

√
piq

(k)
i

)2

≤ 4m− 4
∑
k

∑
i

(
pi ·
∏
k′

q
(k′)
i

) 1
m+1

m+1

= 4m− 4m

∑
i

(
pi ·
∏
k′

q
(k′)
i

) 1
m+1

m+1

⇒

∑
i

(
pi ·
∏
k′

q
(k′)
i

) 1
m+1

m+1

≤ 1− 1

4m

∑
k

(∑
i

|pi − q(k)i |

)2

For the first transition see [3] (also in [2] p. 57). The second inequality follows from Theorem 1 in
[4].

Using Lemma 2.2 the desired result follows since:

∑
i

(
pi ·
∏
k

q
(k)
i

) 1
m+1

m+1

≤ 1− 1

4m

∑
k

(∑
i

|pi − q(k)i |

)2

≤ 1− 1

4m

∑
k

∑
i

(
pi − q(k)i

)2
≤ exp

(
− 1

4m

∑
k

∑
i

(
pi − q(k)i

)2)

3 Gradient-based algorithms

In this section we describe the gradient descent and FISTA algorithms used in the experiments.
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Algorithm 1: Gradient descent

1: for t = 1, . . . do
2: δt+1 = δt − 1

L∇F (δt)
3: end for

Algorithm 2: FISTA

1: δ̄1 = δ0, α1 = 1
2: for t = 1, . . . do
3: δt = δ̄t − 1

L∇F (δ̄t)

4: αt+1 =
1+
√

1+4(αt)2

2

5: δ̄t+1 = δt +
(
αt−1
αt+1

) (
δt − δt−1

)
6: end for
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