
Efficient Methods for Learning and Inference in

Structured Output Prediction

Thesis submitted for the degree of
“Doctor of Philosophy”

By Ofer Meshi

Submitted to the Senate of the Hebrew University of Jerusalem

August 2013

This work was carried out under the supervision of:

Professor Amir Globerson, and

Professor Nir Friedman

Acknowledgements
First, I would like to thank my advisor Amir Globerson for giving me a chance and guiding

me patiently through the past few years. I am truly honored to be Amir’s first student, I have

learned so much from him. His wide and deep knowledge, his graciousness, his kindness, and

his excellence are a source of inspiration and I feel lucky that I had a chance to work with him.

I would also like to thank Nir Friedman for giving me my first chance of graduate studies by

taking me as a master’s student and then as a Ph.D. student. Nir is a brilliant scientist and

I feel privileged that I had the opportunity to learn from him about the scientific practice. I

would also like to thank Nir for his kindness and for his willingness to listen and give advice

about anything.

Second, I would like to thank my collaborators: Tommi Jaakkola, David Sontag, Gal Elidan,

Elad Eban, and Ariel Jaimovich. It has been a great pleasure to work with such talented smart

people.

Third, I am indebted to the committee members: Nati Linial, Gal Elidan, and Shai Shalev-

Shwartz. They have patiently provided invaluable advice and insightful comments which have

improved the quality of this work.

Next, I would like to thank the past and present students in the machine learning group. It

was so much fun to work besides them. There was always someone with whom I could scribble

some ideas on the board, take a lunch break, have a cup of coffee, or simply chat. In particular

I would like to thank Ariel Jaimovich, Elad Eban, Nir Rosenfeld, and Cobi Cario for the close

collaboration and exciting moments. This is also a good opportunity to thank Moran Yassour

for being such a wonderful roommate. I really hope those friendships will last for years to come.

I would also like to acknowledge the great and open atmosphere in the machine learning

group inspired by the faculty members. In particular, I would like to thank Shai Shalev-

Shwartz and Ami Wiesel for opening their doors, providing good advice, and calmly answering

my questions.

Finally, I want to thank my family for their endless support. My wonderful parents, Zvika

and Amalia, who provided constant mental and material support. Without them I could not

have done this. My children: Noam, Eden, and Tom, whom I love so much. I thank them for

giving me a real life outside research. They have given me the chance to take the right break at

the right time. Lastly, I would like to thank my beloved wife and partner Avital for her infinite

support and encouragement. Without her all this would be meaningless.

Abstract

Binary classification has dominated machine learning for decades. However, many modern

applications of machine learning require modeling complex high-dimensional outputs. Although

the output space in such problems is typically very large, it often has intrinsic structure which

can be exploited to construct efficient algorithms. Indeed, in recent years structured output

prediction has shown state-of-the-art results in many real-world problems from computer vision,

natural language processing, computational biology, and other fields. However, for this kind

of models to remain useful, they must perform prediction efficiently and scale well to handle

large data sets. This raises many interesting and challenging questions in machine learning and

optimization.

In this setting there are two main tasks, namely prediction and learning. In the prediction

(a.k.a. inference) task the goal is to jointly predict a set of interdependent output variables,

given a model. Since the space of possible outputs may be prohibitively large, finding the

optimal output is generally intractable. Therefore, it is helpful to assume that the dependencies

between output variables obey a particular structure. For some special types of structures the

prediction task can be solved exactly and efficiently. However, this task is NP-hard in general.

In the learning task the goal is to learn the predictive model from empirical data. This can be

done using formulations that generalize binary Support Vector Machines (SVMs) to structured

outputs. However, these formulations include a loss-augmented prediction problem for every

training example, and are also computationally hard in general.

In this thesis we propose and analyze algorithms that address the prediction and learning

tasks for structured outputs. The proposed methods provide efficient approximate solutions to

both problems. They achieve high accuracy with fast runtime and good scaling with problem

size. Empirical evaluations on various benchmark datasets show that they compare favorably

with other state-of-the-art approaches.

In particular, one type of approximations that has proved particularly successful for many

structured prediction applications is Linear Programming (LP) relaxation. For the prediction

task, in this thesis we propose a new algorithm for efficient and scalable prediction based on an

augmented Lagrangian formulation of the dual LP relaxation. We also study the convergence

properties of a family of inference algorithms which perform block coordinate descent on a

smoothed variant of the dual LP. In addition, we address here the learning problem. We present

an efficient algorithm for training structured predictors from labeled data. Our algorithm is

based on a reformulation of the learning objective which replaces the primal LP relaxation

with its dual. This reformulation has several computational advantages. Finally, we study

the problem of learning tree-structured predictors, which is interesting since for tree-structured

models prediction is then fast and exact. We show that this is a hard problem and propose an

efficient and highly accurate approximation scheme.

Contents

1 Introduction 1

1.1 The Prediction Problem . 3

1.1.1 Exact inference . 3

1.2 Approximate MAP inference . 5

1.2.1 Loopy Belief propagation . 5

1.2.2 Sampling . 5

1.2.3 Local search methods . 6

1.2.4 LP relaxation and dual decomposition 7

1.2.5 Quadratic programming relaxation . 9

1.3 The Learning Problem . 10

1.3.1 Subgradient descent . 11

1.3.2 Cutting plane . 12

1.3.3 The stochastic Frank-Wolfe algorithm . 13

1.3.4 Approximate learning . 14

2 Results 17

2.1 An Alternating Direction Method for Dual MAP LP Relaxation 19

2.2 Convergence Rate Analysis of MAP Coordinate Minimization Algorithms 34

2.3 Learning Efficiently with Approximate Inference via Dual Losses 49

2.4 Learning Max-Margin Tree Predictors . 58

3 Discussion and Conclusions 69

3.1 Future directions . 70

Chapter 1

Introduction

Numerous applications involve prediction of complex multivariate outputs. For example, in

natural language parsing one is given an input sentence and the task is to output a parse

tree [Taskar et al., 2004b]. In computer vision, a typical task is to assign labels to all pixels

of a given image [Szeliski et al., 2008, Felzenszwalb et al., 2010]. In such problems the

output consists of multiple interdependent variables. One may simply train a classifier for

each variable independently, however, exploiting interdependence between the variables often

improves prediction quality. Moreover, in some cases the output variables must satisfy some

global constraints, and thus cannot be predicted independently. For these reasons structured

output prediction has been proposed as a framework to handle such complex multivariate output

spaces. In this approach the goal is to jointly predict all variables simultaneously, taking into

account their mutual dependence. Indeed, using this framework has resulted in state-of-the-art

results in applications from various fields [Bakir et al., 2007].

Formally, structured prediction problems can be cast as mapping a real-valued input vector

x to an output vector y = (y1, . . . , yn), where yi are discrete variables (e.g., part-of-speech tags

of words, or depth levels of pixels). This mapping is commonly done via a linear discrimination

rule:

y(x) = argmax
y

w>φ(x, y) ≡ argmax
y

θ(y;x,w) (1.1)

where φ(x, y) is a function that maps input-output pairs to a feature vector, w is the correspond-

ing weight vector, and θ(y;x,w) is the resulting score function over outputs.1 For example, in

part-of-speech tagging x is an input sentence, y is a set of tags – one for each word, and φ(x, y)

could have an entry which counts the number of times occurrences of the word “the” in the

sentence are assigned the tag “determiner” in y.

Since the space of possible outputs y may be exponential in size, one cannot naively

enumerate all possible outputs to find the maximizing assignment. Therefore, it is helpful

1In conditional random fields [Lafferty et al., 2001] the score is normalized to define a probability distribution
over outputs: p(y|x) ∝ exp θ(y;x,w). In this thesis we do not require such a probabilistic interpretation.

1

to assume that the score function decomposes into simpler score functions (a.k.a. factors):

θ(y;x,w) =
∑

c

θc(yc;x,w) (1.2)

where yc are subsets of output variables (to simplify notation we sometimes drop the dependence

of θ on x and w in the sequel). One such decomposition that is commonly used in many

applications consists of scores over single and pairs of variables that correspond to nodes and

edges of a graph G:

θ(y) =
∑

ij∈E(G)

θij(yi, yj) +
∑

i∈V (G)

θi(yi) (1.3)

For example, in an image segmentation problem each yi may represent whether the i’th pixel

belongs to the background (yi = 0) or foreground (yi = 1). In this case the singleton function θi

assigns a score for each pixel which depends on the image itself (e.g., by the color of that pixel),

while θij assigns scores to pairs of neighboring pixels (e.g., it may assign a high score if both

pixels are assigned to the background). Many other decompositions were found to be useful for

a variety of applications [e.g., Martins et al., 2009a]. For some special types of decompositions

the prediction task can be solved exactly and efficiently (see Section 1.1.1). However this

combinatorial optimization problem is NP-hard in general [Shimony, 1994].2 In the literature

on probabilistic graphical models, the prediction task is known as the MAP inference problem

[e.g., Koller and Friedman, 2009, Wainwright and Jordan, 2008].

Structured predictors can be learned from data using formulations like Max-Margin Markov

Networks (M3N) [Taskar et al., 2003], Structured Support Vector Machines (SSVM) [Tsochan-

taridis et al., 2005], and conditional random fields (CRF) [Lafferty et al., 2001]. In this learning

task one is given training data consisting of input-output pairs {(xm, ym)}Mm=1, and the goal is to

find a weight vector w that correctly classifies the training examples: ym = argmaxy w
>φ(xm, y).

In practice, the training set may not be separable and therefore this requirement is encouraged

softly through an empirical risk minimization (ERM) framework. Specifically, we focus here on

the M3N formulation in which w is learned by minimizing the following regularized structured

hinge loss:

`(w) =
λ

2
‖w‖2 +

1

M

∑

m

hm(w) (1.4)

where

hm(w) = max
y

(
w>φ(xm, y) + ∆(y, ym)

)
− w>φ(xm, ym) , (1.5)

and ∆(y, ym) is a label-loss function measuring the cost of predicting y when the true label is

ym (e.g., 0/1 or Hamming distance). To gain some intuition on this formulation, notice that

a positive loss is incurred whenever the score of the true output w>φ(xm, ym) is smaller than

the score of the highest scoring assignment maxy w
>φ(xm, y) (plus a margin determined by ∆).

This is a generalization of binary SVM to structured outputs. We have recently shown that

2For example, max-cut can be easily seen as an instance of maximizing Eq. (1.3).

2

the learning task for structured prediction is also NP-hard in general [Sontag et al., 2010], and

therefore one must resort to approximations or restrict models to tractable families.

Early research on structured prediction focused on the case where prediction and learning

were computationally tractable [Lafferty et al., 2001, Collins, 2002, Taskar et al., 2003]. How-

ever, when one wishes to model rich dependencies between output variables, then prediction

and learning become computationally expensive. Hence, the setting we have is that the desired

outputs are maxima of a function (Eq. (1.1)) whose optimization is hard and whose parameters

(w) we do not know. Clearly, some approximations are necessary. But what can be said about

these? How can we perform them efficiently? How can we integrate them into the learning

procedure? As we see, this setting gives rise to many interesting and challenging questions in

machine learning and optimization. In this thesis I address this challenge by developing and

analyzing efficient approximation algorithms for the prediction and learning tasks for structured

outputs.

1.1 The Prediction Problem

Under the decomposition assumption of Eq. (1.2), prediction (i.e., Eq. (1.1) and Eq. (1.5))

requires solving the following optimization problem:

max
y

∑

c

θc(yc) (1.6)

As mentioned, due to its combinatorial nature this problem is generally hard to solve. In

this section we review some of the commonly used methods which have been proposed for

solving this problem. We begin by inspecting a few special cases, where the optimization

problem in Eq. (1.6) can be solved exactly and efficiently. We then proceed to survey the main

approximation techniques for the more general case.

1.1.1 Exact inference

Tree Structured Graphs: One type of tractable models is tree-structured graphs. In these

models the score decomposes over a graph as in Eq. (1.3), and the graph contains no cycles. In

this case a MAP assignment can be found efficiently using a dynamic programming algorithm

known as max-product belief propagation (BP) [Pearl, 1988, Kschischang et al., 2001]. The

algorithm begins by defining one of the variables (nodes) as root, and then proceeds by sending

messages from the leaf nodes up the tree until the root, and then back downwards to the leafs.

The updates take the following form:

δji(yi) ∝ max
yj


exp(θij(yi, yj) + θj(yj))

∏

k∈N(j)\i

δkj(yj)


 for all yi (1.7)

3

where δji is the message from node j to node i, and N(i) is the set of neighbors of node i in

the graph. Notice that this update uses the fact that the messages are invariant to scaling, so

they can be normalized. Also, in order to avoid numerical issues, messages are often stored

and computed in log-space. Finally, a MAP assignment is easily obtained from the messages

around each node by:

∀i yi = argmax
y′i

∏

k∈N(i)

δki(y
′
i)

Notice that the total runtime of the max-product algorithm is linear in the number of variables

n, which makes it extremely efficient in practice. Indeed, this has motivated us to study the

problem of learning tree-structured models for structured outputs (see Section 2.4). A similar

dynamic programming approach can be applied not only to trees, but also to low treewidth

graphs [Koller and Friedman, 2009], where the treewidth of a graph is defined as the size of the

largest clique in a chordal completion of that graph. The runtime of the max-product algorithm

is known to be exponential in the treewidth, so when this size is small enough then inference

remains tractable.

Submodular Scores: A second class of models which facilitate exact inference is when the

local edge scores are submodular. More specifically, this class consists of models where the

variables are binary, the score decomposes over a graph, and the pairwise scores are restricted

as follows:

θij(0, 0) + θij(1, 1) ≥ θij(0, 1) + θij(1, 0) ∀ij ∈ E(G)

Intuitively, this kind of score encourages the corresponding variables to take the same as-

signment. In this case the MAP problem can be formulated as a minimum cut problem

in an appropriately constructed graph [Hammer, 1965, Greig et al., 1989]. Thus, the MAP

problem can be solved exactly by standard maximum flow algorithms (e.g., Ford and Fulkerson

[1956], Dinitz [1970]) in polynomial time (e.g., O(n3) for the Dinitz algorithm). There are also

extensions of this framework to general convex edge scores and non-binary variables [Ishikawa,

2003, Flach and Schlesinger, 2004].

Planar Graphs: A third class of tractable models is planar graphs. A graph is called planar

if it can be drawn in the plane without any crossing edges. It turns out that when variables are

binary, singleton scores are all zero (θi(yi) = 0 for all i, yi), and pairwise socres take the form:

θij =

(
wij 0

0 wij

)
, then exact MAP inference over planar graphs can be solved efficiently

[Kasteleyn, 1963, Fisher, 1966, Plummer and Lovász, 1986, Deza and Laurent, 1997]. This is

achieved by converting the problem into a maximum-weight perfect matching problem over a

transformed graph. Several algorithms have been proposed for solving maximum-weight perfect

matching in polynomial time [Edmonds, 1965, Cook and Rohe, 1999] (runtime can be as low

as O(n3 log n)).

4

Finally, there are few other types of models where exact inference is possible [e.g., Darwiche,

2003, Dechter and Mateescu, 2007, Poon and Domingos, 2011, Jebara, 2013]. However, for many

applications limiting the model class to tractable families is too restrictive. Instead, we may

want to give up exactness of the solution in order to allow richer more expressive models.

1.2 Approximate MAP inference

As mentioned earlier, in many real problems restricting the model to be tractable is not suitable.

Since performing prediction is still desirable, even when the model is intractable, there has been

considerable amount of research on approximation schemes. A simple approach to approximate

MAP inference is to use a probabilistic interpretation of the model. In particular, Eq. (1.2) can

be used to define a probability distribution over outputs by taking the score exponent and then

dividing by a normalization constant.3 One can then use various methods to approximate the

marginal probabilities of single variables [Koller and Friedman, 2009], and then an approximate

MAP solution can be easily obtained by assigning each variable its maximizing value. One

shortcoming of this procedure is that it requires computing marginal probabilities, a hard

task in itself. In addition, this simple approach is often outperformed by approaches which

approximate the MAP directly. In the rest of this section I review some of the most popular

of these approaches.

1.2.1 Loopy Belief propagation

The max-product BP algorithm described in Section 1.1.1 is exact for tree-structured graphs.

However, when the graph contains cycles the messages in Eq. (1.7) are still well defined.

Therefore, we can perform message updates iteratively in some order (schedule), in a similar

manner to the original algorithm. This variant is called loopy belief propagation. Unfortunately,

this algorithm is no longer guaranteed to converge and even if it does converge, the returned

solution may not be optimal. However, it has shown excellent performance in applications from

various domains [Murphy et al., 1999]. Moreover, Tarlow et al. [2011] have shown that under a

particular scheduling and message averaging (known as ‘damping’), loopy BP is equivalent to

graph cuts, and thus optimal for submodular scores (see previous section).

1.2.2 Sampling

Given the probabilistic interpretation of the model mentioned above, sampling methods can be

used to draw samples from the underlying distribution. One method which is commonly used for

this task is Markov chain Monte Carlo (MCMC). The basic idea is to construct a Markov chain

that has as its stationary distribution the target distribution. Then by simulating the Markov

3This normalization constant, a.k.a. the ’partition function’, is hard to compute as it requires summing over
all possible outputs.

5

chain we can obtain a sample from the stationary distribution. These samples can then be

used to approximate expectations of functions under the distribution of interest (e.g., marginal

probabilities). A popular way to construct such Markov chains is through the Gibbs sampler

[Geman and Geman, 1984]. The algorithm proceeds by drawing samples from conditional

distributions over small subsets of variables, conditioned on the states of the other variables,

which can be done efficiently.

Perhaps the main drawback of this approach is that the mixing time of the Markov chain is

often very long, and therefore the obtained samples may not be from the correct distribution.

Nevertheless, sampling methods have been used for approximate inference in many applications

with good empirical results.

Sampling can be used to obtain an approximate MAP solution through simulated annealing

[Kirkpatrick et al., 1983]. The idea is to run MCMC while gradually decreasing a temperature

parameter which controls the skewness of the distribution. When the temperature reaches

zero then samples are drawn only from the mode of the distribution, corresponding to MAP

assignments. If the annealing schedule (i.e., rate of temperature decrease) is slow enough, then

the probability of sampling the maximizing assignment y∗ tends to 1 as the number of iterations

grows [Geman and Geman, 1984]. However, this requires a schedule which is too slow to be

useful in practice, so instead, faster rates are used, which do not enjoy the optimality guarantee.

1.2.3 Local search methods

An alternative scheme used for MAP inference is based on search methods [see, e.g., Dechter,

2003]. Search algorithms begin with some solution and iteratively attempt to improve it. This is

done by considering a set of neighboring states and taking the best move, until no improvement

can be achieved. Therefore, the returned solution is a local optimum w.r.t. the search space.

Typically, the number of considered neighbor states is kept small so each iteration can be

computed efficiently.

Perhaps the best known example of a local search procedure is the iterated conditional modes

(ICM) algorithm [Besag, 1986]. The algorithm begins by choosing some complete assignment

(randomly or in a predefined manner). In each iteration one of the variables is picked, and then

the objective (Eq. (1.6)) is maximized over all of its possible assignments while fixing all other

variables to their current state. This local optimization problem can be solved efficiently by

enumeration.4

More advanced search methods have also been explored. Notably, Boykov et al. [2001]

proposed two neighborhoods, α-expansion and α-β-swap. In α-expansion any variable may

change its assignment to a particular state (label) α. Similarly, in α-β-swap two states are

chosen and then any variable labeled with either of these states may change its assignment to

the other state. In both cases, finding the optimal move reduces to solving a minimum cut

problem, which can be done efficiently. Moreover, Komodakis and Tziritas [2007] have shown

4This calculation is very similar to the one used in the Gibbs sampler which was mentioned before.

6

that α-expansion can be viewed as a primal-dual algorithm for solving a specific form of LP

relaxation (Section 1.2.4). This approach became very popular in computer vision applications

due to its efficiency and high solution quality. More recently, Kumar et al. [2011] proposed to

generalize these search techniques by performing ’Range Moves’, which explore a larger search

space by considering a range of states rather than one or two at a time.

1.2.4 LP relaxation and dual decomposition

In this thesis we focus on one type of approximations that has proved particularly successful for

many structured prediction applications, namely linear programming (LP) relaxation [Wain-

wright et al., 2005, Werner, 2007]. In particular, under the score decomposition assumption

(Eq. (1.2)) each prediction problem can be cast as the following LP:5

max
y

∑

c

θc(yc) +
∑

i

θi(yi)

= max
y

∑

c

∑

y′c

I{yc = y′c}θc(yc) +
∑

i

∑

y′i

I{yi = y′i}θi(yi)

≤ max
µ∈L(G)

∑

c

∑

yc

µc(yc)θc(yc) +
∑

i

∑

yi

µi(yi)θi(yi) (1.8)

≡ max
µ∈L(G)

µ · θ

where I{·} is the indicator function, µ are relaxed variables corresponding to local marginal

probabilities,6 and L(G) is the relaxed set of constraints known as the “local marginal polytope”

which enforces local agreement between marginals:

L(G) =

{
µ ≥ 0 :

∑
yc\i

µc(yc) = µi(yi) ∀c, i ∈ c, yi∑
yi
µi(yi) = 1 ∀i

}
(1.9)

If µ is constrained to be integral, then the integer LP of Eq. (1.8) is in fact exact (i.e., holds with

equality). However, in order to obtain a tractable LP, the integrality requirement is relaxed,

which allows for fractional solutions and yields an upper bound on the optimum value. The

basic relaxation can be further tightened by introducing higher-order agreement constraints

[Sontag et al., 2008, Werner, 2008, Komodakis and Paragios, 2008].

Although the LP in Eq. (1.8) is tractable, standard solvers (e.g., based on the simplex

algorithm [Murty, 1983]) perform poorly and do not scale well with problem size [Yanover

et al., 2006]. Therefore, in recent years significant effort has been put into designing efficient

and scalable solvers for this LP.

Ravikumar et al. [2010] proposed to optimize the LP via a proximal point method. Their

5We add factors for individual variables for notational convenience, those are not needed for generality.
6The notation µc(yc) is standard in the literature and can be understood as the marginal probability of the

subset of variables yc [see Wainwright and Jordan, 2008].

7

algorithm is guaranteed to converge to the optimum of the LP, however it has the disadvantage

of using a double loop scheme where every update involves an iterative algorithm for projecting

onto the local polytope. More recently, Martins et al. [2011] presented an algorithm based

on the alternating direction method of multipliers (ADMM) [Glowinski and Marrocco, 1975,

Gabay and Mercier, 1976, Boyd et al., 2011]. However, their framework is restricted to binary

pairwise models.7 In Section 2.1 we present a related approach, which is also based on ADMM.

In what follows we focus on solvers that optimize the dual LP of Eq. (1.8). In particular,

the Lagrangian dual of the LP in Eq. (1.8) has the following form:

min
δ

[∑

c

max
yc

(
θc(yc)−

∑

i:i∈c

δci(yi)

)
+
∑

i

max
yi

(
θi(yi) +

∑

c:i∈c

δci(yi)

)]
(1.10)

where δci(yi) are the dual variables / messages / Lagrange multipliers corresponding to the

agreement constraints between factor c and variable i on the assignment yi from Eq. (1.9) [see

Sontag et al., 2011, for a review]. In this dual problem, the local functions being maximized can

be thought of as reparameterizations : adjusted versions of the original factors θ [Wainwright

et al., 2003]. Each such reparameterization provides an upper bound on the optimal solution

to the LP relaxation Eq. (1.8), and we are seeking to minimize this bound. In fact, if there

exists a solution δ such that all the local maximizations are consistent (i.e., they assign the

same values to variables in their intersections), then we are guaranteed to have found the exact

solution to the original problem Eq. (1.6) (see Weiss et al. [2007], and further discussion at

the end of this section). The dual in Eq. (1.10) is an unconstrained piecewise-linear convex

optimization problem and can be solved by various methods.

Komodakis et al. [2007] presented a subgradient algorithm, which has very simple updates,

but may take a long time to converge. Specifically, its convergence rate is upper bounded

by O(1/ε2). Namely, after O(1/ε2) iterations of the subgradient algorithm the solution δt is

guaranteed to be worse than the optimal solution by at most ε. A number of authors proposed a

block coordinate descent algorithm for this optimization problem [Globerson and Jaakkola, 2008,

Werner, 2007, Kolmogorov, 2006, Sontag and Jaakkola, 2009]. These methods differ slightly

from each other in the size of the block which is optimized at each iteration. The updates

can be elegantly understood as message-passing in a corresponding factor graph [Kschischang

et al., 2001]. The algorithms in this class are monotonically decreasing and often converge

fast, however, since the objective function is non-smooth, they might get stuck and return

suboptimal solutions.

To remedy this shortcoming, several authors suggested to smooth the LP and then run

coordinate descent on the smooth dual LP [Hazan and Shashua, 2010, Werner, 2009, Johnson,

2008]. The resulting algorithm is guaranteed to converge to the global optimum of the smoothed

LP. In Section 2.2 we show that the convergence rate of this approach is upper bounded by

O(τ/ε), where τ is a temperature parameter which controls the amount of smoothing of the

7Several specific global factors can also be handled.

8

LP. To get an ε-optimal solution, τ is set to O(1/ε). This yields a rate similar to that of the

subgradient algorithm, however coordinate descent algorithms often converge faster in practice.

An alternative optimization scheme for the smooth dual LP, based on Nesterov’s acceler-

ated gradient method [Nesterov, 2005], was presented by Jojic et al. [2010] and improved by

Savchynskyy et al. [2011]. This approach enjoys a faster rate guarantee of O(1/ε), however, each

iteration of the algorithm requires computation of the full gradient, which might be expensive

in some applications.

More recently we have shown how to apply ADMM to the non-smooth dual LP (see Section

2.1). The advantage of our approach is that the updates are simple and the algorithm is

guaranteed to globally converge w.r.t. the original non-smooth LP relaxation. Moreover, it

was recently shown that it has fast convergence rate of O(1/ε) [He and Yuan, 2012, Wang

and Banerjee, 2012], which is similar to the accelerated gradient method, but does not require

smoothing of the objective. Finally, here we surveyed some of the more popular algorithms,

however, our list is by no means exhaustive. This is an active research area and new solvers for

the relaxed LP keep appearing [e.g., Schmidt et al., 2011, Kappes et al., 2012, Schwing et al.,

2012, Kappes et al., 2013].

Working in the dual LP not only allows for efficient algorithms, but can also sometimes

provide a certificate of optimality. For any dual solution δ the objective of Eq. (1.10) upper

bounds the relaxed optimum (Eq. (1.8)), which in turn upper bounds the non-relaxed optimum

(Eq. (1.6)). Therefore, a certificate of optimality can be achieved by decoding an integral

solution and checking the difference between the dual and primal values. If there is no gap

then we are guaranteed to have an optimal solution to the original (non-relaxed) optimization

problem. When the LP is not tight then the dual and (decoded) primal values never meet (i.e.,

Eq. (1.8) holds with strong inequality). In such cases we may want to map the dual solution to

a feasible fractional primal solution (e.g., in order to have a good stopping criterion). We have

recently proposed a simple and efficient way to compute such a mapping (see Section 2.2).

1.2.5 Quadratic programming relaxation

In the case of pairwise factors Ravikumar and Lafferty [2006] formulate the MAP problem as

a quadratic program (QP) silimlar to the LP formulation:

max
y

∑

ij

θij(yi, yj) +
∑

i

θi(yi)

= max
y

∑

ij

∑

y′i

∑

y′j

I{yi = y′i}I{yj = y′j}θij(yi, yj) +
∑

i

∑

y′i

I{yi = y′i}θi(yi)

= max
µ

∑

ij

µ>i Θijµj +
∑

i

µ>i θi (1.11)

s.t. 0 ≤ µi(yi) ≤ 1 ∀i, yi;
∑

yi

µi(yi) = 1 ∀i

9

where Θij is the matrix realization of θij(·, ·). Notice that Eq. (1.11) holds with equality,

namely this relaxation is in fact tight [see Ravikumar and Lafferty, 2006]. In addition, the

representation is more concise than the LP since the pairwise marginals µij are not represented

explicitly, and the number of constraints is also smaller.

Whenever Θ is negative-semidefinite then this QP is convex and can be solved efficiently in

various ways, however, in the general case this problem is non-convex. Ravikumar and Lafferty

[2006] propose to use a convex relaxation. An alternative approach is to solve the non-convex

problem directly using a convex-concave procedure [Kappes and Schnörr, 2008, Kumar et al.,

2012], however, this scheme may get stuck in a local optimum.

Finally, despite the flexibility in the form of the objective and constraints offered by QP

relaxation, it has been proved that the LP relaxation strictly dominates (i.e., provides a better

approximation than) QP relaxation [Kumar et al., 2009].

To conclude, in addition to the approaches reviewed above, various other approximations

have been proposed for MAP inference [e.g. Rother et al., 2007, Kumar and Zilberstein, 2010].

New and better algorithms for the prediction task for structured outputs are the subject of

ongoing research.

1.3 The Learning Problem

We now proceed to address the learning problem for structured output prediction. Specifically,

we focus on the M3N formulation in Eq. (1.4), which we restate here for convenience:

min
w

λ

2
‖w‖2 +

1

M

∑

m

max
y

(
w>φ(xm, y) + ∆(y, ym)

)
− w>φ(xm, ym) (1.12)

In terms of the weights w, this is a convex optimization problem which can be solved in various

ways. However, in order to calculate the objective or learn a classifier, one has to solve a

loss-augmented prediction problem for each training sample: maxy
(
w>φ(xm, y) + ∆(y, ym)

)
.

In particular, the structured hinge loss terms form a piecewise linear function of w with an

exponential number of segments (one for each possible assignment y), which complicates the

optimization. Typically, an iterative learning algorithm would need to solve the (generally

intractable) maximization over y in order to update w. As we shall see later, whenever this

maximization (i.e., inference) can be solved efficiently then standard convex optimization meth-

ods can be readily applied to this learning problem. Indeed, numerous algorithms have been

suggested for this case, including: structured perceptron [Collins, 2002], sequential minimal

optimization (SMO) [Taskar et al., 2003], cutting-plane [Tsochantaridis et al., 2005], stochastic

subgradient [Ratliff et al., 2007], extra-gradient [Taskar et al., 2006], bundle methods [Teo et al.,

2010], the Frank-Wolfe algorithm [Lacoste-Julien et al., 2013], exponentiated gradient[Collins

et al., 2008] and more. We next give some details on a few of the most popular of these

10

approaches and then proceed to discuss the learning problem in case of intractable inference.

1.3.1 Subgradient descent

One of the simplest ways to optimize a convex function is to follow a descent direction. However,

since the objective in Eq. (1.12) is non-differentiable the simple gradient descent method is not

applicable. Luckily, the subgradient descent method, which generalizes gradient descent, can

be applied in this case [Shor et al., 1985]. The subgradient of the objective in Eq. (1.12) is

obtained by:

g = λw +
1

M

∑

m

φ(xm, ŷm)− φ(xm, ym) (1.13)

where ŷm ∈ argmaxy
(
w>φ(xm, y) + ∆(y, ym)

)
. The algorithm proceeds by taking steps in

the inverse direction of the subgradient using decreasing step-sizes (see below). Notice that in

order to obtain ŷm one has to optimize the prediction score and the label loss together [see, e.g.,

McAllester et al., 2010, for some complex loss terms]. This is known as the loss-augmented

prediction task. Notice that each time we update the weights w we need to solve the loss-

augmented prediction for all training examples. Even when prediction is tractable, this may

become very expensive if the dataset is large. Fortunately, the subgradient algorithm can also

be implemented in a stochastic manner [Bertsekas et al., 2003, Shalev-Shwartz et al., 2007,

Ratliff et al., 2007]. In particular, it is enough to obtain at iteration t a random estimate ĝt,

such that E[ĝt] ∈ ∂`(wt). This means we can consider only a single training example m in each

iteration:

ĝ = λw + φ(xm, ŷm)− φ(xm, ym) (1.14)

Setting a learning rate η, the resulting algorithm is summarized below.

Algorithm 1 Stochastic subgradient descent (SGD)

Input: w1, η
for t = 1, . . . , T do

Pick a training example m uniformly at random
ŷm = argmaxy

(
w>t φ(xm, y) + ∆(y, ym)

)

wt+1 = wt − η
t

(λwt + φ(xm, ŷm)− φ(xm, ym))
end for
return wT

The convergence rate of SGD for a strongly-convex non-smooth objective (like Eq. (1.12))

has been recently analyzed by Shamir and Zhang [2013]. They show that the suboptimality of

the solution at iteration t, namely `(wt) − `(w∗), is upper bounded by O(log(t)/t). This rate

can be further improved to O(1/t) by a simple averaging scheme [Shamir and Zhang, 2013]. In

fact, this improved rate is optimal as it achieves an information-theoretic Ω(1/t) lower bound

[Agarwal et al., 2012].

11

1.3.2 Cutting plane

Another approach that gained significant popularity for solving the learning problem is the

cutting plane method. This approach is based on the following equivalent formulation of the

learning problem:

min
w,ξ≥0

λ

2
‖w‖2 +

1

M

∑

m

ξm

s.t. ξm ≥ w>φ(xm, y) + ∆(y, ym)− w>φ(xm, ym) ∀m, y (1.15)

where ξm’s are called ‘slack variables’. This optimization problem has the form of a quadratic

program, but this program has an exponential number of constraints per training example,

one for each possible configuration y. It turns out that in this case there exists a small set of

constraints which suffices to determine the optimal solution. Intuitively, if we knew that set of

relevant constraints in advance we could solve the optimization problem in Eq. (1.15) efficiently

by using only this small set of constraints. Cutting plane is a constraint generation technique

which is based precisely on this idea. The algorithm alternates between finding new constraints

which are violated for the current weight vector, and optimizing the weights with respect to the

active set of constraints. If at some point no violating constraints are found, then the optimal

solution has been found and the algorithm terminates. This procedure results in the following

algorithm:

Algorithm 2 The cutting plane algorithm

for m = 1, . . . ,M do
Set: Am = ∅

end for
repeat

for m = 1, . . . ,M do
ŷm = argmaxy

(
w>φ(xm, y) + ∆(y, ym)

)

if ξm + ε < w>φ(xm, ŷm) + ∆(ŷM , ym)− w>φ(xm, ym) then
Am = Am ∪ {ŷm}

end if
(w, ξ)← solve Eq. (1.15) using constraints from A

end for
until A has not changed during the last iteration
return w

Notice that finding the most violated constraint boils down to solving the loss-augmented

prediction problem, as in the stochastic subgradient algorithm. In addition, to use this algo-

rithm one has to solve quadratic programs over the active set of constraints. As long as this

constraint set is not too large, general-purpose QP solvers can be used.

In terms of computational complexity, it has been shown that adding O(M/ε2) constraints

is sufficient to obtain an ε-accurate solution. This yields a convergence rate of O(
√
M/t), where

t is the number of iterations of Algorithm 2 [Tsochantaridis et al., 2005]. Notice that this rate

12

is significantly slower than that of SGD, and moreover, it depends on the size of the training set

M which may be large. The convergence rate can be improved by replacing the sum over slack

variables in Eq. (1.15) with a single slack variable. This formulation yields a better O(1/t) rate

[Joachims et al., 2009], however each iteration requires a pass over the entire training set, so it

still depends linearly on M .

1.3.3 The stochastic Frank-Wolfe algorithm

More recently, Lacoste-Julien et al. [2013] proposed to solve the learning problem Eq. (1.12)

using a stochastic version of the classic Frank-Wolfe algorithm [Frank and Wolfe, 1956]. The

algorithm essentially performs stochastic coordinate ascent on the dual function. In particular,

the Lagrange dual of the problem in Eq. (1.12) is the following quadratic program:

min
α≥0

λ

2
‖Aα‖2 − b>α

s.t.
∑

y

αm(y) = 1 ∀m (1.16)

In this dual problem, each variable αm(y) corresponds to a training example m and possible

output y, and these have to form a distribution over outputs (i.e., obey simplex constraints

per training example). Notice that the number of dual variables is usually very large, so we

will generally not be able to explicitly represent them in memory. The (m, y)’th column of the

matrix A consists of the vector 1
λM

(φ(xm, ym)− φ(xm, y)), and finally, the (m, y)’th element of

the vector b is given by 1
M

∆(y, ym). Using standard Lagrangian duality, it is possible to obtain

a mapping from dual variables to primal variables by: w = Aα.

The Frank-Wolfe algorithm [Frank and Wolfe, 1956] is an iterative procedure for constrained

optimization problems such as Eq. (1.16). In each iteration the algorithm first finds a lineariza-

tion of the convex function at the current point α, it then minimizes the linear objective

subject to the constraints to obtain the solution s, and finally, the next point is found as a

convex combination of α and s with some step size.

Lacoste-Julien et al. [2013] show that this algorithm can be applied in a stochastic manner,

where the weight updates depend on single training examples. Moreover, due to the simple

mapping from dual to primal variables, the algorithm can be executed by maintaining only

primal variables, which can be done efficiently. Finally, it turns out that the optimal step-size

can be found analytically in the case of the dual problem Eq. (1.16). The resulting algorithm

is described in Algorithm 3.

As in the previous learning algorithms, each iteration requires solving the loss-augmented

prediction problem (finding ŷm). However, this procedure has two main advantages over SGD.

First, it provides a computable duality gap between the dual and primal objectives, which can

be used as a sound stopping criterion. Specifically, the duality gap is given by:
∑

m λ(wt −
wmt)>wt − lt + lmt . Second, the optimal step size (γ) can be computed analytically, which can

13

Algorithm 3 Stochastic Frank-Wolfe algorithm

Set: w0 = wm0 = 0
Set: l0 = lm0 = 0
for t = 1, . . . , T do

Pick a training example m uniformly at random
ŷm = argmaxy

(
w>t φ(xm, y) + ∆(y, ym)

)

ws = 1
λM

(φ(xm, ym)− φ(xm, ŷm)) and ls = 1
M

∆(ŷm, ym)

γ =
λ(wm

t −ws)>wt−lmt +ls
λ‖wm

t −ws‖2 and clip to [0, 1]

Update: wmt+1 = (1− γ)wmt + γws and lmt+1 = (1− γ)lmt + γls
Update: wt+1 = wt + wmt+1 − wmt and lt+1 = lt + lmt+1 − lmt

end for
return wT

help practitioners save the laborious search for effective values.

The convergence rate of this stochastic version of the Frank-Wolfe algorithm has been shown

to be upper bounded by O(1/t) [Lacoste-Julien et al., 2013]. This rate is similar to that of

SGD, although empirically they show that for several problems it converges much faster.

1.3.4 Approximate learning

All of the learning algorithms described above require solving the loss-augmented prediction

problem in each iteration. When one wishes to use rich, expressive, complex models this task

usually becomes hard and requires resorting to some kind of approximation. Thus, one of the

main challenges in structured output prediction is to balance tractability and expressivity. At

one extreme, we can independently predict each output variable. In this case both inference and

learning are computationally cheap. In fact, if errors are measured using the Hamming distance

(the number of misclassified variables), then this simple strategy is sufficient for obtaining an

optimal predictor [Dembczynski et al., 2010]. However, such an approach may result in poor

prediction quality when other error measures are used, such as the zero-one loss. At the other

extreme, one can model complex dependencies between many of the variables, which may result

in a potentially accurate predictor.8 Even if we had some magical way to learn the exact optimal

parameters for such a model,9 we would still need to perform predictions with that model. If

we eventually use approximate inference for prediction then it is generally not the case that this

optimal model would have the best performance [Wainwright, 2006]. In fact, it will often be

better to use the same approximate inference scheme when training the model. This is actually

intuitive: assuming that the inference algorithm will make mistakes at test time, we would like

the learned model to be aware of those mistakes and possibly try to correct them.

Perhaps the simplest approach is to treat inference as a black-box within the learning

procedure and simply call an approximate inference routine, such as loopy BP. However, it

8For a thorough comparison between these two extremes see Liang et al. [2008].
9In fact, when the data is ’nice’ then there is a way to learn the optimal model efficiently [Sontag et al.,

2010].

14

turns out that even when the inference algorithm enjoys guaranteed approximation quality,10

it can still lead to arbitrarily bad learning results. In particular, Kulesza and Pereira [2008]

show that the combination of Perceptron learning with loopy belief propagation inference can

lead to divergence even when inference yields a 1.1-approximation and the data is separable.

On the other hand, they provide a generalization bound for the case of solving Eq. (1.12) using

LP relaxation for approximate inference. These results highlight the importance of choosing

compatible inference and learning procedures.

Finley and Joachims [2008] also study the learning problem when exact inference is in-

tractable. They distinguish between under-generating and over-generating techniques. Under-

generating techniques, like local search methods or loopy BP, search only over a subset of

possible labels. In contrast, over-generating techniques, like LP-relaxation, search over a set

that is larger than the original output space (e.g., includes also fractional solutions of the LP).

The difference between the two can be best understood by considering the slack formulation

of the learning problem (Eq. (1.15)). In particular, the number of constraints on w in under-

generating approximations is smaller than that of the exact form (Eq. (1.15)), which in turn is

smaller than the number of constraints in over-generating approximations. Notice that learning

with over-generating approximations makes the learning problem harder than it actually is,

which can potentially improve the generalization power of the learned model. Indeed, Finley

and Joachims [2008] report good empirical performance for this approach.

The usage of LP relaxation for approximate learning is of particular interest in this thesis.

In terms of approximation quality, it has been shown that the LP relaxation is often tight

for real world problems, namely the optimal solution to the LP at test time happens to be

integral [Martins et al., 2009a, Koo et al., 2010]. In contrast, training with exact inference and

using LP relaxation at test time often yields poor results. Formalizing and understanding these

phenomena is the subject of ongoing research [see for example Chandrasekaran and Jordan,

2012]. In addition, it has been observed that training with LP relaxation yields faster test

time prediction than with exact training, even when using exact inference at test time [Martins

et al., 2009a]. Intuitively, since LP relaxation is conservative (by over-constraining w), it tends

to make things easier for other prediction methods as well [Finley and Joachims, 2008]. In terms

of computational cost of learning with LP relaxation, we show in Section 2.3 that using the dual

LP Eq. (1.10) instead of the primal LP during training yields a more convenient optimization

problem, which results in significant speedups over alternative approaches.

We have also studied the usage of under-generating techniques. In particular, we have shown

that using a very simple and intuitive search strategy, which we termed pseudo-max, leads to

learning the optimal (exact) model under mild assumptions and when enough training data is

available [Sontag et al., 2010].11

An alternative approach to the above is to restrict the learned model to belong to a tractable

family. Although this limits model expressiveness, for some problems a restricted model that

10Such guarantee is generally NP-hard to obtain.
11That work is not included in this thesis.

15

considers a subset of all possible dependencies between output variables may be adequate.

Some examples of tractable families which have been learned in the literature are: submodular

scores [Taskar et al., 2004a], arithmetic circuits [Lowd and Domingos, 2008], and tree-structured

graphs [Bradley and Guestrin, 2010, Chechetka and Guestrin, 2010]. In Section 2.4 we address

the problem of learning tree-strucutured models when optimizing a max-margin objective. We

show that this problem is NP-hard and propose an approximation scheme. Identifying new

tractable families and efficient ways for learning them is also the focus of current research on

structured prediction.

16

Chapter 2

Results

In this chapter I present the main results of this thesis. The chapter is organized as follows:

Sections 2.1 and 2.2 address the prediction problem, where Section 2.1 presents a new MAP

inference algorithm based on applying the alternating direction method of multipliers to the

dual LP relaxation, and Section 2.2 provides convergence rate analysis for coordinate descent

algorithms on the smooth dual LP relaxation. Sections 2.3 and 2.4 address the learning problem,

where Section 2.3 proposes an efficient learning algorithm based on the dual LP relaxation, and

Section 2.4 addresses the problem of learning tree-structured predictors.

For convenience, here is the list of the papers and venues in which they were published:

• Section 2.1: An alternating direction method for dual MAP LP relaxation. Ofer Meshi

and Amir Globerson. European Conference on Machine Learning (ECML), 2011.

• Section 2.2: Convergence Rate Analysis of MAP Coordinate Minimization Algorithms.

Ofer Meshi, Tommi Jaakkola and Amir Globerson. Neural Information Processing Sys-

tems (NIPS), 2012.

• Section 2.3: Learning efficiently with approximate inference via dual losses. Ofer Meshi,

David Sontag, Tommi Jaakkola and Amir Globerson. International Conference on Ma-

chine Learning (ICML), 2010.

• Section 2.4: Learning Max-Margin Tree Predictors. Ofer Meshi, Elad Eban, Gal Elidan

and Amir Globerson. Uncertainty in Artificial intelligence (UAI), 2013.

For background, I also provide a list of my other publications during the doctoral studies

which are not included in this thesis:

• Convexifying the Bethe Free Energy. Ofer Meshi, Ariel Jaimovich, Amir Globerson and

Nir Friedman. Uncertainty in Artificial Intelligence (UAI), 2009.

• FastInf: An efficient approximate inference library. Ariel Jaimovich, Ofer Meshi, Ian

McGraw and Gal Elidan. Journal of Machine Learning Research, 2010.

17

• More data means less inference: A pseudo-max approach to structured learning. David

Sontag, Ofer Meshi, Tommi Jaakkola and Amir Globerson. Neural Information Processing

Systems (NIPS), 2010.

18

2.1 An Alternating Direction Method for Dual MAP LP

Relaxation

19

An Alternating Direction Method for
Dual MAP LP Relaxation

Ofer Meshi and Amir Globerson

The School of Computer Science and Engineering,
The Hebrew University of Jerusalem, Jerusalem, Israel

{meshi,gamir}@cs.huji.ac.il

Abstract. Maximum a-posteriori (MAP) estimation is an important
task in many applications of probabilistic graphical models. Although
finding an exact solution is generally intractable, approximations based
on linear programming (LP) relaxation often provide good approximate
solutions. In this paper we present an algorithm for solving the LP re-
laxation optimization problem. In order to overcome the lack of strict
convexity, we apply an augmented Lagrangian method to the dual LP.
The algorithm, based on the alternating direction method of multipliers
(ADMM), is guaranteed to converge to the global optimum of the LP re-
laxation objective. Our experimental results show that this algorithm is
competitive with other state-of-the-art algorithms for approximate MAP
estimation.

Keywords: Graphical Models, Maximum a-posteriori, Approximate In-
ference, LP Relaxation, Augmented Lagrangian Methods

1 Introduction

Graphical models are widely used to describe multivariate statistics for discrete
variables, and have found widespread applications in numerous domains. One
of the basic inference tasks in such models is to find the maximum a-posteriori
(MAP) assignment. Unfortunately, this is typically a hard computational prob-
lem which cannot be solved exactly for many problems of interest. It has turned
out that linear programming (LP) relaxations provide effective approximations
to the MAP problem in many cases (e.g., see [15, 21, 24]).

Despite the theoretical computational tractability of MAP-LP relaxations,
solving them in practice is a challenge for real world problems. Using off-the-
shelf LP solvers is typically inadequate for large models since the resulting LPs
have too many constraints and variables [29]. This has led researchers to seek
optimization algorithms that are tailored to the specific structure of the MAP-
LP [7, 13, 14, 16, 20, 28]. The advantage of such methods is that they work with
very simple local updates and are therefore easy to implement in the large scale
setting.

The suggested algorithms fall into several classes, depending on their ap-
proach to the problem. The TRW-S [14], MSD [28] and MPLP [7] algorithms

20

2 Ofer Meshi and Amir Globerson

employ coordinate descent in the dual of the LP. While these methods typically
show good empirical behavior, they are not guaranteed to reach the global op-
timum of the LP relaxation. This is a result of non strict-convexity of the dual
LP and the fact that block coordinate descent might get stuck in suboptimal
points under these conditions. One way to avoid this problem is to use a soft-max
function which is smooth and strictly convex, hence this results in globally con-
vergent algorithms [6, 10, 12]. Another class of algorithms [13, 16] uses the same
dual objective, but employs variants of subgradient descent to it. While these
methods are guaranteed to converge globally, they are typically slower in prac-
tice than the coordinate descent ones (e.g., see [13] for a comparison). Finally,
there are also algorithms that optimize the primal LP directly. One example is
the proximal point method of Ravikumar et al. [20]. While also globally conver-
gent, it has the disadvantage of using a double loop scheme where every update
involves an iterative algorithm for projecting onto the local polytope.

More recently, Martins et al. [17] proposed a globally convergent algorithm
for MAP-LP based on the alternating direction method of multipliers (ADMM)
[8, 5, 4, 2]. This method proceeds by iteratively updating primal and dual vari-
ables in order to find a saddle point of an augmented Lagrangian for the problem.
They suggest to use an augmented Lagrangian of the primal MAP-LP problem.
However, their formulation is restricted to binary pairwise factors and several
specific global factors. In this work, we propose an algorithm that is based on
the same key idea of ADMM, however it stems from augmenting the Lagrangian
of the dual MAP-LP problem instead. An important advantage of our approach
is that the resulting algorithm can be applied to models with general local fac-
tors (non-pairwise, non-binary). We also show that in practice our algorithm
converges much faster than the primal ADMM algorithm and that it compares
favorably with other state-of-the-art methods for MAP-LP optimization.

2 MAP and LP relaxation

Markov Random Fields (MRFs) are probabilistic graphical models that encode
the joint distribution of a set of discrete random variables X = {X1, ..., Xn}. The
joint probability is defined by combining a set C of local functions θc(xc), termed
factors. The factors depend only on (small) subsets of the variables (Xc ⊆ X)
and model the direct interactions between them (to simplify notation we drop
the variable name in Xc = xc; see [27]). The joint distribution is then given by:
P (x) ∝ exp

(∑
i θi(xi) +

∑
c∈C θc(xc)

)
, where we have included also singleton

factors over individual variables [27]. In many applications of MRFs we are
interested in finding the maximum probability assignment (MAP assignment).
This yields the optimization problem:

arg max
x

∑

i

θi(xi) +
∑

c∈C
θc(xc)

Due to its combinatorial nature, this problem is NP-hard for general graphical
models, and tractable only in isolated cases such as tree structured graphs. This
has motivated research on approximation algorithms.

21

An Alternating Direction Method for Dual MAP LP Relaxation 3

One of the most successful approximation schemes has been to use LP relax-
ations of the MAP problem. In this approach the original combinatorial prob-
lem is posed as a LP and then some of the constraints are relaxed to obtain
a tractable LP problem that approximates the original one. In our case, the
resulting MAP-LP relaxation problem is:

max
µ∈L(G)

∑

i

∑

xi

µi(xi)θi(xi) +
∑

c

∑

xc

µc(xc)θc(xc) (1)

where µ are auxiliary variables that correspond to (pseudo) marginal distribu-
tions, and L(G) is the reduced set of constraints called the local polytope [27],
defined by:

L(G) =

{
µ ≥ 0

∣∣∣∣
∑
xc\i

µc(xc\i, xi) = µi(xi) ∀c, i : i ∈ c, xi∑
xi
µi(xi) = 1 ∀i

}

In this paper we use the dual problem of Eq. (1), which takes the form:

min
δ

∑

i

max
xi

(
θi(xi) +

∑

c:i∈c
δci(xi)

)
+
∑

c

max
xc

(
θc(xc)−

∑

i:i∈c
δci(xi)

)
(2)

where δ are dual variables corresponding to the marginalization constraints in
L(G) (see [22, 28, 23]).1 This formulation offers several advantages. First, it
minimizes an upper bound on the true MAP value. Second, it provides an opti-
mality certificate through the duality gap w.r.t. a decoded primal solution [23].
Third, the resulting problem is unconstrained, which facilitates its optimization.
Indeed, several algorithms have been proposed for optimizing this dual problem.
The two main approaches are block coordinate descent [14, 28, 7] and subgra-
dient descent [16], each with its advantages and disadvantages. In particular,
coordinate descent algorithms are typically much faster at minimizing the dual,
while the subgradient method is guaranteed to converge to the global optimum
(see [23] for in-depth discussion).

Recently, Jojic et al. [13] presented an accelerated dual decomposition algo-
rithm which stems from adding strongly convex smoothing terms to the subprob-
lems in the dual function Eq. (2). Their method achieves a better convergence
rate over the standard subgradient method (O

(
1
ε

)
vs. O

(
1
ε2

)
). An alternative

approach, that is also globally convergent, has been recently suggested by Mar-
tins et al. [17]. Their approach is based on an augmented Lagrangian method,
which we next discuss.

3 The Alternating Direction Method of Multipliers

We now briefly review ADMM for convex optimization [8, 5, 4, 2].

1 An equivalent optimization problem can be derived via a dual decomposition ap-
proach [23].

22

4 Ofer Meshi and Amir Globerson

Consider the following optimization problem:

minimize f(x) + g(z) s.t. Ax = z (3)

where f and g are convex functions. The ADMM approach begins by adding the
function ρ

2 ‖Ax− z‖
2

to the above objective, where ρ > 0 is a penalty parameter.
This results in the optimization problem:

minimize f(x) + g(z) +
ρ

2
‖Ax− z‖2 s.t. Ax = z (4)

Clearly the above has the same optimum as Eq. (3) since when the constraints
Ax = z are satisfied, the added quadratic term equals zero. The Lagrangian of
the augmented problem Eq. (4) is given by:

Lρ(x, z, ν) = f(x) + g(z) + ν>(Ax− z) +
ρ

2
‖Ax− z‖2 (5)

where ν is a vector of Lagrange multipliers. The solution to the problem of
Eq. (4) is given by maxν minx,z Lρ(x, z, ν). The ADMM method provides an ele-
gant algorithm for finding this saddle point. The idea is to combine subgradient
descent over ν with coordinate descent over the x and z variables. The method
applies the following iterations:

xt+1 = arg min
x

Lρ(x, zt, νt)

zt+1 = arg min
z
Lρ(xt+1, z, νt)

νt+1 =νt + ρ
(
Axt+1 − zt+1

)
(6)

The algorithm consists of primal and dual updates, where the primal update is
executed sequentially, minimizing first over x and then over z. This split retains
the decomposition of the objective that has been lost due to the addition of the
quadratic term.

The algorithm is run either until the number of iterations exceeds a predefined
limit, or until some termination criterion is met. A commonly used such stopping

criterion is: ‖Ax− z‖2 ≤ ε and
∥∥zt+1 − zt

∥∥2 ≤ ε. These two conditions can serve
to bound the suboptimality of the solution.

The ADMM algorithm is guaranteed to converge to the global optimum of
Eq. (3) under rather mild conditions [2]. However, in terms of convergence rate,
the worst case complexity of ADMM is O(1

ε2). Despite this potential caveat,
ADMM has been shown to work well in practice (e.g., [1, 26]). Recently, accel-
erated variants on the basic alternating direction method have been proposed
[9]. These faster algorithms are based on linearization and come with improved
convergence rate of O(1

ε), achieving the theoretical lower bound for first-order
methods [19]. In this paper we focus on the basic ADMM formulation and leave
derivation of accelerated variants to future work.

23

An Alternating Direction Method for Dual MAP LP Relaxation 5

4 The Augmented Dual LP Algorithm

In this section we derive our algorithm by applying ADMM to the dual MAP-
LP problem of Eq. (2). The challenge is to design the constraints in a way that
facilitates efficient closed-form solutions for all updates.

To this end, we duplicate the dual variables δ and denote the second copy by
δ̄. We then introduce additional variables λc corresponding to the summation
of δ’s pertaining to factor c. These agreement constraints are enforced through
δ̄, and thus we have a constraint δci(xi) = δ̄ci(xi) for all c, i : i ∈ c, xi, and
λc(xc) =

∑
i:i∈c δ̄ci(xi) for all c, xc.

Following the ADMM framework, we add quadratic terms and obtain the
augmented Lagrangian for the dual MAP-LP problem of Eq. (2):

Lρ(δ, λ, δ̄, γ, µ) =

∑

i

max
xi

(
θi(xi) +

∑

c:i∈c
δci(xi)

)
+
∑

c

max
xc

(θc(xc)− λc(xc))

+
∑

c

∑

i:i∈c

∑

xi

γci(xi)
(
δci(xi)− δ̄ci(xi)

)
+
ρ

2

∑

c

∑

i:i∈c

∑

xi

(
δci(xi)− δ̄ci(xi)

)2

+
∑

c

∑

xc

µc(xc)

(
λc(xc)−

∑

i:i∈c
δ̄ci(xi)

)
+
ρ

2

∑

c

∑

xc

(
λc(xc)−

∑

i:i∈c
δ̄ci(xi)

)2

To see the relation of this formulation to Eq. (5), notice that (δ, λ) subsume the
role of x, δ̄ subsumes the role of z (with g(z) = 0), and the multipliers (γ, µ)
correspond to ν.

The updates of our algorithm, which stem from Eq. (6), are summarized
in Alg. 1 (a detailed derivation appears in Appendix A). In Alg. 1 we define
N(i) = {c : i ∈ c}, and the subroutine w = TRIM(v, d) that serves to clip the
values in the vector v at some threshold t (i.e., wi = min{vi, t}) such that the
sum of removed parts equals d > 0 (i.e.,

∑
i vi − wi = d). This can be carried

out efficiently in linear time (in expectation) by partitioning [3].

Notice that all updates can be computed efficiently so the cost of each itera-
tion is similar to that of message passing algorithms like MPLP [7] or MSD [28],
and to that of dual decomposition [13, 16]. Furthermore, significant speedup is
attained by caching some results for future iterations. In particular, the thresh-
old in the TRIM subroutine (the new maximum) can serve as a good initial guess
at the next iteration, especially at later iterations where the change in variable
values is quite small. Finally, many of the updates can be executed in parallel.
In particular, the δ update can be carried out simultaneously for all variables
i, and likewise all factors c can be updated simultaneously in the λ and δ̄ up-
dates. In addition, δ and λ can be optimized independently, since they appear
in different parts of the objective. This may result in considerable reduction in
runtime when executed on parallel architecture.2

2 In our experiments we used sequential updates.

24

6 Ofer Meshi and Amir Globerson

Algorithm 1 The Augmented Dual LP Algorithm (ADLP)

for t = 1 to T do
Update δ: for all i = 1, ..., n

Set θ̄i = θi +
∑
c:i∈c(δ̄ci − 1

ρ
γci)

θ̄′i = TRIM(θ̄i,
|N(i)|
ρ

)

q = (θ̄i − θ̄′i)/|N(i)|
Update δci = δ̄ci − 1

ρ
γci − q ∀c : i ∈ c

Update λ: for all c ∈ C
Set θ̄c = θc −

∑
i:i∈c δ̄ci + 1

ρ
µc

θ̄′c = TRIM(θ̄c,
1
ρ
)

Update λc = θc − θ̄′c

Update δ̄: for all c ∈ C, i : i ∈ c, xi
Set vci(xi) = δci(xi) + 1

ρ
γci(xi) +

∑
xc\i

λc(xc\i, xi) + 1
ρ

∑
xc\i

µc(xc\i, xi)

v̄c = 1
1+

∑
k:k∈c |Xc\k|

∑
k:k∈c |Xc\k|

∑
xk
vck(xk)

Update δ̄ci(xi) = 1
1+|Xc\i|

[
vci(xi)−

∑
j:j∈c,j 6=i |Xc\{i,j}|

(∑
xj
vcj(xj)− v̄c

)]

Update the multipliers:

γci(xi)← γci(xi) + ρ
(
δci(xi)− δ̄ci(xi)

)
for all c ∈ C, i : i ∈ c, xi

µc(xc)← µc(xc) + ρ
(
λc(xc)−

∑
i:i∈c δ̄ci(xi)

)
for all c ∈ C, xc

end for

5 Experimental Results

To evaluate our augmented dual LP (ADLP) algorithm (Alg. 1) we compare it
to two other algorithms for finding an approximate MAP solution. The first is
MPLP of Globerson and Jaakkola [7], which minimizes the dual LP of Eq. (2)
via block coordinate descent steps (cast as message passing). The second is
the accelerated dual decomposition (ADD) algorithm of Jojic et al. [13].3 We
conduct experiments on protein design problems from the dataset of Yanover
et al. [29]. In these problems we are given a 3D structure and the goal is to
find a sequence of amino-acids that is the most stable for that structure. The
problems are modeled by singleton and pairwise factors and can be posed as
finding a MAP assignment for the given model. This is a demanding setting in
which each problem may have hundreds of variables with 100 possible states on
average [29, 24].

Figure 1 shows two typical examples of protein design problems. It plots
the objective of Eq. (2) (computed using δ variables only) as a function of the
execution time for all algorithms. First, in Figure 1 (left) we observe that the co-
ordinate descent algorithm (MPLP) converges faster than the other algorithms,

3 For both algorithms we used the same C++ implementation used by Jojic et al.
[13], available at http://ai.stanford.edu/~sgould/svl. Our own algorithm was
implemented as an extension of their package.

25

An Alternating Direction Method for Dual MAP LP Relaxation 7

10
1

10
2

10
3

80

100

120

140

160

180

Runtime (secs)

O
b

je
ct

iv
e

1jo8

MPLP
ADD (ε=1)
ADLP (ρ=0.05)

10
1

10
2

10
3

50

100

150

200

250

300

350

400

Runtime (secs)

O
b

je
ct

iv
e

1ycc

MPLP
ADD (ε=1)
ADD (ε=10)
ADLP (ρ=0.01)
ADLP (ρ=0.05)

Fig. 1. Comparison of three algorithms for approximate MAP estimation: our aug-
mented dual LP algorithm (ADLP), accelerated dual decomposition algorithm (ADD)
by Jojic et al. [13], and the dual coordinate descent MPLP algorithm [7]. The figure
shows two examples of protein design problems, for each the dual objective of Eq. (2)
is plotted as a function of execution time. Dashed lines denote the value of the best
decoded primal solution.

however it tends to stop prematurely and yield suboptimal solutions. In contrast,
ADD and ADLP take longer to converge but achieve the globally optimal solu-
tion to the approximate objective. Second, it can be seen that the convergence
times of ADD and ADLP are very close, with a slight advantage to ADD. The
dashed lines in Figure 1 show the value of the decoded primal solution (assign-
ment) [23]. We see that there is generally a correlation between the quality of
the dual objective and the decoded primal solution, namely the decoded primal
solution improves as the dual solution approaches optimality. Nevertheless, we
note that there is no dominant algorithm in terms of decoding (here we show
examples where our decoding is superior). In many cases MPLP yields better
decoded solutions despite being suboptimal in terms of the dual objective (not
shown; this is also noted in [13]).

We also conduct experiments to study the effect of the penalty parameter ρ.
Our algorithm is guaranteed to globally converge for all ρ > 0, but its choice
affects the actual rate of convergence. In Figure 1 (right) we compare two values
of the penalty parameter ρ = 0.01 and ρ = 0.05. It shows that setting ρ = 0.01
results in somewhat slower convergence to the optimum, however in this case the
final primal solution (dashed line) is better than that of the other algorithms.
In practice, in order to choose an appropriate ρ, one can run a few iterations
of ADLP with several values and see which one achieves the best objective
[17]. We mention in passing that ADD employs an accuracy parameter ε which
determines the desired suboptimality of the final solution [13]. Setting ε to a
large value results in faster convergence to a lower accuracy solution. On the one
hand, this trade-off can be viewed as a merit of ADD, which allows to obtain
coarser approximations at reduced cost. On the other hand, an advantage of our
method is that the choice of penalty ρ affects only the rate of convergence and
does not impose additional reduction in solution accuracy over that of the LP
relaxation. In Figure 1 (left) we use ε = 1, as in Jojic et al., while in Figure 1

26

8 Ofer Meshi and Amir Globerson

10
0

10
1

10
2

10
3

−1000

−500

0

500

1000

1500

2000

2500

Runtime (secs)

O
bj

ec
tiv

e

1a8i

MPLP
ADD (ε=1)
ADLP (ρ=0.05)

10
1

10
2

10
3

10
4

100

150

200

250

300
1jo8

Runtime (secs)

O
b

je
ct

iv
e

ADLP
APLP

Fig. 2. (Left) Comparison for a side chain prediction problem similar to Figure 1 (left).
(Right) Comparison of our augmented dual LP algorithm (ADLP) and a generalized
variant (APLP) of the ADMM algorithm by Martins et al. [17] on a protein design
problem. The dual objective of Eq. (2) is plotted as a function of execution time.
Dashed lines denote the value of the best decoded primal solution.

(right) we compare two values ε = 1 and ε = 10 to demonstrate the effect of this
accuracy parameter.

We next compare performance of the algorithms on a side chain prediction
problem [29]. This problem is the inverse of the protein design problem, and
involves finding the 3D configuration of rotamers given the backbone structure
of a protein. Figure 2 (left) shows a comparison of MPLP, ADD and ADLP on one
of the largest proteins in the dataset (812 variables with 12 states on average). As
in the protein design problems, MPLP converges fast to a suboptimal solution.
We observe that here ADLP converges somewhat faster than ADD, possibly
because the smaller state space results in faster ADLP updates.

As noted earlier, Martins et al. [17] recently presented an approach that ap-
plies ADMM to the primal LP (i.e., Eq. (1)). Although their method is limited
to binary pairwise factors (and several global factors), it can be modified to
handle non-binary higher-order factors, as the derivation in Appendix B shows.
We denote this variant by APLP. As in ADLP, in the APLP algorithm all up-
dates are computed analytically and executed efficiently. Figure 2 (right) shows
a comparison of ADLP and APLP on a protein design problem. It illustrates
that ADLP converges significantly faster than APLP (similar results, not shown
here, are obtained for the other proteins).

6 Discussion

Approximate MAP inference methods based on LP relaxation have drawn much
attention lately due to their practical success and attractive properties. In this
paper we presented a novel globally convergent algorithm for approximate MAP
estimation via LP relaxation. Our algorithm is based on the augmented La-
grangian method for convex optimization, which overcomes the lack of strict
convexity by adding a quadratic term to smooth the objective. Importantly, our
algorithm proceeds by applying simple to implement closed-form updates, and

27

An Alternating Direction Method for Dual MAP LP Relaxation 9

it is highly scalable and parallelizable. We have shown empirically that our algo-
rithm compares favorably with other state-of-the-art algorithms for approximate
MAP estimation in terms of accuracy and convergence time.

Several existing globally convergent algorithms for MAP-LP relaxation rely
on adding local entropy terms in order to smooth the objective [6, 10, 12, 13].
Those methods must specify a temperature control parameter which affects the
quality of the solution. Specifically, solving the optimization subproblems at high
temperature reduces solution accuracy, while solving them at low temperature
might raise numerical issues. In contrast, our algorithm is quite insensitive to
the choice of such control parameters. In fact, the penalty parameter ρ affects
the rate of convergence but not the accuracy or numerical stability of the al-
gorithm. Moreover, despite lack of fast convergence rate guarantees, in practice
the algorithm has similar or better convergence times compared to other globally
convergent methods in various settings. Note that [17] also show an advantage
of their primal based ADMM method over several baselines.

Several improvements over our basic algorithm can be considered. One such
improvement is to use smart initialization of the variables. For example, since
MPLP achieves larger decrease in objective at early iterations, it is possible to
run it for a limited number of steps and then take the resulting variables δ for
the initialization of ADLP. Notice, however, that for this scheme to work well,
the Lagrange multipliers γ and µ should be also initialized accordingly. Another
potential improvement is to use an adaptive penalty parameter ρt (e.g., [11]).
This may improve convergence in practice, as well as reduce sensitivity to the
initial choice of ρ. On the downside, the theoretical convergence guarantees of
ADMM no longer hold in this case. Martins et al. [17] show that the ADMM
framework is also suitable for handling certain types of global factors, which
include a large number of variables in their scope (e.g., XOR factor). Using an
appropriate formulation, it is possible to incorporate such factors in our dual
LP framework as well.4 Finally, it is likely that our method can be further
improved by using recently introduced accelerated variants of ADMM [9]. Since
these variants achieve asymptotically better convergence rate, the application of
such methods to MAP-LP similar to the one we presented here will likely result
in faster algorithms for approximate MAP estimation.

In this paper, we assumed that the model parameters were given. However,
in many cases one wishes to learn these from data, for example by minimizing a
prediction loss (e.g., hinge loss [25]). We have recently shown how to incorporate
dual relaxation algorithms into such learning problems [18]. It will be interest-
ing to apply our ADMM approach in this setting to yield an efficient learning
algorithm for structured prediction problems.

Acknowledgments. We thank Ami Wiesel and Elad Eban for useful discus-
sions and comments on this manuscript. We thank Stephen Gould for his SVL
code. Ofer Meshi is a recipient of the Google European Fellowship in Machine
Learning, and this research is supported in part by this Google Fellowship.

4 The auxiliary variables λc are not used in this case.

28

10 Ofer Meshi and Amir Globerson

A Derivation of Augmented Dual LP Algorithm

In this section we derive the ADMM updates for the augmented Lagrangian of
the dual MAP-LP which we restate here for convenience:

Lρ(δ, λ, δ̄, γ, µ) =

∑

i

max
xi

(
θi(xi) +

∑

c:i∈c
δci(xi)

)
+
∑

c

max
xc

(θc(xc)− λc(xc))

+
∑

c

∑

i:i∈c

∑

xi

γci(xi)
(
δci(xi)− δ̄ci(xi)

)
+
ρ

2

∑

c

∑

i:i∈c

∑

xi

(
δci(xi)− δ̄ci(xi)

)2

+
∑

c

∑

xc

µc(xc)

(
λc(xc)−

∑

i:i∈c
δ̄ci(xi)

)
+
ρ

2

∑

c

∑

xc

(
λc(xc)−

∑

i:i∈c
δ̄ci(xi)

)2

Updates:

– The δ update:
For each variable i = 1, ..., n consider a block δi which consists of δci for all
c : i ∈ c. For this block we need to minimize the following function:

max
xi

(
θi(xi) +

∑

c:i∈c
δci(xi)

)
+
∑

c:i∈c

∑

xi

γci(xi)δci(xi)+
ρ

2

∑

c:i∈c

∑

xi

(
δci(xi)− δ̄ci(xi)

)2

Equivalently, this can be written more compactly in vector notation as:

min
δi

1

2
‖δi‖2 − (δ̄i −

1

ρ
γi)
>δi +

1

ρ
max
xi

(θi(xi) +
∑

c:i∈c
δci(xi))

where δ̄i and γi are defined analogous to δi. The closed-form solution to
this QP is given by the update in Alg. 1. It is obtained by inspecting KKT
conditions and exploiting the structure of the summation inside the max (for
a similar derivation see [3]).

– The λ update:
For each factor c ∈ C we seek to minimize the function:

max
xc

(θc(xc)− λc(xc)) +
∑

xc

µc(xc)λc(xc) +
ρ

2

∑

xc

(
λc(xc)−

∑

i:i∈c
δ̄ci(xi)

)2

In equivalent vector notation we have the problem:

min
λc

1

2
‖λc‖2 −

(∑

i:i∈c
δ̄ci −

1

ρ
µc

)>
λc +

1

ρ
max
xc

(θc(xc)− λc(xc))

This QP is very similar to that of the δ update and can be solved using the
same technique. The resulting closed-form update is given in Alg. 1.

29

An Alternating Direction Method for Dual MAP LP Relaxation 11

– The δ̄ update:

For each c ∈ C we consider a block which consists of δ̄ci for all i : i ∈ c. We
seek a minimizer of the function:

−
∑

i:i∈c

∑

xi

γci(xi)δ̄ci(xi) +
ρ

2

∑

i:i∈c

∑

xi

(
δci(xi)− δ̄ci(xi)

)2

−
∑

xc

µc(xc)
∑

i:i∈c
δ̄ci(xi) +

ρ

2

∑

xc

(
λc(xc)−

∑

i:i∈c
δ̄ci(xi)

)2

Taking partial derivative w.r.t. δ̄ci(xi) and setting to 0 yields:

δ̄ci(xi) =
1

1 + |Xc\i|


vci(xi)−

∑

j:j∈c,j 6=i
|Xc\{i,j}|

∑

xj

δ̄cj(xj)




where: vci(xi) = δci(xi) + 1
ργci(xi) +

∑
xc\i

λc(xc\i, xi) + 1
ρ

∑
xc\i

µc(xc\i, xi).
Summing this over xi and i : i ∈ c and plugging back in, we get the update
in Alg. 1.

– Finally, the multipliers update is straightforward.

B Derivation of Augmented Primal LP Algorithm

We next derive the algorithm for optimizing Eq. (1) with general local factors.
Consider the following formulation which is equivalent to the primal MAP-LP

problem of Eq. (1). Define:

fi(µi) =

{∑
xi
µi(xi)θi(xi) µi(xi) ≥ 0 and

∑
xi
µi(xi) = 1

−∞ otherwise

fc(µc) =

{∑
xc
µc(xc)θc(xc) µc(xc) ≥ 0 and

∑
xc
µc(xc) = 1

−∞ otherwise

f accounts for the non-negativity and normalization constraints in L(G). We
add the marginalization constraints via copies of µc for each i ∈ c, denoted by
µ̄ci. Thus we get the augmented Lagrangian:

Lρ(µ, µ̄, δ, β) =
∑

i

fi(µi) +
∑

c

fc(µc)

−
∑

c

∑

i:i∈c

∑

xi

δci(xi) (µ̄ci(xi)− µi(xi))− ρ

2

∑

c

∑

i:i∈c

∑

xi

(µ̄ci(xi)− µi(xi))2

−
∑

c

∑

i:i∈c

∑

xc

βci(xc) (µ̄ci(xc)− µc(xc))− ρ

2

∑

c

∑

i:i∈c

∑

xc

(µ̄ci(xc)− µc(xc))2

30

12 Ofer Meshi and Amir Globerson

where µ̄ci(xi) =
∑
xc\i

µ̄ci(xc\i, xi).

To draw the connection with Eq. (5), in this formulation µ subsumes the
role of x, µ̄ subsumes the role of z (with g(z) = 0), and the multipliers (δ, β)
correspond to ν. We next show the updates which result from applying Eq. (6)
to this formulation.

– Update µi for all i = 1, ..., n:

µi ← arg max
µi∈∆i

µ>i

(
θi +

∑

c:i∈c
(δci + ρMiµ̄ci)

)
− 1

2
µ>i (ρ|N(i)|I)µi

where Miµ̄ci =
∑
xc\i

µ̄ci(xc\i, ·).
We have to maximize this QP under simplex constraints on µi. Notice that
the objective matrix is diagonal, so this can be solved in closed form by
shifting the target vector and then truncating at 0 such that the sum of
positive elements equals 1 (see [3]). The solution can be computed in linear
time (in expectation) by partitioning [3].

– Update µc for all c ∈ C:

µc ← arg max
µc∈∆c

µ>c

(
θc +

∑

i:i∈c
(βci + ρµ̄ci)

)
− 1

2
µ>c (ρ|N(c)|I)µc

where N(c) = {i : i ∈ c}.
Again we have a projection onto the simplex with diagonal objective matrix,
which can be done efficiently.

– Update µ̄ci for all c ∈ C, i : i ∈ c:

µ̄ci ← arg max
µ̄ci

µ̄>ci
(
M>i (ρµi − δci)− βci + ρµc

)
− ρ

2
µ̄>ci
(
M>i Mi + I

)
µ̄ci

Here we have an unconstrained QP, so the solution is obtained by H−1v.
Further notice that the inverse H−1 can be computed in closed form. To see
how, M>i Mi is a block-diagonal matrix with blocks of ones with size |Xi|.
Therefore, H = ρ

(
M>i Mi + I

)
is also block-diagonal. It follows that the

inverse H−1 is a block-diagonal matrix where each block is the inverse of the
corresponding block in H. Finally, it is easy to verify that the inverse of a

block ρ
(
1|Xi| + I|Xi|

)
is given by 1

ρ

(
I|Xi| − 1

|Xi|+11|Xi|
)

.

– Update the multipliers:

δci(xi)←δci(xi) + ρ (µ̄ci(xi)− µi(xi)) for all c ∈ C, i : i ∈ c, xi
βci(xc)←βci(xc) + ρ (µ̄ci(xc)− µc(xc)) for all c ∈ C, i : i ∈ c, xc

31

Bibliography

[1] M. Afonso, J. Bioucas-Dias, and M. Figueiredo. Fast image recovery using
variable splitting and constrained optimization. Image Processing, IEEE
Transactions on, 19(9):2345 –2356, sept. 2010.

[2] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and distributed computation:
numerical methods. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2003.

[3] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projec-
tions onto the l1-ball for learning in high dimensions. In Proceedings of the
25th international conference on Machine learning, pages 272–279, 2008.

[4] J. Eckstein and D. P. Bertsekas. On the douglas-rachford splitting method
and the proximal point algorithm for maximal monotone operators. Math-
ematical Programming, 55:293–318, June 1992.

[5] D. Gabay and B. Mercier. A dual algorithm for the solution of nonlin-
ear variational problems via finite-element approximations. Computers and
Mathematics with Applications, 2:17–40, 1976.

[6] K. Gimpel and N. A. Smith. Softmax-margin crfs: training log-linear mod-
els with cost functions. In Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the Association for Compu-
tational Linguistics, pages 733–736, 2010.

[7] A. Globerson and T. Jaakkola. Fixing max-product: Convergent message
passing algorithms for MAP LP-relaxations. In Advances in Neural Infor-
mation Processing Systems, pages 553–560, 2008.

[8] R. Glowinski and A. Marrocco. Sur lapproximation, par elements finis
dordre un, et la resolution, par penalisation-dualité, dune classe de problems
de dirichlet non lineares. Revue Française d’Automatique, Informatique, et
Recherche Opérationelle, 9:4176, 1975.

[9] D. Goldfarb, S. Ma, and K. Scheinberg. Fast alternating linearization meth-
ods for minimizing the sum of two convex functions. Technical report,
UCLA CAM, 2010.

[10] T. Hazan and A. Shashua. Norm-product belief propagation: Primal-dual
message-passing for approximate inference. Information Theory, IEEE
Transactions on, 56(12):6294 –6316, Dec. 2010.

[11] B. S. He, H. Yang, and S. L. Wang. Alternating direction method with self-
adaptive penalty parameters for monotone variational inequalities. Journal
of Optimization Theory and Applications, 106:337–356, 2000.

[12] J. Johnson. Convex Relaxation Methods for Graphical Models: Lagrangian
and Maximum Entropy Approaches. PhD thesis, EECS, MIT, 2008.

[13] V. Jojic, S. Gould, and D. Koller. Fast and smooth: Accelerated dual de-
composition for MAP inference. In Proceedings of International Conference
on Machine Learning, 2010.

[14] V. Kolmogorov. Convergent tree-reweighted message passing for energy
minimization. Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, 28(10):1568–1583, 2006.

32

14 Ofer Meshi and Amir Globerson

[15] N. Komodakis and N. Paragios. Beyond loose LP-relaxations: Optimiz-
ing MRFs by repairing cycles. In 10th European Conference on Computer
Vision, pages 806–820, 2008.

[16] N. Komodakis, N. Paragios, and G. Tziritas. Mrf energy minimization and
beyond via dual decomposition. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 33:531–552, March 2011.

[17] A. F. T. Martins, M. A. T. Figueiredo, P. M. Q. Aguiar, N. A. Smith,
and E. P. Xing. An augmented lagrangian approach to constrained map
inference. In International Conference on Machine Learning, June 2011.

[18] O. Meshi, D. Sontag, T. Jaakkola, and A. Globerson. Learning efficiently
with approximate inference via dual losses. In Proceedings of the 27th In-
ternational Conference on Machine Learning, pages 783–790, 2010.

[19] Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical
Programming, 103:127–152, 2005.

[20] P. Ravikumar, A. Agarwal, and M. Wainwright. Message-passing for graph-
structured linear programs: proximal projections, convergence and rounding
schemes. In Proc. of the 25th International Conference on Machine Learn-
ing, pages 800–807, 2008.

[21] A. M. Rush, D. Sontag, M. Collins, and T. Jaakkola. On dual decompo-
sition and linear programming relaxations for natural language processing.
In Proceedings of the 2010 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2010.

[22] M. I. Schlesinger. Syntactic analysis of two-dimensional visual signals in
noisy conditions. Kibernetika, 4:113–130, 1976.

[23] D. Sontag, A. Globerson, and T. Jaakkola. Introduction to dual decom-
position for inference. In S. Sra, S. Nowozin, and S. J. Wright, editors,
Optimization for Machine Learning. MIT Press, 2011.

[24] D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and Y. Weiss. Tightening
LP relaxations for MAP using message passing. In Proc. of the 24th Annual
Conference on Uncertainty in Artificial Intelligence, pages 503–510, 2008.

[25] B. Taskar, C. Guestrin, and D. Koller. Max margin Markov networks. In
S. Thrun, L. Saul, and B. Schölkopf, editors, Advances in Neural Infor-
mation Processing Systems 16, pages 25–32. MIT Press, Cambridge, MA,
2004.

[26] S. Tosserams, L. Etman, P. Papalambros, and J. Rooda. An augmented
lagrangian relaxation for analytical target cascading using the alternating
direction method of multipliers. Structural and Multidisciplinary Optimiza-
tion, 31:176–189, 2006.

[27] M. J. Wainwright and M. Jordan. Graphical models, exponential families,
and variational inference. Foundations and Trends in Machine Learning,
1(1-2):1–305, 2008.

[28] T. Werner. A linear programming approach to max-sum problem: A re-
view. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
29:1165–1179, 2007.

[29] C. Yanover, T. Meltzer, and Y. Weiss. Linear programming relaxations
and belief propagation – an empirical study. Journal of Machine Learning
Research, 7:1887–1907, 2006.

33

2.2 Convergence Rate Analysis of MAP Coordinate Min-

imization Algorithms

34

Convergence Rate Analysis of MAP Coordinate
Minimization Algorithms

Ofer Meshi ∗
meshi@cs.huji.ac.il

Tommi Jaakkola †
tommi@csail.mit.edu

Amir Globerson ∗
gamir@cs.huji.ac.il

Abstract

Finding maximum a posteriori (MAP) assignments in graphical models is an im-
portant task in many applications. Since the problem is generally hard, linear pro-
gramming (LP) relaxations are often used. Solving these relaxations efficiently
is thus an important practical problem. In recent years, several authors have pro-
posed message passing updates corresponding to coordinate descent in the dual
LP. However, these are generally not guaranteed to converge to a global optimum.
One approach to remedy this is to smooth the LP, and perform coordinate descent
on the smoothed dual. However, little is known about the convergence rate of this
procedure. Here we perform a thorough rate analysis of such schemes and derive
primal and dual convergence rates. We also provide a simple dual to primal map-
ping that yields feasible primal solutions with a guaranteed rate of convergence.
Empirical evaluation supports our theoretical claims and shows that the method is
highly competitive with state of the art approaches that yield global optima.

1 Introduction

Many applications involve simultaneous prediction of multiple variables. For example, we may seek
to label pixels in an image, infer amino acid residues in protein design, or find the semantic role of
words in a sentence. These problems can be cast as maximizing a function over a set of labels (or
minimizing an energy function). The function typically decomposes into a sum of local functions
over overlapping subsets of variables. These local functions can be usually learned from data.

Such maximization problems are nevertheless typically hard. Even for simple decompositions (e.g.,
subsets correspond to pairs of variables), maximizing over the set of labels is often provably NP-
hard. One approach would be to reduce the problem to a tractable one, e.g., by constraining the
model to a low tree-width graph. However, empirically, using more complex interactions together
with approximate inference methods is often advantageous. A popular family of approximate meth-
ods are based on linear programming (LP) relaxations. Although these LPs are generally tractable,
general purpose LP solvers do not typically adequately exploit the problem structure [28]. Instead, a
great deal of effort has gone into designing solvers that are specifically tailored to typical MAP-LP
relaxations. These include, for example, cut based algorithms [2], accelerated gradient methods [8],
and augmented Lagrangian methods [10, 12]. One class of particularly simple algorithms, which
we will focus on here, are coordinate minimization based approaches. Examples include max-sum-
diffusion [25], MPLP [5] and TRW-S [9]. These work by first taking the dual of the LP and then
optimizing the dual in a block coordinate fashion [see 21, for a thorough review]. In many cases,
the coordinate block operations can be performed in closed form resulting in updates quite similar
to the max-product message passing algorithm. By coordinate minimization we mean that at each
step a set of coordinates is chosen, all other coordinates are fixed, and the chosen coordinates are

∗School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel
†CSAIL, MIT, Cambridge, MA

35

set to their optimal value given the rest. This is different from a coordinate descent strategy where
instead a gradient step is performed on the chosen coordinates (rather than full optimization).

A main caveat of the coordinate minimization approach is that it will not necessarily find the global
optimum of the LP (although in practice it often does). This is a direct result of the LP objective
not being strictly convex. Several authors have proposed to smooth the LP with entropy terms
and employ variants of coordinate minimization [7, 26]. However, the convergence rates of these
methods have not been analyzed. Moreover, since the algorithms work in the dual, there is no
simple procedure to map the result back into primal feasible variables. We seek to address all these
shortcomings: we present a convergence rate analysis of dual coordinate minimization algorithms,
provide a simple scheme for generating primal variables from dual ones, and analyze the resulting
primal convergence rates.

Convergence rates for coordinate minimization are not common in the literature. While asymptotic
convergence is relatively well understood [22], finite rates have been harder to obtain. Recent work
[17] provides rates for rather limited settings which do not hold in our case. On the other hand,
for coordinate descent methods, some rates have been obtained for greedy and stochastic update
schemes [16, 20]. These do not apply directly to our case. Our bounds are derived for the full
coordinate minimization case. A related analysis of MAP-LP using smoothing appeared in [3].
However, their approach is specific to LDPC codes, and does not apply to general MAP problems
as we analyze here.

2 MAP and LP relaxations

Consider a set of n discrete variables x1, . . . , xn, and a setC of subsets of these variables (i.e., c ∈ C
is a subset of {1, . . . , n}). We consider maximization problems over functions that decompose
according to these subsets. In particular, each subset c is associated with a local function or factor
θc(xc) and we also include factors θi(xi) for each individual variable.1 The MAP problem is to find
an assignment x = (x1, . . . , xn) to all the variables which maximizes the sum of these factors:

MAP(θ) = max
x

∑

c∈C
θc(xc) +

n∑

i=1

θi(xi) (1)

Linear programming relaxations are a popular approach to approximating combinatorial optimiza-
tion problems [6, 23, 25]. For example, we obtain a relaxation of the discrete optimization problem
given in Eq. (1) by replacing it with the following linear program:2

PMAP : max
µ∈ML

P (µ) = max
µ∈ML

{∑

c

∑

xc

θc(xc)µc(xc) +
∑

i

∑

xi

θi(xi)µi(xi)

}
= max
µ∈ML

µ · θ (2)

where P (µ) is the primal (linear) objective and the local marginal polytope ML enforces basic
consistency constraints on the marginals {µi(xi),∀xi} and {µc(xc),∀xc}. Specifically,

ML =

{
µ ≥ 0 :

∑
xc\i

µc(xc) = µi(xi) ∀c, i ∈ c, xi∑
xi
µi(xi) = 1 ∀i

}
(3)

If the maximizer of PMAP has only integral values (i.e., 0 or 1) it can be used to find the MAP
assignment (e.g., by taking the xi that maximizes µi(xi)). However, in the general case the solution
may be fractional [24] and the maximum of PMAP is an upper bound on MAP(θ).

2.1 Smoothing the LP

As mentioned earlier, several authors have considered a smoothed version of the LP in Eq. (2).
As we shall see, this offers several advantages over solving the LP directly. Given a smoothing
parameter τ > 0, we consider the following smoothed primal problem:

PMAPτ : max
µ∈ML

Pτ (µ) = max
µ∈ML

{
µ · θ +

1

τ

∑

c

H(µc) +
1

τ

∑

i

H(µi)

}
(4)

1Although singleton factors are not needed for generality, we keep them for notational convenience.
2We use µ and θ to denote vectors consisting of all µ and θ values respectively.

36

where H(µc) and H(µi) are local entropy terms. Note that as τ →∞ we obtain the original primal
problem. In fact, a stronger result can be shown. Namely, that the optimal value of PMAP is O(1

τ)
close to the optimal value of PMAPτ . This justifies using the smoothed objective Pτ as a proxy to
P in Eq. (2). We express this in the following lemma (which appears in similar forms in [7, 15]).
Lemma 2.1. Denote by µ∗ the optimum of problem PMAP in Eq. (2) and by µ̂∗ the optimum of
problem PMAPτ in Eq. (4). Then:

µ̂∗ · θ ≤ µ∗ · θ ≤ µ̂∗ · θ +
Hmax

τ
(5)

whereHmax =
∑
c log |xc|+

∑
i log |xi|. In other words, the smoothed optimum is anO(1

τ)-optimal
solution of the original non-smoothed problem.

We shall be particularly interested in the dual of PMAPτ since it facilitates simple coordinate
minimization updates. Our dual variables will be denoted by δci(xi), which can be interpreted as
the messages from subset c to node i about the value of variable xi. The dual variables are therefore
indexed by (c, i, xi) and written as δci(xi). The dual objective can be shown to be:

F (δ) =
∑

c

1

τ
log
∑

xc

exp

(
τθc(xc)− τ

∑

i:i∈c
δci(xi)

)
+
∑

i

1

τ
log
∑

xi

exp

(
τθi(xi) + τ

∑

c:i∈c
δci(xi)

)

(6)
The dual problem is an unconstrained smooth minimization problem:

DMAPτ : min
δ
F (δ) (7)

Convex duality implies that the optima of DMAPτ and PMAPτ coincide.

Finally, we shall be interested in transformations between dual variables δ and primal variables µ
(see Section 5). The following are the transformations obtained from the Lagrangian derivation (i.e.,
they can be used to switch from optimal dual variables to optimal primal variables).

µc(xc; δ) ∝ exp

(
τθc(xc)− τ

∑

i:i∈c
δci(xi)

)
, µi(xi; δ) ∝ exp

(
τθi(xi) + τ

∑

c:i∈c
δci(xi)

)

(8)
We denote the vector of all such marginals by µ(δ). For the dual variables δ that minimize F (δ)
it holds that µ(δ) are feasible (i.e., µ(δ) ∈ ML). However, we will also consider µ(δ) for non
optimal δ, and show how to obtain primal feasible approximations from µ(δ). These will be helpful
in obtaining primal convergence rates.

It is easy to see that: (∇F (δt))c,i,xi
= µi(xi; δ

t)− µc(xi; δt), where (with some abuse of notation)
we denote: µc(xi) =

∑
xc\i

µc(xc\i, xi). The elements of the gradient thus correspond to inconsis-
tency between the marginals µ(δt) (i.e., the degree to which they violate the constraints in Eq. (3)).
We shall make repeated use of this fact to link primal and dual variables.

3 Coordinate Minimization Algorithms

In this section we propose several coordinate minimization procedures for solving DMAPτ (Eq.
(7)). We first set some notation to define block coordinate minimization algorithms. Denote the
objective we want to minimize by F (δ) where δ corresponds to a set of N variables. Now define
S = {S1, . . . , SM} as a set of subsets, where each subset Si ⊆ {1, . . . , N} describes a coordinate
block. We will assume that Si ∩ Sj = ∅ for all i, j and that ∪iSi = {1, . . . , N}.
Block coordinate minimization algorithms work as follows: at each iteration, first set δt+1 = δt.
Next choose a block Si and set:

δt+1
Si

= arg min
δSi

Fi(δSi
; δt) (9)

where we use Fi(δSi
; δt) to denote the function F restricted to the variables δSi

and where all other
variables are set to their value in δt. In other words, at each iteration we fully optimize only over the
variables δSi

while fixing all other variables. We assume that the minimization step in Eq. (9) can
be solved in closed form, which is indeed the case for the updates we consider.

Regarding the choice of an update schedule, several options are available:

37

• Cyclic: Decide on a fixed order (e.g., S1, . . . , SM) and cycle through it.
• Stochastic: Draw an index i uniformly at random3 at each iteration and use the block Si.
• Greedy: Denote by ∇Si

F (δt) the gradient ∇F (δt) evaluated at coordinates Si only. The
greedy scheme is to choose Si that maximizes ‖∇Si

F (δt)‖∞. In other words, choose the
set of coordinates that correspond to maximum gradient of the function F . Intuitively this
corresponds to choosing the block that promises the maximal (local) decrease in objective.
Note that to find the best coordinate we presumably must process all sets Si to find the best
one. We will show later that this can be done rather efficiently in our case.

In our analysis, we shall focus on the Stochastic and Greedy cases, and analyze their rate of con-
vergence. The cyclic case is typically hard to analyze, with results only under multiple conditions
which do not hold here (e.g., see [17]).

Another consideration when designing coordinate minimization algorithms is the choice of block
size. One possible choice is all variables δci(·) (for a specific pair ci). This is the block chosen in the
max-sum-diffusion (MSD) algorithm (see [25] and [26] for non-smooth and smooth MSD). A larger
block that also facilitates closed form updates is the set of variables δ·i(·). Namely, all messages
into a variable i from c such that i ∈ c. We call this a star update. The update is used in [13] for the
non-smoothed dual (but the possibility of applying it to the smoothed version is mentioned).

For simplicity, we focus here only on the star update, but the derivation is similar for other choices.
To derive the star update around variable i, one needs to fix all variables except δ·i(·) and then set
the latter to minimize F (δ). Since F (δ) is differentiable this is pretty straightforward. The update
turns out to be:4

δt+1
ci (xi) = δtci(xi) +

1

τ
logµtc(xi)−

1

Ni + 1
· 1

τ
log

(
µti(xi) ·

∏

c′:i∈c′
µtc′(xi)

)
(10)

where Ni = |{c : i ∈ c}|. It is interesting to consider the improvement in F (δ) as a result of the
star update. It can be shown to be exactly:

F (δt)− F (δt+1) = −1

τ
log


∑

xi

(
µti(xi) ·

∏

c:i∈c
µtc(xi)

) 1
Ni+1



Ni+1

The RHS is known as Matusita’s divergence measure [11], and is a generalization of the Bhat-
tacharyya divergence to several distributions. Thus the improvement can be easily computed be-
fore actually applying the update and is directly related to how consistent the Ni + 1 distributions
µtc(xi), µ

t
i(xi) are. Recall that at the optimum they all agree as µ ∈ ML, and thus the expected

improvement is zero.

4 Dual Convergence Rate Analysis

We begin with the convergence rates of the dual F using greedy and random schemes described in
Section 3. In Section 5 we subsequently show how to obtain a primal feasible solution and how
the dual rates give rise to primal rates. Our analysis builds on the fact that we can lower bound the
improvement at each step, as a function of some norm of the block gradient.

4.1 Greedy block minimization

Theorem 4.1. Define B1 to be a constant such that ‖δt − δ∗‖1 ≤ B1 for all t. If coordinate
minimization of each block Si satisfies:

F (δt)− F (δt+1) ≥ 1

k
‖∇Si

F (δt)‖2∞ (11)

for all t, then for any ε > 0 after T =
kB2

1

ε iterations of the greedy algorithm, F (δT)− F (δ∗) ≤ ε.
3Non uniform schedules are also possible. We consider the uniform for simplicity.
4The update is presented here in additive form, there is an equivalent absolute form [21].

38

Proof. Using Hölder’s inequality we obtain the bound:

F (δt)− F (δ∗) ≤ ∇F (δt)>(δt − δ∗) ≤ ‖∇F (δt)‖∞ · ‖δt − δ∗‖1
(12)

Implying: ‖∇F (δt)‖∞ ≥ 1
B1

(F (δt)− F (δ∗)). Now, using the condition on the improvement and
the greedy nature of the update, we obtain a bound on the improvement:

F (δt)− F (δt+1) ≥ 1

k
‖∇Si

F (δt)‖2∞ =
1

k
‖∇F (δt)‖2∞

≥ 1

kB2
1

(
F (δt)− F (δ∗)

)2 ≥ 1

kB2
1

(
F (δt)− F (δ∗)

) (
F (δt+1)− F (δ∗)

)

Hence,

1

kB2
1

≤ F (δt)− F (δ∗)−
(
F (δt+1)− F (δ∗)

)

(F (δt)− F (δ∗)) (F (δt+1)− F (δ∗))
=

1

F (δt+1)− F (δ∗)
− 1

F (δt)− F (δ∗)
(13)

Summing over t we obtain:
T

kB2
1

≤ 1

F (δT)− F (δ∗)
− 1

F (δ0)− F (δ∗)
≤ 1

F (δT)− F (δ∗)
(14)

and the desired result follows.

4.2 Stochastic block minimization

Theorem 4.2. Define B2 to be a constant such that ‖δt − δ∗‖2 ≤ B2 for all t. If coordinate
minimization of each block Si satisfies:

F (δt)− F (δt+1) ≥ 1

k
‖∇Si

F (δt)‖22 (15)

for all t, then for any ε > 0 after T =
k|S|B2

2

ε iterations of the stochastic algorithm we have that
E[F (δT)]− F (δ∗) ≤ ε.5

The proof is similar to Nesterov’s analysis (see Theorem 1 in [16]). The proof in [16] relies on the
improvement condition in Eq. (15) and not on the precise nature of the update. Note that since the
cost of the update is roughly linear in the size of the block then this bound does not tell us which
block size is better (the cost of an update times the number of blocks is roughly constant).

4.3 Analysis of DMAPτ block minimization

We can now obtain rates for our coordinate minimization scheme for optimizingDMAPτ by finding
the k to be used in conditions Eq. (15) and Eq. (11). The result for the star update is given below.
Proposition 4.3. The star update for xi satisfies the conditions in Eqs. 15 and 11 with k = 4τNi.

This can be shown using Equation 2.4 in [14], which states that if Fi(δSi ; δ) (see Eq. (9)) has
Lipschitz constant Li then Eq. (15) is satisfied with k = 2Li. We can then use the fact that the
Lipschitz constant of a star block is at most 2τNi (this can be calculated as in [18]) to obtain the
result.6 To complete the analysis, it turns out that B1 and B2 can be bounded via a function of θ by
bounding ‖δ‖1 (see supplementary, Lemma 1.2). We proceed to discuss the implications of these
bounds.

4.4 Comparing the different schemes

The results we derived have several implications. First, we see that both stochastic and greedy
schemes achieve a rate of O(τε). This matches the known rates for regular (non-accelerated) gra-
dient descent on functions with Lipschitz continuous gradient (e.g., see [14]), although in practice
coordinate minimization is often much faster.

5Expectation is taken with respect to the randomization of blocks.
6We also provide a direct proof in the supplementary, Section 2.

39

The main difference between the greedy and stochastic rates is that the factor |S| (the number of
blocks) does not appear in the greedy rate, and does appear in the stochastic one. This can have a
considerable effect since |S| is either the number of variables n (in the star update) or the number
of factors |C| (in MPLP). Both can be significant (e.g., |C| is the number of edges in a pairwise
MRF model). The greedy algorithm does pay a price for this advantage, since it has to find the
optimal block to update at each iteration. However, for the problem we study here this can be
done much more efficiently using a priority queue. To see this, consider the star update. A change
in the variables δ·i(·) will only affect the blocks that correspond to variables j that are in c such
that i ∈ c. In many cases this is small (e.g., low degree pairwise MRFs) and thus we will only
have to change the priority queue a small number of times, and this cost would be negligible when
using a Fibonacci heap for example.7 Indeed, our empirical results show that the greedy algorithm
consistently outperforms the stochastic one (see Section 6).

5 Primal convergence

Thus far we have considered only dual variables. However, it is often important to recover the primal
variables. We therefore focus on extracting primal feasible solutions from current δ, and characterize
the degree of primal optimality and associated rates. The primal variables µ(δ) (see Eq. (8)) need
not be feasible in the sense that the consistency constraints in Eq. (3) are not necessarily satisfied.
This is true also for other approaches to recovering primal variables from the dual, such as averaging
subgradients when using subgradient descent (see, e.g., [21]).

We propose a simple two-step algorithm for transforming any dual variables δ into primal feasible
variables µ̃(δ) ∈ ML. The resulting µ̃(δ) will also be shown to converge to the optimal primal
solution in Section 5.1. The procedure is described in Algorithm 1 below.

Algorithm 1 Mapping to feasible primal solution

Step 1: Make marginals consistent.

For all i do: µ̄i(xi) = 1
1+

∑
c:i∈c

1
|Xc\i|

(
µi(xi) +

∑
c:i∈c

1
|Xc\i|µc(xi)

)

For all c do: µ̄c(xc) = µc(xc)−
∑
i:i∈c

1
|Xc\i| (µc(xi)− µ̄i(xi))

Step 2: Make marginals non-negative.
λ = 0
for c ∈ C, xc do

if µ̄c(xc) < 0 then

λ = max

{
λ, −µ̄c(xc)

−µ̄c(xc)+ 1
|Xc|

}

else if µ̄c(xc) > 1 then

λ = max

{
λ, µ̄c(xc)−1

µ̄c(xc)− 1
|Xc|

}

end if
end for
for ` = 1, . . . , n; c ∈ C do

µ̃`(x`) = (1− λ)µ̄`(x`) + λ 1
|X`|

end for

Importantly, all steps consist of cheap elementary local calculations in contrast to other methods pre-
viously proposed for this task (compare to [18, 27]). The first step performs a Euclidian projection
of µ(δ) to consistent marginals µ̄. Specifically, it solves:

min
µ̄

1

2
‖µ(δ)− µ̄‖2 , s.t. µ̄c(xi) = µ̄i(xi), for all c, i ∈ c, xi ,

∑

i

µ̄i(xi) = 1, for all i

Note that we did not include non-negativity constraints above, so the projection might result in neg-
ative µ̄. In the second step we “pull” µ̄ back into the feasible regime by taking a convex combination

7This was also used in the residual belief propagation approach [4], which however is less theoretically
justified than what we propose here.

40

with the uniform distribution u (see [3] for a related approach). In particular, this step solves the
simple problem of finding the smallest λ ∈ [0, 1] such that 0 ≤ µ̃ ≤ 1 (where µ̃ = (1− λ)µ̄+ λu).
Since this step interpolates between two distributions that satisfy consistency and normalization
constraints, µ̃ will be in the local polytopeML.

5.1 Primal convergence rate

Now that we have a procedure for obtaining a primal solution we analyze the corresponding conver-
gence rate. First, we show that if we have δ for which ‖∇F (δ)‖∞ ≤ ε then µ̃(δ) (after Algorithm
1) is an O(ε) primal optimal solution.
Theorem 5.1. Denote by P ∗τ the optimum of the smoothed primal PMAPτ . For any set of dual
variables δ, and any ε ∈ R(τ) (see supp. for definition of R(τ)) it holds that if ‖∇F (δ)‖∞ ≤ ε then
P ∗τ − Pτ (µ̃(δ)) ≤ C0ε. The constant C0 depends only on the parameters θ and is independent of τ .

The proof is given in the supplementary file (Section 1). The key idea is to break F (δ)− Pτ (µ̃(δ))
into components, and show that each component is upper bounded byO(ε). The rangeR(τ) consists
of ε ≥ O(1

τ) and ε ≤ O(e−τ). As we show in the supplementary this range is large enough to
guarantee any desired accuracy in the non-smoothed primal. We can now translate dual rates into
primal rates. This can be done via the following well known lemma:
Lemma 5.2. Any convex function F with Lipschitz continuous gradient and Lipschitz constant L
satisfies ‖∇F (δ)‖22 ≤ 2L (F (δ)− F (δ∗)).

These results together with the fact that ‖∇F (δ)‖22 ≥ ‖∇F (δ)‖2∞, and the Lipschitz constant of
F (δ) is O(τ), lead to the following theorem.
Theorem 5.3. Given any algorithm for optimizing DMAPτ and ε ∈ R(τ), if the algorithn is
guaranteed to achieve F (δt) − F (δ∗) ≤ ε after O(g(ε)) iterations, then it is guaranteed to be ε
primal optimal, i.e., P ∗τ − Pτ (µ̃(δt)) ≤ ε after O(g(ε

2

τ)) iterations.8

The theorem lets us directly translate dual convergence rates into primal ones. Note that it applies
to any algorithm for DMAPτ (not only coordinate minimization), and the only property of the
algorithm used in the proof is F (δt) ≤ F (0) for all t. Put in the context of our previous results, any
algorithm that achieves F (δt)−F (δ∗) ≤ ε in t = O(τ/ε) iterations, then it is guaranteed to achieve
P ∗τ − Pτ (µ̃(δt

′
)) ≤ ε in t′ = O(τ2/ε2) iterations.

6 Experiments

In this section we evaluate coordinate minimization algorithms on a MAP problem, and compare
them to state-of-the-art baselines. Specifically, we compare the running time of greedy coordinate
minimization, stochastic coordinate minimization, full gradient descent, and FISTA – an accelerated
gradient method [1] (details on the gradient-based algorithms are provided in the supplementary,
Section 3). Gradient descent is known to converge in O

(
1
ε

)
iterations while FISTA converges

in O
(

1√
ε

)
iterations [1]. We compare the performance of the algorithms on protein side-chain

prediction problems from the dataset of Yanover et al. [28]. These problems involve finding the 3D
configuration of rotamers given the backbone structure of a protein. The problems are modeled by
singleton and pairwise factors and can be posed as finding a MAP assignment for the given model.

Figure 1(a) shows the objective value for each algorithm over time. We first notice that the greedy
algorithm converges faster than the stochastic one. This is in agreement with our theoretical analysis.
Second, we observe that the coordinate minimization algorithms are competitive with the acceler-
ated gradient method FISTA and are much faster than the gradient method. Third, as Theorem 5.3
predicts, primal convergence is slower than dual convergence (notice the logarithmic timescale).
Finally, we can see that better convergence of the dual objective corresponds to better convergence
of the primal objective, in both fractional and integral domains. In our experiments the quality of
the decoded integral solution (dashed lines) significantly exceeds that of the fractional solution. Al-
though sometimes a fractional solution can be useful in itself, this suggests that if only an integral
solution is sought then it could be enough to decode directly from the dual variables.

8We omit constants not depending on τ and ε.

41

(a)

10
−2

10
0

10
2

10
4

10
6

−50

0

50

100

150

200

250

Runtime (secs)

O
bj

ec
tiv

e

Greedy
Stochastic
FISTA
Gradient (b) talg/tgreedy

Greedy 1
Stochastic 8.6± 0.6
FISTA 814.2± 38.1
Gradient 13849.8± 6086.5

Figure 1: Comparison of coordinate minimization, gradient descent, and the accelerated gradient
algorithms on protein side-chain prediction task. Figure (a) shows a typical run of the algorithms.
For each algorithm the dual objective of Eq. (6) is plotted as a function of execution time. The value
(Eq. (4)) of the feasible primal solution of Algorithm 1 is also shown (lower solid line), as well as
the objective (Eq. (1)) of the best decoded integer solution (dashed line; those are decoded directly
from the dual variables δ). Table (b) shows the ratio of runtime of each algorithm w.r.t. the greedy
algorithm. The mean ratio over the proteins in the dataset is shown followed by standard error.

The table in Figure 1(b) shows overall statistics for the proteins in the dataset. Here we run each
algorithm until the duality gap drops bellow a fixed desired precision (ε = 0.1) and compare the
total runtime. The table presents the ratio of runtime of each algorithm w.r.t. the greedy algorithm
(talg/tgreedy). These results are consistent with the example in Figure 1(a).

7 Discussion

We presented the first convergence rate analysis of dual coordinate minimization algorithms on
MAP-LP relaxations. We also showed how such dual iterates can be turned into primal feasible
iterates and analyzed the rate with which these primal iterates converge to the primal optimum. The
primal mapping is of considerable practical value, as it allows us to monitor the distance between the
upper (dual) and lower (primal) bounds on the optimum and use this as a stopping criterion. Note
that this cannot be done without a primal feasible solution.9

The overall rates we obtain are of the order O(τε) for the DMAPτ problem. If one requires an ε
accurate solution for PMAP , then τ needs to be set to O(1

ε) (see Eq. (5)) and the overall rate is
O(1

ε2) in the dual. As noted in [8, 18], a faster rate of O(1
ε) may be obtained using accelerated

methods such as Nesterov’s [15] or FISTA [1]. However, these also have an extra factor of N which
does not appear in the greedy rate. This could partially explain the excellent performance of the
greedy scheme when compared to FISTA (see Section 6).

Our analysis also highlights the advantage of using greedy block choice for MAP problems. The
advantage comes from the fact that the choice of block to update is quite efficient since its cost is of
the order of the other computations required by the algorithm. This can be viewed as a theoretical
reinforcement of selective scheduling algorithms such as Residual Belief Propagation [4].

Many interesting questions still remain to be answered. How should one choose between different
block updates (e.g., MSD vs star)? What are lower bounds on rates? Can we use acceleration as in
[15] to obtain better rates? What is the effect of adaptive smoothing (see [19]) on rates? We plan to
address these in future work.

Acknowledgments: This work was supported by BSF grant 2008303. Ofer Meshi is a recipient of the Google
Europe Fellowship in Machine Learning, and this research is supported in part by this Google Fellowship.

9An alternative commonly used progress criterion is to decode an integral solution from the dual variables,
and see if its value is close to the dual upper bound. However, this will only work if PMAP has an integral
solution and we have managed to decode it.

42

References
[1] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems.

SIAM J. Img. Sci., 2(1):183–202, Mar. 2009.
[2] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. In Proc.

IEEE Conf. Comput. Vision Pattern Recog., 1999.
[3] D. Burshtein. Iterative approximate linear programming decoding of ldpc codes with linear complexity.

IEEE Transactions on Information Theory, 55(11):4835–4859, 2009.
[4] G. Elidan, I. Mcgraw, and D. Koller. Residual belief propagation: informed scheduling for asynchronous

message passing. In UAI, 2006.
[5] A. Globerson and T. Jaakkola. Fixing max-product: Convergent message passing algorithms for MAP

LP-relaxations. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, NIPS 20. MIT Press, 2008.
[6] M. Guignard and S. Kim. Lagrangean decomposition: A model yielding stronger Lagrangean bounds.

Mathematical Programming, 39(2):215–228, 1987.
[7] T. Hazan and A. Shashua. Norm-product belief propagation: Primal-dual message-passing for approxi-

mate inference. IEEE Transactions on Information Theory, 56(12):6294–6316, 2010.
[8] V. Jojic, S. Gould, and D. Koller. Fast and smooth: Accelerated dual decomposition for MAP inference.

In Proceedings of International Conference on Machine Learning (ICML), 2010.
[9] V. Kolmogorov. Convergent tree-reweighted message passing for energy minimization. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 28(10):1568–1583, 2006.
[10] A. L. Martins, M. A. T. Figueiredo, P. M. Q. Aguiar, N. A. Smith, and E. P. Xing. An augmented

lagrangian approach to constrained map inference. In ICML, pages 169–176, 2011.
[11] K. Matusita. On the notion of affinity of several distributions and some of its applications. Annals of the

Institute of Statistical Mathematics, 19:181–192, 1967. 10.1007/BF02911675.
[12] O. Meshi and A. Globerson. An alternating direction method for dual map lp relaxation. In ECML PKDD,

pages 470–483. Springer-Verlag, 2011.
[13] O. Meshi, D. Sontag, T. Jaakkola, and A. Globerson. Learning efficiently with approximate inference via

dual losses. In ICML, pages 783–790, New York, NY, USA, 2010. ACM.
[14] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course, volume 87. Kluwer Aca-

demic Publishers, 2004.
[15] Y. Nesterov. Smooth minimization of non-smooth functions. Math. Prog., 103(1):127–152, May 2005.
[16] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. Core dis-

cussion papers, Universit catholique de Louvain, 2010.
[17] A. Saha and A. Tewari. On the finite time convergence of cyclic coordinate descent methods, 2010.

preprint arXiv:1005.2146.
[18] B. Savchynskyy, S. Schmidt, J. Kappes, and C. Schnorr. A study of Nesterov’s scheme for lagrangian

decomposition and map labeling. CVPR, 2011.
[19] B. Savchynskyy, S. Schmidt, J. H. Kappes, and C. Schnörr. Efficient mrf energy minimization via adaptive

diminishing smoothing. In UAI, 2012.
[20] S. Shalev-Shwartz and A. Tewari. Stochastic methods for l1-regularized loss minimization. J. Mach.

Learn. Res., 12:1865–1892, July 2011.
[21] D. Sontag, A. Globerson, and T. Jaakkola. Introduction to dual decomposition for inference. In Optimiza-

tion for Machine Learning, pages 219–254. MIT Press, 2011.
[22] P. Tseng. Convergence of a block coordinate descent method for nondifferentiable minimization 1. Jour-

nal of Optimization Theory and Applications, 109(3):475–494, 2001.
[23] M. Wainwright, T. Jaakkola, and A. Willsky. MAP estimation via agreement on trees: message-passing

and linear programming. IEEE Transactions on Information Theory, 51(11):3697–3717, 2005.
[24] M. Wainwright and M. I. Jordan. Graphical Models, Exponential Families, and Variational Inference.

Now Publishers Inc., Hanover, MA, USA, 2008.
[25] T. Werner. A linear programming approach to max-sum problem: A review. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 29(7):1165–1179, 2007.
[26] T. Werner. Revisiting the decomposition approach to inference in exponential families and graphical

models. Technical Report CTU-CMP-2009-06, Czech Technical University, 2009.
[27] T. Werner. How to compute primal solution from dual one in MAP inference in MRF? In Control Systems

and Computers (special issue on Optimal Labeling Problems in Structual Pattern Recognition), 2011.
[28] C. Yanover, T. Meltzer, and Y. Weiss. Linear programming relaxations and belief propagation – an

empirical study. Journal of Machine Learning Research, 7:1887–1907, 2006.

43

Supplementary material for: Convergence Rate
Analysis of MAP Coordinate Minimization

Algorithms

Ofer Meshi
meshi@cs.huji.ac.il

Tommi Jaakkola
tommi@csail.mit.edu

Amir Globerson
gamir@cs.huji.ac.il

1 Primal Convergence Rate

For clarity, we define

µ · θ =
∑

i

∑

xi

µi(xi)θi(xi) +
∑

c

∑

xc

µc(xc)θc(xc) (1)

H(µ) =
∑

i

H(µi(·)) +
∑

c

H(µc(·)) (2)

Theorem 1.1. Denote by P ∗τ the optimum of the smoothed primal PMAPτ . Then for any set of
dual variables δ, if ‖∇F (δ)‖∞ ≤ ε ∈ R(τ) (for a range of values R(τ)), then P ∗τ − Pτ (µ̃) ≤ C0ε,
where C0 is a constant that depends only on the parameters θ, independent of τ , and µ̃ represents
the set of locally consistent marginals from Algorithm 1 in response to µ = µ(δ).

Proof. ‖∇F (δ)‖∞ ≤ ε guarantees that µ = µ(δ) are ε-consistent in the sense that |µi(xi) −
µc(xi)| ≤ ε for all c, i ∈ c and xi. Algorithm 1 maps any such ε-consistent µ to locally consistent
marginals µ̃ such that

|µi(xi)− µ̃i(xi)| ≤ 3εNmax, |µc(xc)− µ̃c(xc)| ≤ 2εN2
max, (3)

for all i, xi, c, and xc, where Nmax = max{maxiNi,maxcNc}. In other words, ‖µ− µ̃‖∞ ≤ Kε.
This can be easily derived from the update in Algorithm 1 and the fact that |µi(xi)− µc(xi)| ≤ ε.
Next, it can be shown that F (δ) = Pτ (µ(δ)). And it follows that P ∗τ ≤ F (δ) ≤ Pτ (µ), where the
first inequality follows from weak duality.

Thus we have:

P ∗τ ≤ Pτ (µ) = µ · θ +
1

τ
H(µ) = (µ̃+ µ− µ̃) · θ +

1

τ
H(µ̃) +

1

τ
(H(µ)−H(µ̃)) (4)

≤ Pτ (µ̃) + ‖µ− µ̃‖∞‖θ‖1 +
1

τ
(H(µ)−H(µ̃)) (5)

≤ Pτ (µ̃) +Kε‖θ‖1 +
1

τ
(H(µ)−H(µ̃)) (6)

Where we have used Holder’s inequality for the first inequality and Eq. (3) for the second inequality.

It remains to bound 1
τ (H(µ) − H(µ̃)) by a linear function of ε. We note that it is impossible to

achieve such a bound in general (e.g., see [1]). However, since the entropy is bounded the difference
is also bounded. Now, if we also restrict ε to be large enough ε ≥ 1

τ , then we obtain the bound:

1

τ
(H(µ)−H(µ̃)) ≤ 1

τ
Hmax ≤ εHmax (7)

We thus obtain that Eq. (6) is of the form Pτ (µ̃) +O(ε) and the result follows.

44

For the high-accuracy regime (small ε) we provide a similar bound for the case ε ≤ O(e−τ). Let
v = µ− µ̃, so we have:

H(µ)−H(µ̃) = H(µ̃+ v)−H(µ̃)

≤ H(µ̃) +∇H(µ̃)>v −H(µ̃)

= −
∑

i

∑

xi

vi(xi) log µ̃i(xi)−
∑

c

∑

xc

vc(xc) log µ̃c(xc)

where the inequality follows from the concavity of entropy, and the second equality is true because∑
xi
vi(xi) = 0 and similarly for vc(xc). Now, from the definition of µi(xi; δ) we obtain the

following bound:

µi(xi; δ) =
1

Zi
eτ(θi(xi)+

∑
c:i∈c δci(xi)) ≥ 1

|Xi|
e−2τ(‖θi‖∞+‖δi‖1)

We will show below (Lemma 1.2) that ‖δi‖1 remains bounded by a constant A independent of τ .
Thus we can write:

µi(xi; δ) ≥
1

|Xmax|
e−2τ(‖θi‖∞+A)

where |Xmax| = max{maxi |Xi|,maxc |Xc|}. We define γ0 = 1
(2|Xmax|)τ e

−2τ(‖θi‖∞+A), and thus
for any τ ≥ 1 we have that µi(xi; δ) is bounded away from zero by 2τγ0. Since we assume that
ε ≤ γ0, we can bound µ̃ from below by γ0. As a result, since ‖vi‖∞ ≤ Kε,

−1

τ

∑

i

∑

xi

vi(xi) log µ̃i(xi) ≤ −1

τ
(log γ0)|Xi|Kε = (2(‖θi‖∞ +A) + log(2|Xmax|))|Xi|Kε

and similarly for the other entropy terms.

Again, we obtain that Eq. (6) is of the form Pτ (µ̃) +O(ε) and the result holds.

In conclusion, we have shown that if ‖∇F (δ)‖∞ ≤ ε, then for large values ε ≥ 1
τ and small values

ε ≤ 1
(2|Xmax|)τ e

−2τ(‖θi‖∞+A) we have that: P ∗τ − Pτ (µ̃) ≤ O(ε). Our analysis does not cover
values in the middle range, but we next argue that the covered range is useful.

The allowed range of ε (namely ε ∈ R(τ)) seems like a restriction. However, as we argue next
taking ε ≥ 1

τ (i.e., ε ∈ R(τ)) is all we need in order to obtain a desired accuracy in the non-
smoothed primal.

Suppose one wants to solve the original problem PMAP to within accuracy ε′. There are two
sources of inaccuracy, namely the smoothing and suboptimality. To ensure the desired accuracy, we
require that P ∗τ − P ∗ ≤ αε′ and likewise Pτ (µ̃) − P ∗τ ≤ (1 − α)ε′. In other words, we allow αε′

suboptimality due to smoothing and (1− α)ε′ due to suboptimality.

For the first condition, it is enough to set the smoothing constant as: τ ≥ Hmax

αε′ . The second

condition will be satisfied as long as we use an ε such that: ε ≤ (1−α)ε′
(K‖θ‖1+Hmax)

(see Eq. (6) and Eq.

(7)). If we choose α = Hmax

K‖θ‖1+2Hmax
we obtain that this ε satisfies ε ≥ 1

τ and therefore ε ∈ R(τ).

Lemma 1.2. Assume δ is a set of dual variables satisfying F (δ) ≤ F (0) where F (0) is the dual
value corresponding to δ = 0. We can require

∑
c:i∈c δci(xi) = 0 since F (δ) is invariant to constant

shifts. Then it holds that: ∑

c,i,xi

|δci(xi)| = ‖δ‖1 ≤ A (8)

where

A = 2 max
i
|Xi|

(
F (0) +

∑

i

max
xi
|θi(xi)|+

∑

c

max
xc
|θc(xc)|

)
(9)

45

Proof. To show this, we bound

max
δ

∑

c,i,xi

rci(xi)δci(xi)

s.t. F (δ) ≤ F (0) (10)
∑

c:i∈c
δci(xi) = 0

For any rci(xi) ∈ [−1, 1]. The dual problem turns out to be:
min
µ,γ,α

α(F (0)− ∑
c,xc

µc(xc)θc(xc)−
∑
i,xi

µi(xi)θi(xi)−
∑
i

H(µi(xi))−
∑
c
H(µc(xc))

s.t. µi(xi)− µc(xi) = rci(xi)−γci
α

µi(xi) ≥ 0, µc(xc) ≥ 0∑
xi
µi(xi) = 1,

∑
xc
µc(xc) = 1

α ≥ 0

(11)

We will next upper bound this minimum with a constant independent of r and thus obtain an upper
bound that holds for all r. To do this, we will present a feasible assignment to the variables α, µ, γ
above and use the value they attain. First, we set α = α̂ = 2 maxi |Xi|. Next, we note that for
this α̂, the objective of Eq. (11) is upper bounded by A (as defined in Eq. (9)). Thus we only need
to show that α̂ = 2 maxi |Xi| is indeed a feasible value, and this will be done by showing feasible
values for the other variables denoted by µ̂, γ̂. First, we set:

µ̂i(xi) =
1

|Xi|

and:
γ̂ci =

1

|Xi|
∑

xi

rci(xi) (12)

Next, we define νci(xi) (for all c, i, xi) as follows:

νci(xi) = µ̂i(xi)−
rci(xi)− γ̂ci

α̂
(13)

It can easily be shown that νci(xi) is a valid distribution over xi (i.e., non negative and sums to one).
Thus we can define:

µ̂c(xc) =
∏

i∈c
νci(xi) (14)

Since µ̂c(xc) is a product of distributions over the variables in c, it is also a valid distribution. Thus
it follows that all constraints in Eq. (11) are satisfied by α̂, γ̂, µ̂, and the desired bound holds.

2 Star Improvement Bound

We prove the following proposition:
Proposition 2.1. The star update for variable xi satisfies:

F (δt)− F (δt+1) ≥ 1

4τNi
‖∇SiF (δt)‖22

Proof. First, we know that the improvement associated with the star update for variable xi is:

F (δt)− F (δt+1) = −1

τ
log


∑

xi

(
µti(xi) ·

∏

c:i∈c
µtc(xi)

) 1
Ni+1



Ni+1

Therefore, for any probability distributions p, q(1), ..., q(m) we want to prove that:

∑

i

(
pi ·
∏

k

q
(k)
i

) 1
m+1



m+1

≤ exp

(
− 1

4m

∑

k

∑

i

(
pi − q(k)i

)2
)

46

Lemma 2.2. For any probability distributions p, q(1), ..., q(m) the following holds:


∑

i

(
pi ·
∏

k

q
(k)
i

) 1
m+1



m+1

≤ 1− 1

4m

∑

k

(∑

i

|pi − q(k)i |
)2

Proof.

∑

k

(∑

i

|pi − q(k)i |
)2

≤
∑

k

(∑

i

(
√
pi −

√
q
(k)
i)2 ·

∑

i

(
√
pi +

√
q
(k)
i)2

)

=
∑

k


4− 4

(∑

i

√
piq

(k)
i

)2



= 4m− 4
∑

k

(∑

i

√
piq

(k)
i

)2

≤ 4m− 4
∑

k


∑

i

(
pi ·
∏

k′

q
(k′)
i

) 1
m+1



m+1

= 4m− 4m


∑

i

(
pi ·
∏

k′

q
(k′)
i

) 1
m+1



m+1

⇒


∑

i

(
pi ·
∏

k′

q
(k′)
i

) 1
m+1



m+1

≤ 1− 1

4m

∑

k

(∑

i

|pi − q(k)i |
)2

For the first transition see [3] (also in [2] p. 57). The second inequality follows from Theorem 1 in
[4].

Using Lemma 2.2 the desired result follows since:


∑

i

(
pi ·
∏

k

q
(k)
i

) 1
m+1



m+1

≤ 1− 1

4m

∑

k

(∑

i

|pi − q(k)i |
)2

≤ 1− 1

4m

∑

k

∑

i

(
pi − q(k)i

)2

≤ exp

(
− 1

4m

∑

k

∑

i

(
pi − q(k)i

)2
)

3 Gradient-Based Algorithms

In this section we describe the gradient descent and FISTA algorithms used in the experiments.

47

Algorithm 1: Gradient descent

1: for t = 1, . . . do
2: δt+1 = δt − 1

L∇F (δt)
3: end for

Algorithm 2: FISTA

1: δ̄1 = δ0, α1 = 1
2: for t = 1, . . . do
3: δt = δ̄t − 1

L∇F (δ̄t)

4: αt+1 =
1+
√

1+4(αt)2

2

5: δ̄t+1 = δt +
(
αt−1
αt+1

) (
δt − δt−1

)

6: end for

References
[1] D. Berend and A. Kontorovich. A reverse pinsker inequality. CoRR, abs/1206.6544, 2012.
[2] T. Kailath. The divergence and bhattacharyya distance measures in signal selection. Communi-

cation Technology, IEEE Transactions on, 15(1):52 –60, february 1967.
[3] C. Kraft. Some conditions for consistency and uniform consistency of statistical procedures.

In Univ. of California Publ. in Statistics, vol. 1, pages 125–142. Univ. of California, Berkeley,
1955.

[4] K. Matusita. On the notion of affinity of several distributions and some of its applications.
Annals of the Institute of Statistical Mathematics, 19:181–192, 1967. 10.1007/BF02911675.

48

2.3 Learning Efficiently with Approximate Inference via

Dual Losses

49

Learning Efficiently with Approximate Inference via Dual Losses

Ofer Meshi meshi@cs.huji.ac.il
David Sontag dsontag@csail.mit.edu
Tommi Jaakkola tommi@csail.mit.edu
Amir Globerson gamir@cs.huji.ac.il

Abstract

Many structured prediction tasks involve
complex models where inference is computa-
tionally intractable, but where it can be well
approximated using a linear programming
relaxation. Previous approaches for learn-
ing for structured prediction (e.g., cutting-
plane, subgradient methods, perceptron) re-
peatedly make predictions for some of the
data points. These approaches are computa-
tionally demanding because each prediction
involves solving a linear program to optimal-
ity. We present a scalable algorithm for learn-
ing for structured prediction. The main idea
is to instead solve the dual of the structured
prediction loss. We formulate the learning
task as a convex minimization over both the
weights and the dual variables corresponding
to each data point. As a result, we can be-
gin to optimize the weights even before com-
pletely solving any of the individual predic-
tion problems. We show how the dual vari-
ables can be efficiently optimized using co-
ordinate descent. Our algorithm is compet-
itive with state-of-the-art methods such as
stochastic subgradient and cutting-plane.

1. Introduction

In many prediction problems we are interested in pre-
dicting multiple labels y1, . . . , yd from an input x
rather than a single label as in multiclass prediction.
This setting is referred to as structured prediction, and
has found many applications in various domains, from
natural language processing to computational biology
(Bakir et al., 2007). A naive approach to the problem
is to predict each label yi individually, ignoring possi-
ble correlations between the labels. A better approach

Appearing in Proceedings of the 27 th International Confer-
ence on Machine Learning, Haifa, Israel, 2010. Copyright
2010 by the author(s)/owner(s).

would be to explicitly model the interactions between
the labels, which then results in the labels being jointly
predicted. Structured prediction models do this by us-
ing classifiers of the form y = arg maxŷw · f(x, ŷ),
where f(x,y) is a given function and w are weights to
be learned from data.

Much of the early work on structured prediction (Laf-
ferty et al., 2001; Taskar et al., 2004) focused on
the case where prediction (i.e., maximization over y)
could be done using efficient combinatorial algorithms
such as dynamic programming or maximum-weight
matching. However, this restricted the types of in-
teractions that these models were capable of captur-
ing to tractable structures such as tree graphs. Re-
cent work on graphical models has shown that even
when the maximization over y is not known a priori
to be tractable, linear programming (LP) relaxations
often succeed at finding the true maximum, even giv-
ing certificates of optimality (Sontag et al., 2008).
This strongly motivates learning structured prediction
models which use LP relaxations for prediction, and
indeed several recent works show that this yields em-
pirically effective results (Finley and Joachims, 2008;
Martins et al., 2009).

Learning with large scale data necessitates efficient al-
gorithms for finding the optimal weight vector w. Al-
though several such algorithms have been proposed for
structured prediction, these have primarily focused on
settings where the maximization over y is performed
using combinatorial optimization. Some examples are
structured perceptron (Collins, 2002), stochastic sub-
gradient (Ratliff et al., 2007), extra-gradient (Taskar
et al., 2006), and cutting-plane algorithms (Joachims
et al., 2009). All of these approaches require making
a prediction at every iteration. When LP relaxations
are used, this corresponds to repeatedly solving an LP
to optimality, significantly reducing the scalability of
the overall learning algorithm.

These earlier approaches have two potential sources of
inefficiency. First, it is likely not necessary to solve
the LPs to optimality to obtain an approximately cor-

50

Learning Efficiently with Approximate Inference via Dual Losses

rect update for the weights, particularly in the early
iterations of the algorithms. Second, these approaches
typically re-solve the LPs from scratch at each iter-
ation. However, particularly in later iterations when
there are only small changes to the weight vector, we
would like to be able to “warm start” using the previ-
ous iteration’s solution to the LP for a data point.

In this paper we introduce a novel method for learn-
ing structured prediction models using LP relaxations.
Whereas previous learning approaches involved re-
peatedly solving the computationally intensive LP
problem per data point, our new formulation replaces
the standard LP with its dual. This turns the entire
problem into a minimization over the weights w and
auxiliary dual variables δ. The latter can be updated
via a simple closed form message passing scheme that
decreases the overall objective at each iteration. We
combine these with stochastic subgradient updates on
w and thus our scheme has an online flavor similar to
Shalev-Shwartz et al. (2007).

We show empirically that avoiding the LP solution in-
deed results in much improved convergence time when
compared to previous methods. This effect becomes
more pronounced the larger the label space is, and the
method is thus expected to enhance performance on
many large scale structured prediction problems.

2. Problem Formulation

We begin by reviewing the maximum margin Markov
network formulation (M3N) (Taskar et al., 2004), and
its LP relaxation. We consider a labelled dataset
{x(m),y(m)}ni=1 containing n samples. We seek a func-
tion h(x;w) that will predict y from x. It is assumed
to be of the form

h(x;w) = arg max
y
w · f(x,y) (1)

where f(x,y), the feature vector, is given by a fixed,
known, vector-valued function of both x and y. In
what follows we assume that y is multivariate and has
d variables denoted by y1, . . . , yd. Furthermore, f is
assumed to decompose into pairwise and singleton fac-
tors on y, so that:

w · f(x,y) =
∑

ij∈E
fij(yi, yj ,x) ·wij +

∑

i

fi(yi,x) ·wi

(2)
where E is a set of edges in a graph G, and the vectors
wij ,wi are the elements of the weight vector corre-
sponding to each one of the factors (some weights may
be shared across edges).1

1We use factors of size one and two for notational con-
venience only; our approach generalizes to larger factors.

In M3N the weight vector is found by minimizing the
following regularized hinge loss:

min
w

1

2
‖w‖2 +

C

n

∑

m

`h(x(m),y(m);w) (3)

where:

`h(x(m),y(m);w) = max
y
w ·∆f (m)(y) + e(m)(y) (4)

Here e(m)(y) is the discrepancy between the true la-
belling y(m) and y, and is assumed to decompose as

e(m)(y) =
∑
i e

(m)
i (y).2 We also define ∆f (m)(y) =

f(x(m),y)− f(x(m),y(m)).

The problems in Eq. 1 and Eq. 4 involve finding an
assignment y that maximizes a function of the form∑
ij θij(yi, yj) +

∑
i θi(yi). This problem, commonly

referred to as the MAP problem in the graphical mod-
els literature, is intractable (NP hard) for general
graphs G, and tractable only in isolated cases such as
tree structured graphs. However, linear programming
(LP) relaxations are often effective as approximations,
and have been incorporated into M3N by several au-
thors, which we review further in Section 4.

In MAP-LP relaxations one replaces maximization
over y of

∑
ij θij(yi, yj) +

∑
i θi(yi) with the following

linear program:3 maxµ∈ML(G) µ·θ, whereML(G) en-
forces consistency between the pairwise distributions
µij(yi, yj):

ML(G) =




µ ≥ 0

∣∣∣∣∣∣∣∣∣

∑
yj

µij(yi, yj) = µi(yi)
∑
yi

µij(yi, yj) = µj(yj)
∑
yi

µi(yi) = 1





. (5)

To introduce the LP relaxation into M3N , we use
the notation θ(f, e,w) to denote the vector of param-
eters, where the pairwise elements are θij(yi, yj) =
fij(yi, yj) ·wij and the singleton elements are θi(yi) =

fi(yi) · wi + ei(yi). We shall also use: θ(m)(w) =
θ(∆f (m), e(m),w). Finally, we will denote the single-

ton and pairwise elements of θ(m)(w) by θ(m)(yi;w)

and θ(m)(yi, yj ;w) respectively.

We then have the following approximation of the loss
`h from Eq. 4:

ˆ̀
h(x(m),y(m);w) = max

µ∈ML(G)
µ · θ(m)(w) (6)

2The loss could also be defined along the edges, but we
omit this for notational convenience.

3We use the notation µ · θ =P
ij∈E

P
yi,yj

µij(yi, yj)θij(yi, yj) +
P

i

P
yi
µi(yi)θi(yi)

51

Learning Efficiently with Approximate Inference via Dual Losses

It is straightforward to show that the relaxed loss ˆ̀
h

provides an upper bound on the true loss `h (Finley
and Joachims, 2008).

The final classifier is obtained by solving the maxi-
mization arg maxµ∈ML(G) µ · θ(f, 0,w) and returning
yi = arg maxŷi µi(ŷi). To summarize the above, we
are interested in solving the optimization problem:

min
w

1

2
‖w‖2 +

C

n

∑

m

max
µ∈ML(G)

µ · θ(m)(w) (7)

3. Optimization via Dual Losses

In this section we present our algorithm for solving
the optimization problem in Eq. 7. We begin by us-
ing convex duality to replace the internal maximiza-
tion in Eq. 7 with minimization of a piecewise-linear
objective. Numerous duals have been suggested for
the MAP LP relaxation problem (e.g., Globerson and
Jaakkola, 2008; Komodakis et al., 2007; Werner, 2007).
We use the formulation discussed in Werner (2007).
The dual of max

µ∈ML(G)
µ · θ is thus:

minδ
∑
i

maxyi

[
θi(yi) +

∑
k∈N(i) δki(yi)

]
+

∑
ij

maxyi,yj

[
θij(yi, yj)− δij(yj)− δji(yi)

]

(8)
Denote the objective of the above dual by g(δ;θ).
Then we have that Eq. 7 equals:

min
w,δ(1),...,δ(n)

1

2
‖w‖2 +

C

n

∑

m

g(δ(m);θ(m)(w)), (9)

where we now minimize over the dual variables
δ(m) in addition to the weights w. Because the
dual always upper bounds the primal, the function
g(δ(m);θ(m)(w)) is a convex upper bound on the re-

laxed loss ˆ̀
h(x(m),y(m);w) for every value of δ(m).

This bound can be tightened by minimizing it over
δ(m). By LP duality, the minimal δ(m) value gives us
exactly ˆ̀

h(x(m),y(m);w).

The key advantage of Eq. 9 is that it removes the dif-
ficult inner maximization from Eq. 7. Moreover, Eq. 9
is jointly convex in its variables (namely w and the
δ(m)s), and furthermore is unconstrained. Thus, we
can employ a variety of minimization algorithms to it
without the need for a “black-box” solver of the max-
imization problem.

In the next three sections we describe our algorithm for
optimizing Eq. 9. Our approach has two components:
one is to decrease the objective via message passing
updates on δ, corresponding to coordinate descent on

δ. The other is stochastic subgradient updates on w
that process each example separately and are thus ide-
ally suited for large data sets.

3.1. Dual minimization via coordinate descent

Notice that, unlike the w variables, the δ(m) vari-
ables are only dependent on the mth sample in the
dual formulation Eq. 9. Block coordinate descent of
g(δ(m);θ(m)(w)) can be performed in closed form, as
has been noted by several authors (e.g., Globerson and
Jaakkola, 2008; Werner, 2007), and as we review next.

Suppose that at iteration t we have a given value of
the δ(m) variables, denoted by δ(m,t). Now assume we

fix all δ(m) variables except δ
(m)
ij , δ

(m)
ji and seek the

optimal value of δ
(m)
ij , δ

(m)
ji . The closed form solution

is given by:

δ
(m,t+1)
ij (yj) = − 1

2θ
(m)(yj ;w)− 1

2

∑
k∈N(j)\i δ

(m,t)
kj (yj)

+ 1
2 maxyi

[
θ(m)(yi, yj ;w)− δ(m,t)ji (yi)

]
,

(10)

and analogously for δ
(m,t+1)
ji (yi). This update is com-

monly referred to as max-sum diffusion, or MSD (see
Werner, 2007, and references within).

We use a more efficient block coordinate descent step
where we simultaneously update all of the dual vari-
ables δij(yj) going into variable yj (see Globerson and
Jaakkola, 2008, for a similar update). It is equivalent
to iterating the MSD updates for the corresponding
edges until convergence, and is given by (we drop the
m superscript for brevity):

δij(yj) = − 1

1 + dj
θ(m)(yj ;w)− 1

1 + dj
γj(yj) + γij(yj)

(11)
where dj is the degree of node j in the graph and:

γij(yj) = max
yi

[
θ(m)(yi, yj ;w)− δji(yi)

]
(12)

and γj(yj) =
∑
k∈N(j) γkj(yj). The messages δij(yj)

need to be updated simultaneously for all neighbors of
j. The derivation is very similar to that in Globerson
and Jaakkola (2008) and is not repeated here. We note
that even more efficient updates can be performed,
for example by simultaneously updating all δ’s that
correspond to a tree (Sontag and Jaakkola, 2009).

Because the objective g is not strictly convex, the MSD
updates may get trapped in a sub-optimal point (Kol-
mogorov, 2006). This problem does not occur for bi-
nary variables however, as shown in e.g., Globerson
and Jaakkola (2008). One way to avoid this is to re-
place the max function in Eq. 8 with a soft-max func-

52

Learning Efficiently with Approximate Inference via Dual Losses

tion, namely:

max
yi

f(yi) ≤
1

K
log
∑

yi

eKf(yi) (13)

The upper bound becomes tight as K →∞. Note that
g with the soft-max is also a convex upper bound on
the original loss. Thus we can use g with a sufficiently
high K and the technical issue of non-optimal fixed
points is alleviated. It also turns out (Johnson et al.,
2007) that the MSD updates when the soft-max is used
are exactly as in Eq. 10 and Eq. 11, only with the
soft-max replacing the max function. The convergence
rate of such updates has recently been analyzed in the
context of LDPC codes (Burshtein, 2009). In practice
we have found that using the original max does not
sacrifice optimality, so we do not use the soft-max in
practice.

3.2. Subgradient optimization over w

The previous section showed how to update the δ(m)

variables such that the objective is decreased at ev-
ery iteration. We now turn to the update steps on
the weight vector w. One method that has proven
very useful for losses as in Eq. 9 is stochastic sub-
gradient descent (SSD) (Shalev-Shwartz et al., 2007;
Ratliff et al., 2007). In SSD, the vector w is changed

in the direction of the subgradient of g(δ(m);θ(m)(w))
for each sample m. This strategy is especially effective
for large datasets since the exact subgradient involves
summation over all the sample points.

In the Pegasos method (Shalev-Shwartz et al., 2007;
Shalev-Shwartz and Srebro, 2009), the stochastic sub-
gradient is followed by a projection onto a ball of ra-
dius

√
C. This is justified by the fact that the optimal

w is known to be inside this ball, and results in im-
proved rates of convergence. We follow the same pro-
cedure here, since w in our case satisfies the same con-
dition (assuming that the label loss is upper bounded
by one, which it is in our case since we use the normal-
ized Hamming loss). The key difference between Pe-
gasos and the method we propose is that we introduce
additional variables δ(m) and minimize with respect
to these as well. In the original Pegasos algorithm,
one views the objective as a function of w alone, and
therefore has to calculate exact subgradients w.r.t. w,
which requires solving an LP problem at every sample
point. As we show in the experiments, this can have a
major effect on runtime.

3.3. The DLPW algorithm and convergence

To summarize the above two sections, we propose to
solve the structured prediction problem in Eq. 7 by

casting it as a joint minimization problem over δ(m)

and w (Eq. 9) and performing coordinate descent up-
dates on δ(m) together with stochastic subgradient up-
dates on w. The overall algorithm, which we call
DLPW for Dual Loss Primal Weights is described in
Algorithm 1. When processing the mth sample point,
the algorithm first updates its δ(m) variables by im-
proving the objective using coordinate descent updates

(Eq. 11). Each δ
(m)
ij (yj) should be updated at least

once, but in practice it is preferable to perform R
passes over the graph, where R is a small number (we
use R = 10 in our experiments).

Our scheme combines two minimization approaches:
stochastic subgradient and coordinate descent. Each
is known to converge to the global optimum if used
alone (under appropriate conditions on the objective).
Although it is not obvious that using them together
would have the same guarantees, we show in Appendix
A that the combined method will in fact converge to
the global optimum. Since the MSD updates for non-
binary yi may get trapped in suboptimal δ(m), we show
convergence for either binary yi or a soft-max with
any K (which in the limit is equivalent to the max
function).

Algorithm 1 The DLPW algorithm

Initialize: Choose w1 s.t. ‖w1‖ ≤
√
C

for t = 1 to T do
Pick a sample point m
Perform R coordinate descent iterations on all
variables δ(m,t) via the updates in Eq. 11. De-
note the new values by δ(m,t+1).
Set: wt+ 1

2
= wt − 1

t ∂wt
gm(δ(m,t+1),θ(m)(w))

Set: wt+1 = min
{

1,
√
C

‖w
t+1

2
‖

}
wt+ 1

2

end for

4. Previous Approaches

Most algorithmic effort in structured prediction has
focused on the case where maximization over the la-
bel space y is tractable. Key examples are when the
graph G corresponds to a tree (Taskar et al., 2004;
Collins, 2002), or where labels correspond to a com-
binatorial object such as graphs or matchings (Taskar
et al., 2006). Below we review these approaches, and
highlight their applicability to LP approximations.

In Taskar et al. (2004) the authors noted that although
the primal hinge loss involves maximizing over an ex-
ponentially large set, its dual has a simpler structure.
Specifically, for singly connected graphs G the dual in-
volves only a polynomial number of constraints. They

53

Learning Efficiently with Approximate Inference via Dual Losses

suggested a dual algorithm similar to the SMO algo-
rithm in Platt (1998), where the dual variables are
updated by switching probability mass between two la-
bels y1, y2. We note that this dual is different from ours
since it also involves dualizing over w. This method
can also be applied to the LP relaxation case as noted
in Taskar et al. (2004, Section 4).

Another dual approach is to use exponentiated gradi-
ent steps (Collins et al., 2008). However, these are tai-
lored for the case when marginal inference is tractable
and do not seem easily transferable to LP approxima-
tions. It is also possible to adapt the perceptron up-
date to the LP case (Kulesza and Pereira, 2008) but
this again requires solving the LP at every iteration,
and is only exact in the separable case.

Primal methods (such as the one we propose here) op-
erate by updating w directly, and seem to have been
used more frequently for structured prediction with
LP approximations. One natural approach is to use
stochastic (or incremental) subgradient descent on the
objective in Eq. 3 (e.g., Shalev-Shwartz and Srebro,
2009; Ratliff et al., 2007). The main drawback of
this approach is that calculating the subgradient re-
quires solving the LP approximation after every sam-
ple point. This can be quite costly, and is precisely
what we avoid doing in the current paper. Another
popular primal approach is based on cutting planes
(Joachims et al., 2009; Finley and Joachims, 2008).
Here one incrementally adds constraints that corre-
spond to vertices of the relaxed polytope. It can be
shown that a polynomial number of constraints are
sufficient to achieve a given optimization accuracy, but
in practice this number may be large. The method we
present here avoids this growth in problem size.

The work closest to ours is Taskar et al. (2005), where
the dual of only the LP over µ is taken and the w is
kept intact. However, this is done only for problems
where the LP is exact (has only integral vertices) and
the authors suggest solving the problem via a stan-
dard QP solver, as opposed to the efficient coordinate
descent message passing procedure we employ here.

5. Experiments

To evaluate our proposed algorithm, we compare its
performance on multi-label classification tasks to some
of the alternative approaches discussed in Section 4.
We will show that DLPW often outperforms the other
algorithms, and that it scales well with problem size.

In this multi-label classification setting, each label yi is
a binary random variable indicating whether the i’th
label is ‘on’, and these form a fully connected graph

over all label variables. Our model is equivalent to the
one used by Finley and Joachims (2008) except that
we use an overcomplete representation for feature func-
tions f (fi(yi,x) is defined for all values yi and simi-
larly for fij(yi, yj ,x)). The inputs x are vectors in Rs.
The feature fi(yi,x) is a |yi|∗s dimensional vector, i.e.,
|yi| concatenated vectors of dimension s. The value of
fi(yi,x) will be x for the vector corresponding to the
label yi and zero elsewhere. The edge feature functions
fij(yi, yj ,x) are indicator vectors, so the length of wij

is |yi|∗|yj | (4 in the binary case). We use a normalized

Hamming loss with e
(m)
i (y) = 1{y(m)

i 6= yi}/d.

We focus on three datasets of real-world domains taken
from the LIBSVM collection (Chang and Lin, 2001) in-
cluding Yeast [14 labels, 1500 training samples, 103
features in x] (Elisseeff and Weston, 2001), Scene
[6 labels, 1211 samples, 294 features] (Boutell et al.,
2004), and Reuters (subset 1 [3000 samples, 47236
features]) (Lewis et al., 2004). We use a reduction of
the Reuters dataset to the 30 most frequent labels.
For each dataset, we train a classifier using DLPW
and two other algorithms. The first is a cutting-plane
algorithm (Finley and Joachims, 2008) and the second
is the Pegasos algorithm which uses an LP solver to
obtain the approximate MAP at each iteration.4 The
results are shown in Fig. 1(a-c).

As we mentioned in Section 3.3, we limited the number
of iterations (MSD updates to all nodes) in DLPW to
R = 10. We tried a couple of other values for R in
this regime and found that these gave similar overall
performance. Generally, decreasing R results in faster
iterations, but each has a smaller improvement in the
objective. On the other hand, if we set no limit on
R and allow the MSD algorithm to converge, we get
similar performance to that of Pegasos. This makes
sense as the LP would be solved completely at each
iteration by both algorithms.

Figure 1 shows the objective of Eq. 7, evaluated us-
ing the weights found at each iteration, as a function
of runtime for each algorithm.5 For the Yeast dataset
we can first see that both subgradient algorithms con-
verge to the optimum much faster than the cutting-
plane algorithm. Furthermore, we see that DLPW is

4 Implementation details: we have im-
plemented all algorithms in C++. The
cutting-plane code is taken from svm struct
(http://svmlight.joachims.org/svm struct.html)
and adapted for the LP case. We use the GLPK library
(http://www.gnu.org/software/glpk/glpk.html) to
solve the relaxed LP in both cutting-plane and Pegasos
algorithms. We run the experiments on a Dual-Core AMD
2.6 GHz Linux machine.

5Not including the time to evaluate Eq. 7.

54

Learning Efficiently with Approximate Inference via Dual Losses

(a) (b)

(c) (d)

Figure 1. Comparing quality of solution as a function of runtime for various datasets. The x-axis in each subfigure
represents the runtime in seconds while the y-axis represents the objective of Eq. 7. Each subfigure shows a line for each
of the tested algorithms. Some of the traces were truncated to show more details in the interesting range.

significantly more efficient than Pegasos, which solves
the primal LP at each iteration. Specifically, on this
dataset DLPW runs 6 times faster than Pegasos and 43
times faster than cutting-plane. In the Scene dataset
we see that again the subgradient methods converge
much faster than cutting-plane, but here there is only
a small advantage for DLPW over Pegasos. This is
presumably because the graph is rather small (6 nodes
vs. 14 nodes in Yeast) so the LP solver becomes quite
efficient. Finally, for the Reuters dataset we observe
once more the improved efficiency of the subgradient
algorithms. Here DLPW takes less than half the time
to converge than Pegasos. We note that when reduc-
ing the Reuters dataset to only the 10 most frequent
labels, rather than 30, DLPW converges only slightly
faster than Pegasos (not shown), which demonstrates
the improved scalability of our method as the graph
grows in size.

For the multi-label binary models, one could also use
graph cut based methods for inference, which would
typically be much faster than a general LP solver (e.g.,
see Finley and Joachims, 2008). However, our method
generalizes to the non-binary setting where cut based
methods are less effective at solving LPs. Indeed, Fig-
ure 1(d) shows results for such a case. For this we
use synthetic data similar to the multi-label setting,

but with fi(yi,x) holding xi in position yi rather than
the whole vector x (x and y are assumed to be of the
same length). We run all algorithms on a fully con-
nected graph with d = 20, each yi has 4 states, and the
training set consists of 100 samples (these were gener-
ated by randomly sampling w,x and obtaining y via
iterative conditional modes). We can see that in this
setting the cutting-plane algorithm outperforms Pega-
sos, however DLPW is significantly faster than both.

6. Discussion

We have presented an algorithm for efficient scalable
optimization of structured prediction problems that
employ approximate inference. Our algorithm dualizes
the LP approximation and thus avoids the need to
completely solve it at each iteration. The dual can be
viewed as an upper bound on the hinge loss (hence the
term dual-loss) which can be tightened via auxiliary
variables δ(m). An interesting future direction would
be to further explore this notion of tunable surrogate
losses further, and study its effects on generalization.

Our empirical results show that our DLPW algorithm
improves on methods that employ LP solvers as a
black box, and that the improvement is increased as
the number of labels grow. A natural question might

55

Learning Efficiently with Approximate Inference via Dual Losses

be why we could not have simply used the MSD up-
dates within these solvers to replace the black-box LP.
There are two problems with this approach. First,
we would still be required to iterate the MSD to con-
vergence (since the LP needs to be solved exactly in
these methods). Second, there would be an extra step
of obtaining a primal solution from the δ(m) variables,
which requires extra work for non-binary labels.

In many structured prediction problems, part of the
instance may have special structure for which more ef-
ficient inference algorithms are known. In these cases
we can make global moves to optimize the δ(m) vari-
ables, e.g. tree block coordinate descent (Sontag and
Jaakkola, 2009). Our techniques can also be applied
to structured prediction problems other than graphical
models, such as parsing, by varying the dual decompo-
sition of the optimization problem used for prediction.

The convergence results presented here are asymp-
totic. It would be desirable to also derive rate of con-
vergence results. It is possible to show that if the δ(m)

are updated at each iteration until they minimize the
dual loss then a rate of O(1

ε) is obtained. A similar
result can be given for minimization up to a certain ac-
curacy. It thus seems likely we can obtain rate results
by employing convergence rates for the δ(m) updates.
Recent work (Burshtein, 2009) has analyzed conver-
gence for a related variant of MSD, and can probably
be used in this context.

Finally, our results are easily extended to functions
f(x, y) that involve larger cliques on y. This can be
done via generalizations of MSD type updates to this
case (e.g., the GMPLP algorithm in Globerson and
Jaakkola, 2008). Furthermore, such cliques can be in-
troduced to improve the accuracy of the LP approxi-
mation (Sontag et al., 2008). We thus expect DLPW
to allow improved prediction accuracy for a variety of
large scale structured prediction problems.

Acknowledgements

This work was supported by BSF grant 2008303. D.S. was

supported by a Google PhD Fellowship.

A. Convergence Proof

To simplify the derivation we assume we only have two
delta variables per sample point, and denote those by

δ
(m)
1 , δ

(m)
2 . All arguments generalize to δ(m) with more

variables. Our objective thus has the form:

h(w, δ) =
∑

m

hm(w, δ
(m)
1 , δ

(m)
2) (14)

where h includes the L2 regularization on w. We
assume that h is strictly convex w.r.t. its variables.
Strict convexity w.r.t. the δ variables is obtained if we
use the soft-max loss (see Eq. 13) for any finite value
of K. h is strictly convex w.r.t. w because of the
L2 regularization. The proof also applies (with minor
modifications) to the case where yi are binary, since in
this case the max-sum-diffusion updates do not have
non-optimal fixed-points and the strict convexity w.r.t.
δ is then not needed in the proof.

We wish to show that our algorithm converges to the
global minimum of h(w, δ). The updates of our algo-
rithm are as follows. At iteration t choose the next
sample point m (for simplicity we shall assume that
the sample points are picked according to the same
order at every iteration. We also implicitly assume
that m is dependent on t but for brevity drop it from
the notation) and:

• Choose δ
(m,t+1)
1 to minimize f(wt, δ

(m)
1 , δ

(m,t)
2)

• Choose δ
(m,t+1)
2 to minimize f(wt, δ

(m,t+1)
1 , δ

(m)
2)

• Set wt+1 = wt − αt∂whm(wt, δ
(m,t+1)
1 , δ

(m,t+1)
2)

Note that the update on w may be viewed as a sub-

gradient on the function ∂whm(wt, δ
(m,t+1)
1 , δ

(m,t+1)
2)

when the latter is understood as a function of w.

Using the same derivations as in Nedic and Bertsekas
(2001, Lemma 2.1 therein) we arrive at the following
inequality, which holds at iteration t for every w:

‖wt+1 −w‖2 ≤ ‖wt −w‖2 + α2
tD

2

−2αt
[
h(wt, δ

(m,t+1))− h(w, δ(m,t+1))
]

(15)
where D is an upper bound on the norm of the sub-
gradient (which is indeed bounded by

√
C + R̂ where

R̂ is the maximum norm of a feature vector f(x,y) as
in Shalev-Shwartz et al., 2007). Specifically, the above
holds forw = w(δ(m,t+1)) = arg minŵ hm(ŵ, δ(m,t+1))
(this w is unique due to the strict convexity of h(w, δ)
in w as a result of the L2 regularization). For this
w the difference in h objectives above is always non-
negative so that by Eq. 15 every iteration brings wt

closer to its optimal values for the current δ(m,t), pro-
vided that the stepsize αt is sufficiently small. We
now wish to take t → ∞ and analyze the limit point
w̄, δ̄. It can be shown via standard methods that
such a point exists. Furthermore, using similar ar-
guments to Correa and Lemaréchal (1993, Proposition
1.2) we can conclude that: h(w(δ̄), δ̄) = h(w̄, δ̄) and
thus w̄ = arg minw h(w, δ̄).

We now wish to prove that δ̄ is optimal for w̄. This is
done as in standard coordinate descent analyses (e.g.,

56

Learning Efficiently with Approximate Inference via Dual Losses

Bertsekas, 1995, page 274). The update of δ
(m,t+1)
1 re-

quires hm(wt, δ
(m,t+1)
1 , δ

(m,t)
2) ≤ hm(wt, δ

(m)
1 , δ

(m,t)
2)

for all values of δ
(m)
1 . Taking t → ∞ we have

hm(w̄, δ̄
(m)
1 , δ̄

(m)
2) ≤ hm(w̄, δ

(m)
1 , δ̄

(m)
2). This implies

that the limit value δ̄
(m)
1 is optimal with respect to

all other coordinate (δ and w). We can show this
local optimality for all coordinates of δ, and by the
properties of strictly convex functions we obtain that
δ̄ = arg minδ h(w̄, δ).

Taken together, the above arguments show that w̄, δ̄
are the minimizers of h(w, δ) when one of the two
variables is fixed to either w̄ or δ̄. Strict convexity
of h then implies that w̄, δ̄ is the global optimum of
h(w, δ).

References

G. H. Bakir, T. Hofmann, B. Schölkopf, A. J. Smola,
B. Taskar, and S. V. N. Vishwanathan. Predicting Struc-
tured Data. The MIT Press, 2007.

D. P. Bertsekas. Nonlinear Programming. Athena Scien-
tific, Belmont, MA, 1995.

M. Boutell, J. Luo, X. Shen, and C. Brown. Learning
multi-label scene classification. Pattern Recognition, 37
(9):1757–1771, 2004.

D. Burshtein. Iterative approximate linear programming
decoding of ldpc codes with linear complexity. IEEE
Trans. on Information Theory, 55(11):4835–4859, 2009.

C.-C. Chang and C.-J. Lin. LIBSVM: a library for support
vector machines, 2001. Software available at http://
www.csie.ntu.edu.tw/~cjlin/libsvm.

M. Collins. Discriminative training methods for hidden
markov models: theory and experiments with percep-
tron algorithms. In EMNLP, pages 1–8, 2002.

M. Collins, A. Globerson, T. Koo, X. Carreras, and
P. Bartlett. Exponentiated gradient algorithms for con-
ditional random fields and max-margin markov net-
works. JMLR, 9:1775–1822, 2008.

R. Correa and C. Lemaréchal. Convergence of some algo-
rithms for convex minimization. Math. Program., 62(2):
261–275, 1993.

A. Elisseeff and J. Weston. Kernel methods for multi-
labelled classification and categorical regression prob-
lems. In NIPS 14, pages 681–687, 2001.

T. Finley and T. Joachims. Training structural svms when
exact inference is intractable. In ICML 25, pages 304–
311, New York, NY, USA, 2008. ACM.

A. Globerson and T. Jaakkola. Fixing max-product:
Convergent message passing algorithms for MAP LP-
relaxations. In NIPS 20, pages 553–560. 2008.

T. Joachims, T. Finley, and C.-N. Yu. Cutting-plane train-
ing of structural SVMs. Machine Learning, 77(1):27–59,
2009.

J. K. Johnson, D. Malioutov, and A. S. Willsky. La-
grangian relaxation for map estimation in graphical
models. In 45th Annual Allerton Conference on Com-
munication, Control and Computing, September 2007.

V. Kolmogorov. Convergent tree-reweighted message pass-
ing for energy minimization. IEEE Transactions on
PAMI, 28(10):1568–1583, 2006.

N. Komodakis, N. Paragios, and G. Tziritas. MRF opti-
mization via dual decomposition: Message-passing re-
visited. In ICCV, 2007.

A. Kulesza and F. Pereira. Structured learning with ap-
proximate inference. In NIPS 20, pages 785–792. 2008.

J. Lafferty, A. McCallum, and F. Pereira. Conditional ran-
dom fields: Probabilistic models for segmenting and la-
beling sequence data. In ICML 18, pages 282–289, 2001.

D. Lewis, , Y. Yang, T. Rose, and F. Li. RCV1: a new
benchmark collection for text categorization research.
JMLR, 5:361–397, 2004.

A. F. T. Martins, N. A. Smith, and E. P. Xing. Polyhe-
dral outer approximations with application to natural
language parsing. In ICML 26, pages 713–720, 2009.

A. Nedic and D. P. Bertsekas. Incremental subgradient
methods for nondifferentiable optimization. SIAM J. on
Optimization, 12(1):109–138, 2001.

J. C. Platt. Fast training of Support Vector Machines us-
ing sequential minimal optimization. In B. Schölkopf,
C. Burges, and A. Smola, editors, Advances in Kernel
Methods - Support Vector Learning. MIT Press, 1998.

N. Ratliff, J. A. D. Bagnell, and M. Zinkevich. (Online)
subgradient methods for structured prediction. In AIS-
TATS, 2007.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Pri-
mal estimated sub-gradient solver for SVM. In ICML 24,
pages 807–814, New York, NY, 2007. ACM Press.

S. Shalev-Shwartz and N. Srebro. Theory and practice
of support vector machines optimization. In J. Keshet
and S. Bengio, editors, Automatic Speech and Speaker
Recognition: Large Margin and Kernel Methods. 2009.

D. Sontag and T. Jaakkola. Tree block coordinate descent
for MAP in graphical models. In AISTATS 12, 2009.

D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and
Y. Weiss. Tightening LP relaxations for MAP using
message passing. In UAI 24, pages 503–510, 2008.

B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin.
Learning structured prediction models: a large margin
approach. In ICML 22, pages 896–903, 2005.

B. Taskar, C. Guestrin, and D. Koller. Max margin Markov
networks. In NIPS 16, pages 25–32. 2004.

B. Taskar, S. Lacoste-Julien, and M. Jordan. Structured
prediction, dual extragradient and Bregman projections.
JMLR, pages 1627–1653, 2006.

T. Werner. A linear programming approach to max-sum
problem: A review. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 29:1165–1179, 2007.

57

2.4 Learning Max-Margin Tree Predictors

58

Learning Max-Margin Tree Predictors

Ofer Meshi†⇤ Elad Eban†⇤ Gal Elidan‡ Amir Globerson†

† School of Computer Science and Engineering
‡ Department of Statistics

The Hebrew University of Jerusalem, Israel

Abstract

Structured prediction is a powerful frame-
work for coping with joint prediction of
interacting outputs. A central di�culty in
using this framework is that often the correct
label dependence structure is unknown. At
the same time, we would like to avoid an
overly complex structure that will lead to
intractable prediction. In this work we ad-
dress the challenge of learning tree structured
predictive models that achieve high accuracy
while at the same time facilitate e�cient
(linear time) inference. We start by proving
that this task is in general NP-hard, and then
suggest an approximate alternative. Our
CRANK approach relies on a novel Circuit-
RANK regularizer that penalizes non-tree
structures and can be optimized using a
convex-concave procedure. We demonstrate
the e↵ectiveness of our approach on several
domains and show that its accuracy matches
that of fully connected models, while per-
forming prediction substantially faster.

1 Introduction

Numerous applications involve joint prediction of com-
plex outputs. For example, in document classification
the goal is to assign the most relevant (possibly
multiple) topics to each document; in gene annotation,
we would like to assign each gene a set of relevant func-
tional tags out of a large set of possible cellular func-
tions; in medical diagnosis, we would like to identify all
the diseases a given patient su↵ers from. Although the
output space in such problems is typically very large,
it often has intrinsic structure which can be exploited
to construct e�cient predictors. Indeed, in recent

⇤Authors contributed equally.

years using structured output prediction has resulted in
state-of-the-art results in many real-worlds problems
from computer vision, natural language processing,
computational biology, and other fields [Bakir et al.,
2007]. Such predictors can be learned from data using
formulations such as Max-Margin Markov Networks
(M3N) [Taskar et al., 2003, Tsochantaridis et al., 2006],
or conditional random fields (CRF) [La↵erty et al.,
2001].

While the prediction and the learning tasks are
generally computationally intractable [Shimony, 1994,
Sontag et al., 2010], for some models they can be
carried out e�ciently. For example, when the model
consists of pairwise dependencies between output vari-
ables, and these form a tree structure, prediction can
be computed e�ciently using dynamic programming
at a linear cost in the number of output variables
[Pearl, 1988]. Moreover, despite their simplicity, tree
structured models are often su�ciently expressive to
yield highly accurate predictors. Accordingly, much of
the research on structured prediction focused on this
setting [e.g., La↵erty et al., 2001, Collins, 2002, Taskar
et al., 2003, Tsochantaridis et al., 2006].

Given the above success of tree structured models,
it is unfortunate that in many scenarios, such as a
document classification task, there is no obvious way
in which to choose the most beneficial tree. Thus,
a natural question is how to find the tree model that
best fits a given structured prediction problem. This is
precisely the problem we address in the current paper.
Specifically, we ask what is the tree structure that is
optimal in terms of a max-margin objective [Taskar
et al., 2003]. Somewhat surprisingly, this optimal
tree problem has received very little attention in the
context of discriminative structured prediction (the
most relevant work is Bradley and Guestrin [2010]
which we address in Section 6).

Our contributions are as follows. We begin by proving
that it is NP-hard in general to find the optimal
max-margin predictive tree, in marked contrast to

59

the generative case where the optimal tree can be
learned e�ciently [Chow and Liu, 1968]. To cope with
this theoretical barrier, we propose an approximation
scheme that uses regularization to penalize non-tree
models. Concretely, we propose a regularizer that is
based on the circuit rank of a graph [Berge, 1962],
namely the minimal number of edges that need to
be removed from the graph in order to obtain a tree.
Minimization of the resulting objective is still di�cult,
and we further approximate it using a di↵erence of
continuous convex envelopes. The resulting objective
can then be readily optimized using the convex concave
procedure [Yuille and Rangarajan, 2003].

We apply our method to synthetic and varied real-
world structured output prediction tasks. First, we
show that the learned tree model is competitive with
a fully connected max-margin model that is substan-
tially more computationally demanding at prediction
time. Second, we show that our approach is superior
to several baseline alternatives (e.g., greedy structure
learning) in terms of generalization performance and
running time.

2 The Max-margin Tree

Let x be an input vector (e.g., a document) and y
a discrete output vector (e.g., topics assigned to the
document, where yi = 1 when topic i is addressed
in x). As in most structured prediction approaches,
we assume that inputs are mapped to outputs ac-
cording to a linear discrimination rule: y(x; w) =
argmaxy0 w>�(x, y0), where �(x, y) is a function that
maps input-output pairs to a feature vector, and w
is the corresponding weight vector. We will call
w>�(x, y0) the score that is assigned to the prediction
y0 given an input x.

Assume we have a set of M labeled pairs
{(xm, ym)}M

m=1, and would like to learn w. In the
M3N formulation proposed by Taskar et al. [2003],
w is learned by minimizing the following (regularized)
structured hinge loss:

`(w) =
�

2
kwk2 +

1

M

X

m

hm(w),

where

hm(w) = max
y

h
w>�(xm, y) + �(y, ym)

i
� w>�(xm, ym),

(1)

and �(y, ym) is a label-loss function measuring the
cost of predicting y when the true label is ym (e.g., 0/1
or Hamming distance). Thus, the learning problem
involves a loss-augmented prediction problem for each
training example.

Since the space of possible outputs may be quite large,
maximization of y can be computationally intractable.
It is therefore useful to consider score functions that
decompose into simpler ones. One such decomposition
that is commonly used consists of scores over single
variables and pairs of variables that correspond to
nodes and edges of a graph G, respectively:

w>�(x, y) =
X

ij2E(G)

w>
ij�ij(x, yi, yj) +

X

i2V (G)

w>
i �i(x, yi).

(2)
Importantly, when the graph G has a tree structure
then the maximization over y can be solved exactly
and e�ciently using dynamic programming algorithms
(e.g., Belief Propagation [Pearl, 1988]).

As mentioned above, we consider problems where there
is no natural way to choose a particular tree structure,
and our goal is to learn the optimal tree from training
data. We next formalize this objective.

In a tree structured model, the set of edges ij in Eq. (2)
forms a tree. This is equivalent to requiring that the
vectors wij in Eq. (2) be non-zero only on edges of
some tree. To make this precise, we first define, for a
given spanning tree T , the set WT of weight vectors
that “agree” with T :1

WT = {w : ij /2 T =) wij = 0} . (3)

Next we consider the set W[of weight vectors that
agree with some spanning tree. Denote the set of
all spanning trees by T , then: W[=

S
T2T

WT .

The problem of finding the optimal max-margin tree
predictor is therefore:

min
w2W[

`(w). (4)

We denote this as the MTreeN problem. In what
follows, we first show that this problem is NP-hard,
and then present an approximation scheme.

3 Learning M3N Trees is NP-hard

We start by showing that learning the optimal tree
in the discriminative max-margin setting is NP-hard.
As noted, this is somewhat of a surprise given that
the best tree is easily learned in the generative setting
[Chow and Liu, 1968], and that tree structured models
are often used due to their computational advantages.

In particular, we consider the problem of deciding
whether there exists a tree structured model that cor-
rectly labels a given dataset (i.e., deciding whether the

1Note that weights corresponding to single node fea-
tures are not restricted.

60

dataset is separable with a tree model). Formally, we

define the MTreeN decision problem as determining
whether the following set is empty:

n
w 2 W[

���w>�(xm, ym) � w>�(xm, y)+�(y, ym) 8m, y
o

.

(5)

To facilitate the identifiability of the model parameters
that is later needed, we adopt the formalism of Sontag
et al. [2010] and define the score:

S(y; x, T, w)

=
X

ij2T

w>
ij�ij(x, yi, yj) +

X

i

(w>
i �i(x, yi) + xi(yi))

⌘
X

ij2T

✓ij(yi, yj) +
X

i

✓i(yi) +
X

i

xi(yi), (6)

where xi(yi) is a bias term which does not depend on
w,2 and for notational convenience we have dropped
the dependence of ✓ on x and w. We can now
reformulate the set in Eq. (5) as:

⇢
T, w

���S(ym; xm, T, w) � max
y

S(y; xm, T, w) 8m
�

, (7)

where, for simplicity, we omit the label loss �(y, ym).
This is valid since the bias terms already ensure that
the trivial solution w = 0 is avoided. With this
reformulation, we can now state the hardness result.

Theorem 3.1. Given a set of training examples
{(xm, ym)}M

m=1, it is NP-hard to decide whether there
exists a tree T and weights w such that 8m, ym =
argmaxy S(y; xm, T, w).

Proof. We show a reduction from the NP-hard
bounded-degree spanning tree (BDST) problem to the

MTreeN decision problem defined in Eq. (7).3 In the
BDST problem, given an undirected graph G and an
integer D, the goal is to decide whether there exists
a spanning tree with maximum degree D (for D = 2
this is the Hamiltonian path problem, hence the NP-
hardness).

Given an instance of BDST we construct an instance
of problem Eq. (7) on the same graph G as follows.
First, we define variables y1, . . . , yn that take values
in {0, 1, . . . , n}, where n = |V (G)|. Second, we will
define the parameters ✓i(yi) and ✓ij(yi, yj) and bias

terms xi(yi) in such a way that solving the MTreeN
decision problem will also solve the BDST problem.
To complement this, we will define a set of training
examples which are separable only by the desired

2As usual, the bias term can be removed by fixing some
elements of w to 1.

3A related reduction is given in Aissi et al. [2005],
Theorem 8.

parameters. For clarity of exposition, we defer the
proof that these parameters are identifiable using a
polynomial number of training examples to App. A.

The singleton parameters are

✓i(yi) =

(
D i = 1, y1 = 0

0 otherwise,
(8)

and the pairwise parameters for ij 2 E(G) are:

✓ij(yi, yj) =

8
>>>>>><
>>>>>>:

�n2 yi 6= yj

0 yi = yj = 0

1 yi = yj = i

1 yi = yj = j

0 otherwise.

(9)

Now consider the case where the bias term xi(yi)
is identically zero. In this case the score for (non-
zero) uniform assignments equals the degree of the
vertex in T . That is, S(i, . . . , i; 0, T, ✓) = degT (i) since
✓ij(i, i) = 1 for all j 2 N(i) and the other parameter
values are zero. The score for the assignment y =
0 is S(0, . . . , 0; 0, T, ✓) = D, and for non-uniform
assignments we get a negative score S(y; 0, T, ✓) <
0. Therefore, the maximization over y in Eq. (7)
reduces to a maximization over n uniform states
(each corresponding to a vertex in the graph). The
maximum value is thus the maximum between D
and the maximum degree in T : maxy S(y; 0, T, ✓) =
max {D, maxi degT (i)}.

It follows that, if we augment the training set that
realizes the above parameters (see App. A) with a
single training example where xm = ym = (0, . . . , 0),
the set of Eq. (7) can now be written as:

n
T |D � max

i
degT (i)

o
.

Thus, we have that the learning problem is separable
if and only if there exists a bounded degree spanning
tree in G. This concludes the reduction, and we have
shown that the decision problem in Theorem 3.1 is
indeed NP-hard.

The above hardness proof illustrates a striking di↵er-
ence between generative learning of tree models (i.e.,
Chow Liu) and discriminative learning (our NP-hard
setting). Clearly, we do not want to abandon the
discriminative setting and trees remain computation-
ally appealing at test time. Thus, in the rest of the
paper, we propose practical approaches for learning
a tree structured predictive model and demonstrate
empirically that our method is competitive.

61

4 Tree-Inducing Regularization

Due to the hardness of the tree learning problem, we
next develop an approximation scheme for it. We
begin with the exact formulation of the problem, and
then introduce an approximate formulation along with
an optimization procedure. Our construction relies on
several properties of submodular functions and their
convex envelopes.

4.1 Exact Tree Regularization

As described in Section 2, we would like to find a
tree structured weight vector w 2 W[that minimizes
the empirical hinge loss. The main di�culty in
doing so is that the sparsity pattern of w needs to
obey a fairly complex constraint, namely being tree
structured. This is in marked contrast to popular
sparsity constraints such as an upper bound on the
number of non-zero values, a constraint that does not
take into account the resulting global structure.

To overcome this di�culty, we will formulate the exact
learning problem via an appropriate regularization.
We begin by defining a function that maps w to the
space of edges: ⇡ : Rd 7! R|E|, where E corresponds to
all edges of the full graph. Specifically, the component
in ⇡ corresponding to the edge ij is:

⇡ij(w) = kwijk1.

Now, denote by Supp(⇡(w)) the set of coordinates in
⇡(w) that are non-zero. We would like the edges cor-
responding to these coordinates to form a tree graph.
Thus, we wish to define a set function F (Supp(⇡(w)))
which will be equal to zero if Supp(⇡(w)) conforms to
some tree structure, and a positive value otherwise.
If we then add �F (Supp(⇡(w))) to the objective in
Eq. (4) with � large enough, the resulting w will be
tree structured. The optimization problem is then:

min
w

`(w) + �F (Supp(⇡(w))). (10)

In what follows, we define a set function F (A) with
the desired properties. That is, we seek a function
that takes a set of edges A and outputs zero if they
correspond to a tree, and a positive number otherwise.
Intuitively, it is also desirable to define the function
such that its value increases as the graph becomes less
“tree-like”. To make this concrete we define a measure
for “treeness” as the minimum number of edges that
need to be removed from A in order to reduce it to
a tree structure. This measure is also known as the
circuit-rank of the graph [Berge, 1962]. Formally:

r = |A| + c(A)� n,

where c(A) is the number of connected components in
the graph, and n is the number of vertices. We note
that the circuit rank is also the co-rank of the graphic
matroid, and is hence supermodular.

Putting it all together, we have that our desired tree-
inducing function is given by:

F (Supp(⇡(w))) = |Supp(⇡(w))| + c(Supp(⇡(w)))� n.

Of course, given our hardness result, optimizing
Eq. (10) with the above F (A) is still computationally
hard. From an optimization perspective, the di�culty
comes from the non-convexity of the the above func-
tion in w. Optimization is further complicated by
the fact that it is highly non-smooth, similarly to the
`0 norm. In the next section we suggest a smoothed
approximation that is more amenable to optimization.

We also note that in Eq. (10) w is generally not tree
structured, so the maximization over y in Eq. (1)
is not necessarily tractable. Therefore, we replace
the hinge loss in Eq. (1) with its overgenerating
approximation [Finley and Joachims, 2008], known as
linear programming (LP) relaxation [e.g., see Meshi
et al., 2010]. This is achieved by formulating the
optimization in Eq. (1) as an integer LP and then re-
laxing the integrality requirement, allowing fractional
solutions. Importantly, for tree structured graphs
this approximation is in fact exact [Wainwright and
Jordan, 2008]. This implies that if there exists a
tree model that separates the data, it will be found
even when using this relaxation in Eq. (10). With
slight abuse of notation, we keep referring to the
approximate objective as `(w).

4.2 Approximate Tree Regularization

The function F (A) is a set function applied to the
support of ⇡(w). Bach [2010] (Proposition 1) shows
that when F is submodular and non-decreasing, the
convex envelope of F (Supp(⇡(w))) can be calculated
e�ciently. This is desirable since the convex envelope
then serves as a convex regularizer. Furthermore, this
convex envelope can be elegantly understood as the
Lovász extension f of F , applied to |⇡(w)| (in our case,
|⇡(w)| = ⇡(w)). Unfortunately, the circuit-rank r does
not satisfy these conditions, since it is supermodular
and non-decreasing (in fact, its convex envelope is a
constant).

To overcome this di�culty, we observe that F (A)
can be decomposed in a way that allows us to use
the result of Bach [2010]. Specifically, we can write
F (A) = F1(A)� F2(A), where

F1(A) = |A| , F2(A) = n� c(A). (11)

62

F1(A) is simply the cardinality function which is
modular and increasing. Furthermore, F2(A) is the
rank of the graphic matroid [Oxley, 2006], and is
hence submodular. It is also easy to see that F2(A)
is non-decreasing. Thus, both functions satisfy the
conditions of Proposition 1 in Bach [2010] and their
convex envelopes can be found in closed form, as
characterized in the following corollaries.

Corollary 4.1. The convex envelope of
F1(Supp(⇡(w)) is f1(⇡(w)) =

P
ij ⇡ij(w) = kwk1.

Proof. Follows directly from Prop. 1 in Bach [2010]
and the fact that the Lovász extension of the cardinal-
ity function is the `1 norm.

Corollary 4.2. The convex envelope of
F2(Supp(⇡(w)) is f2(⇡(w)), defined as follows.
Sort the elements of ⇡(w) in decreasing order, and
construct a maximum-spanning-tree with this ordering
as in Kruskal’s algorithm [Kruskal, 1956]. Denoting
the resulting tree by T (⇡(w)), we obtain

f2(⇡(w)) =
X

ij2T (⇡(w))

⇡ij(w) =
X

ij2T (⇡(w))

kwijk1

Proof. Let (ij)k denote the kth edge when sorting
⇡(w), then the Lovász extension f2 of F2 at ⇡(w) is:

|E|X

k=1

⇡(ij)k
(w)[F2({(ij)1, . . . , (ij)k)� F2({(ij)1, . . . , (ij)k�1)]

=
X

ij2T (⇡(w))

⇡ij(w),

where we have used Eq. (11) and the fact that the
number of connected components decreases by one
only when introducing edges in Kruskal’s tree. The
desired result follows from Prop. 1 in [Bach, 2010].

We now approximate F (Supp(⇡(w))) as a di↵erence
of the two corresponding convex envelopes, denoted
by f(⇡(w)):

f(⇡(w)) ⌘ f1(⇡(w))� f2(⇡(w)) =
X

ij /2T (⇡(w))

kwijk1

(12)
This function has two properties that make it compu-
tationally and conceptually appealing:

• f(⇡(w)) is a di↵erence of two convex functions so
that a local minimum can be easily found using
the convex concave procedure (see Section 4.3).

• The set {ij /2 T (⇡(w))} are precisely these edges
that form a cycle when added according to the
order implied by ⇡(w). Thus, the penalty we use
corresponds to the magnitude of kwijk1 on the
edges that form cycles, namely the non-tree edges.

4.3 Optimizing with Approximate Tree
Regularization

Using the tree inducing regularizer from the previous
section, our overall optimization problem becomes:

min
w

`(w) + �f1(⇡(w))� �f2(⇡(w)).

Since the function f2(⇡(w)) is rather elaborate, opti-
mizing the above objective still requires care. In what
follows, we introduce a simple procedure for doing so
that utilizes the convex concave procedure (CCCP)
[Yuille and Rangarajan, 2003].4 Recall that CCCP is
applicable for an objective function (to be minimized)
that is a sum of a convex and concave functions, and
proceeds via linearization of the concave part.

To use CCCP for our problem we observe that from
the discussion of the previous section it follows that our
objective can indeed be decomposed into the following
convex and concave components:

h[(w) = `(w) + �f1(⇡(w)), h\(w) = ��f2(⇡(w)),

where \ and [correspond to the convex and concave
parts, respectively. To linearize h\(w) around a point
wt, we need to find its subgradient at that point. The
next proposition, which follows easily from Hazan and
Kale [2009], gives the subgradient of f2(⇡(w)):

Proposition 4.3. The subgradient of f2(⇡(w)) is
given by the vector v defined as follows.5 The coor-
dinates in v corresponding to wij are given by:

vij =

(
sign(wij) ij 2 T (⇡(w))

0 otherwise

where sign is taken element wise. The other coordi-
nates of v (corresponding to wi) are zero.

We can now specify the resulting algorithm, which we
call CRANK for circuit-rank regularizer.

Algorithm 1 The CRANK algorithm

Input: w1, �
for t = 1, . . . do

ht(w) = `(w) + �kwk1 � �v(wt)>w
wt+1 = argminw ht(w)

end for

The objective ht(w) to be minimized at each iteration
is a convex function, which can be optimized using any
convex optimization method. In this work we use the

4To be precise, we are using the more general DC
programming framework [Horst and Thoai, 1999], which
can be applied to non di↵erentiable functions.

5In cases where several wij are equal, there are multiple
subgradients.

63

0 50 100
0.75

0.8

0.85

0.9

0.95

1
Hamming

0 50 100
0.05

0.3

0.55

0.8
0/1

Train size
0 50 100

0.7

0.8

0.9

1
F1

Empty

MST

Project

Greedy

Full

CRANK

Figure 1: Average test performance as a function of the number of training samples for the synthetic datasets.

stochastic Frank-Wolfe procedure recently proposed
by Lacoste-Julien et al. [2013].6 The advantage of
this approach is that the updates are simple, and it
generates primal and dual bounds which help monitor
convergence. In practice, we do not solve the inner
optimization problems exactly, but rather up to some
primal-dual gap.

5 Experiments

In this section we evaluate the proposed algorithm
on multi-label classification tasks and compare its
performance to several baselines. In this task the goal
is to predict the subset of labels which best fits a given
input. We use the model presented in Finley and
Joachims [2008], where each possible label yi 2 {0, 1}
is associated with a weight vector wi, the singleton
scores are given by w>

i xyi, and the pairwise scores are
simply wijyiyj (i.e., wij is scalar).

We compare our CRANK algorithm to the follow-
ing baselines: The Empty model learns each label
prediction independently of the other labels; The
Full model learns a model that can use all pairwise
dependencies; The Greedy trainer starts with the
empty model and at each iteration adds the edge
which achieves the largest gain in objective while not
forming a cycle, until no more edges can be added;
The Project algorithm, runs CRANK starting from
the weights learned by the Full algorithm, and using
a large penalty �; 7 The final baseline is an MST
algorithm, which calculates the gain in objective for
each edge separately, takes a maximum-spanning-tree

6We modified the algorithm to handle the `1 + `2 case.
7The Project scheme thus trains a model consisting of

the maximum-spanning-tree over the weights learned by
Full, and can be viewed as a “tree-projection” of the full
model.

over these weights, and then re-trains the resulting
tree. Since CCCP may be sensitive to its starting
point, we restart CRANK from 10 random points and
choose the one with lowest objective (we run those
in parallel). We apply the stochastic Frank-Wolfe
algorithm [Lacoste-Julien et al., 2013] to optimize the
weights in all algorithms. The Full and CRANK
algorithms operate on non-tree graphs, and thus use
an LP relaxation within the training loss (see Section
4.1). Since the model trained with Full is not tree
structured, we also needs to use LP relaxation at test
time (see implications on runtime below). We used the
GLPK solver for solving the LPs.

To measure the performance of the algorithms, we
consider three accuracy measures: Hamming, zero-
one, and F1 (averaged over samples). See [Zhang and
Schneider, 2012, Dembczynski et al., 2010] for similar
evaluation schemes. Regularization coe�cients were
chosen using cross-validation. The parameter � in
CRANK was gradually increased until a tree structure
was obtained.

Synthetic Data: We first show results for synthetic
data where x 2 R4. The data was created as follows:
a random tree T over n = 10 variables was picked and
corresponding weights w 2 WT were sampled. Train
and test sets were generated randomly and labeled
using w. Test set size was 1000 and train set size
varied. Results (averaged over 10 repetitions) are
shown in Figure 1.

We observe that the structured models do significantly
better than the Empty model. Additionally, we see
that the Full, Greedy, and CRANK algorithms are
comparable in terms of prediction quality, with a slight
advantage for CRANK over the others. We also notice
that Project and MST do much worse than the other
structured models.

64

Hamming 0/1 F1 Hamming 0/1 F1

Scene Emotions
CRANK 90.5 (2) 58.9 (2) 64.8 (2) 79.2 (1) 29.2 (2) 60.5 (2)
Full 90.7 (1) 62.2 (1) 67.8 (1) 79.0 (3) 33.7 (1) 62.5 (1)
Greedy 90.2 (3) 56.9 (3) 62.6 (3) 78.5 (4) 24.3 (4) 54.5 (4)
Project 89.5 (5) 52.1 (5) 59.2 (5) 77.6 (5) 20.8 (5) 49.8 (5)
MST 89.9 (4) 53.0 (4) 59.6 (4) 79.1 (2) 28.2 (3) 57.5 (3)
Empty 89.3 (6) 49.5 (6) 56.5 (6) 76.7 (6) 20.3 (6) 48.5 (6)

Medical Yeast
CRANK 96.9 (1) 74.0 (2) 78.2 (3) 80.1 (2) 17.6 (2) 60.4 (3)
Full 96.9 (1) 75.0 (1) 78.3 (1) 80.2 (1) 19.0 (1) 60.9 (1)
Greedy 96.9 (1) 74.0 (2) 78.3 (1) NA NA NA
Project 96.7 (4) 72.7 (4) 77.0 (5) 80.1 (2) 16.4 (3) 60.7 (2)
MST 96.7 (4) 71.9 (5) 77.5 (4) 80.1 (2) 16.1 (4) 60.3 (4)
Empty 96.4 (6) 71.0 (6) 76.1 (6) 79.8 (5) 12.1 (5) 58.0 (5)

Table 1: Performance on test data for real-world multi-label datasets. The rank of each algorithm for each
dataset and evaluation measure is shown in brackets. Greedy was too slow to run on Yeast.

Real Data: We next performed experiments on four
real-world datasets.8 In the Scene dataset the task is
to classify a given image into several outdoor scene
types (6 labels, 294 features). In the Emotions
dataset we wish to assign emotional categories to
musical tracks (6 labels, 72 features). In the Medical
dataset the task is document classification (reduced
to 10 labels, 1449 features). This is the experimental
setting used by Zhang and Schneider [2012]. Finally,
to test how training time scales with the number of
labels, we also experiment with the Yeast dataset,
where the goal is to predict which functional classes
each gene belongs to (14 labels, 103 features). The
results are summarized in Table 1.

We first observe that in this setting the Full model
generally has the best performance and Empty the
worst. As before, CRANK is typically close to Full
and outperforms Greedy and the other baselines in
the majority of the cases.

Runtime analysis: In Table 2 we report train and
test run times, relative to the Full model, for the Yeast
dataset.

Table 2: Running times for the Yeast dataset.

Time CRANK Full Project MST Empty
Train 1.82 1.0 0.17 1.32 0.01
Test 0.02 1.0 0.06 0.02 0.02

It is important to note that the greedy algorithm is
very slow to train, since it requires solving O(n3)
training problems. It is thus impractical for large
problems, and this is true even for the Yeast dataset

8Taken from Mulan (http://mulan.sourceforge.net)

which has only n = 14 labels (and hence does not
appear in Table 2). The Full model on the other
hand has much longer test times (compared to the
tree-based models), since it must use an LP solver
for prediction. CRANK has a training time that is
reasonable (comparable to Full) and a much better test
time. On the Yeast dataset prediction with CRANK
is 50 times faster than with Full.

In conclusion, CRANK seems to strike the best
balance in terms of accuracy, training time, and test
time: it achieves an accuracy that is close to the best
among the baselines, with a scalable training time, and
very fast test time. This is particularly appealing for
applications where we can a↵ord to spend some more
time on training while test time is critical (e.g., real-
time systems).

6 Related Work

The problem of structure learning in graphical models
has a long history, dating back to the celebrated
algorithm by Chow and Liu [1968] for finding a
maximum likelihood tree in a generative model. More
recently, several elegant works have shown the utility
of `1 regularization for structure learning in generative
models [Friedman et al., 2008, Lee et al., 2007, Raviku-
mar et al., 2008, 2010]. These works involve various
forms of `1 regularization on the model parameters,
coupled with approximation of the likelihood function
(e.g., pseudo-likelihood) when the underlying model is
non-Gaussian. Some of these works also provide finite
sample bounds on the number of of samples required to
correctly reconstruct the model structure. Unlike ours,
these works focus on generative models, a di↵erence

65

that can be quite fundamental. For example, as we
proved in Section 3, learning trees is a problem that
is NP-hard in the M3N setting while it is polynomial
in the number of variables in the generative one. We
note that we are not aware of finite sample results in
the discriminative setting, where a di↵erent MRF is
considered for each input x.

In the discriminative setting, Zhu et al. [2009] define an
`1 regularized M3N objective and present algorithms
for its optimization. However, this approach does
not consider the structure of the underlying graphical
model over outputs y. Torralba et al. [2004] propose
a greedy procedure based on boosting to learn the
structure of a CRF, while Schmidt et al. [2008] present
a block-`1 regularized pseudo-likelihood approach for
the same task. While these methods do consider the
structure of the graphical model, they do not attempt
to produce tractable predictors. Further, they do not
aim to learn models using a max-margin objective.

Bradley and Guestrin [2010] address the problem of
learning trees in the context of conditional random
fields. They show that using a particular type
of tractable edge scores together with a maximum-
spanning-tree (MST) algorithm may fail to find the
optimal tree structure. Our work di↵ers from theirs
in several aspects. First, we consider the max-margin
setting for structured prediction rather than the CRF
setting. Second, they assume that the feature function
�(x, y) has a particular form where y and x are of the
same order and where the outputs depend only on local
inputs. Finally, we do not restrict our attention to
MST algorithms. Consequently, our hardness result
is more general and the approximations we propose
are quite di↵erent from theirs. Finally, Chechetka and
Guestrin [2010] also consider the problem of learning
tree CRFs. However, in contrast to our work, they
allow the structure of the tree to depend on the input
x, which is somewhat more involved as it requires
learning an additional mapping from inputs to trees.

7 Conclusion

We tackled the challenge of learning tree structured
prediction models. To the best of our knowledge,
ours is the first work that addresses the problem
of structure learning in a discriminative M3N set-
ting. Moreover, unlike common structured sparsity
approaches that are used in the setting of generative
and conditional random field models, we explicitly
target tree structures due to their appealing properties
at test time. Following a proof that the task is NP-
hard in general, we proposed a novel approximation
scheme that relies on a circuit rank regularization
objective that penalizes non-tree models, and that can
be optimized using the CCCP algorithm. We demon-

strated the e↵ectiveness of our CRANK algorithm
in several real-life domains. Specifically, we showed
that CRANK obtained accuracies very close to those
achieved by a full-dependence model, but with a much
faster test time.

Many intriguing questions arise from our work: Under
which conditions can we learn the optimal model, or
guarantee approximation quality? Can we extend our
framework to the case where the tree depends on the
input? Can we use a similar approach to learn other
graphs, such as low treewidth or high girth graphs?
Such settings introduce novel forms of graph-structured
sparsity which would be interesting to explore.

Acknowledgments

This research is funded by the ISF Centers of Excel-
lence grant 1789/11, and by the Intel Collaborative Re-
search Institute for Computational Intelligence (ICRI-
CI). Ofer Meshi is a recipient of the Google Europe
Fellowship in Machine Learning, and this research is
supported in part by this Google Fellowship.

A Realizing the parameters

Here we complete the hardness proof in Section 3 by
describing the training set that realizes the parameters
of Eq. (8) and Eq. (9). The approach below makes use
of two training samples to constrain each parameter,
one to upper bound it and one to lower bound it.
Appealingly, the training samples are constructed in
such a way that other samples do not constrain the
parameter value, allowing us to realize the needed
value for each and every parameter in the model.

The construction is similar to Sontag et al. [2010]. For
all parameters it consists of the following steps: (i)
define an assignment x(y); (ii) identify two y values
that potentially maximize the score; and (iii) show
that these two complete assignments to x and y force
the desired parameter value.

Preliminaries: Recall that the parameter vector ✓
is defined in Eq. (6) via a product of the features
�i(yi, x) and �ij(yi, yj , x) and the weights wi and wij

which do not depend on x or y and are shared across
the parameters. For the hardness reduction, it will be
convenient to set the features to indicator functions
and show that the implied weight values are realizable.
Specifically, we set the features to:

�o↵-diag
ij (yi, yj) =1{yi 6= yj} 8i, j
�diag

ij (yi, yj) =1{yi = yj = i or yi = yj = j} 8i, j
�bound

1 (y1) =1{y1 = 0}

66

Recall that to realize the desired parameters ✓, we need
to introduce training samples such that for all i, j:

wo↵-diag
ij = �n2, wdiag

ij = 1, wbound
1 = D,

with the dimension of w equalling 2|E(G)| + 1.

Finally, using Ni to denote the set of neighbors of node
i in the graph G, we will use the following (large) value
to force variables not to take some chosen states:

�i =

(
1 + |Ni|(n2 + 1) i 6= 1

1 + |Ni|(n2 + 1) + D i = 1

Realizing the weight wbound
1 : We define x(y) as:

x1(y1) =

8
><
>:

0 y1 = 0

�D y1 = 1

��1 y1 � 2

xi(yi) =

(
0 yi = 2

��i yi 6= 2
for all i 6= 1

Recalling the definition of � above, this implies that
the only assignments to y that can maximize the
score of Eq. (6) are (0, 2, 2, ..., 2) and (1, 2, 2, ..., 2). In
particular, we have:

S(0, 2, 2, ..., 2; x, w) =
X

k2N1

wo↵-diag
1k + x1(0) + S̄

S(1, 2, 2, ..., 2; x, w) =wbound
1 +

X

k2N1

wo↵-diag
1k + x1(1) + S̄

where S̄ is the sum of all components that do not
involve the first variable.

For the final step we recall that the weights w have to
satisfy the constraints: S(ym; xm, w) � S(y; xm, w)
for all m, y. Thus, we will define two instances
(xm, ym) for which some y assignment will constrain
the weight as needed (in both cases, xm is defined
as above). When y(m) = (0, 2, 2, . . . , 2), the assign-
ment y = (1, 2, 2, . . . , 2) yields wbound

1  D and all
other assignments do no further constrain the weight.
Similarly, for y(m0) = (1, 2, 2, . . . , 2), the assignment
y = (0, 2, 2, . . . , 2) yields wbound

1 � D. Together, the
two assignments constrain the weight parameter to
wbound

1 = D, as desired.

Realizing the weights wo↵-diag
ij : We define x(y)

as:

xi(yi) =

(
0 yi = 0

��i yi 6= 0
, xj(yj) =

8
><
>:

0 yj = 0

n2 yj = 1

��j yj � 2

xk(yk) =

(
0 yk = k

��k yk 6= k
for all k 6= i, j

This implies that except for i and j, all yk’s must take
their corresponding assignment so that yk = k. W.l.g.,
suppose that i = 1 and j = 2. The only assignments
that can maximize the score are (0, 0, 3, 4, 5, ..., n) and
(0, 1, 3, 4, 5, ..., n) with values:

S(0, 0, 3, 4, 5, ..., n; x, w) =
X

k2Ni

wo↵-diag
ik +

X

k02Nj

wo↵-diag
jk0 + xi(0) + xj(0) + S̄

S(0, 1, 3, 4, 5, ..., n; x, w) =

wo↵-diag
ij +

X

k2Ni

wo↵-diag
ik +

X

k02Nj

wo↵-diag
jk0 + xi(0) + xj(1) + S̄

As before, setting y(m) = (0, 0, 3, 4, 5, ..., n) and
then y(m0) = (0, 1, 3, 4, 5, ..., n) yields the constraint

wo↵-diag
ij = �n2.

Realizing the weights wdiag
ij : We define x(y) as:

xi(yi) =

(
0 yi = i

��i yi 6= i
, xj(yj) =

8
><
>:

n2 yj = 0

�1 yj = i

��j yj /2 {0, i}

xk(yk) =

(
0 yk = k

��k yk 6= k
for all k 6= i, j

As before, for all k 6= i, j the assignment is forced
to yk = k. The maximizing assignments are
now (1, 0, 3, 4, 5, ..., n) and (1, 1, 3, 4, 5, ..., n) (assuming
w.l.g., i = 1, j = 2) with score values:

S(1, 0, 3, 4, 5, ..., n; x, w) =

wo↵-diag
ij +

X

k2Ni

wo↵-diag
ik +

X

l2Nj

wo↵-diag
jl + xi(i) + xj(0) + S̄

S(1, 1, 3, 4, 5, ..., n; x, w) =

wdiag
ij +

X

k2Ni

wo↵-diag
ik +

X

l2Nj

wo↵-diag
jl + xi(i) + xj(i) + S̄

Now, setting y(m) = (1, 0, 3, 4, 5, ..., n), the assignment

y = (1, 1, 3, 4, 5, ..., n) implies wo↵-diag
ij +n2 � wdiag

ij �1.

Since we already have that wo↵-diag
ij = �n2, we obtain

wdiag
ij  1. Similarly, adding y(m0) = (1, 1, 3, 4, 5, ..., n)

implies wdiag
ij � 1, so together we have wdiag

ij = 1, as
required.

Importantly, our trainset realizes the same edge pa-
rameters for any possible tree, since edge weights are
constrained independently of other edges.

67

References

H. Aissi, C. Bazgan, and D. Vanderpooten. Approximation
complexity of min-max (regret) versions of shortest path,
spanning tree, and knapsack. In Proceedings of the 13th
annual European conference on Algorithms, pages 862–
873, Berlin, Heidelberg, 2005. Springer-Verlag.

F. Bach. Structured sparsity-inducing norms through
submodular functions. In J. La↵erty, C. K. I. Williams,
J. Shawe-Taylor, R. Zemel, and A. Culotta, editors,
Advances in Neural Information Processing Systems 23,
pages 118–126. 2010.

G. H. Bakir, T. Hofmann, B. Schölkopf, A. J. Smola,
B. Taskar, and S. V. N. Vishwanathan. Predicting
Structured Data. The MIT Press, 2007.

C. Berge. The Theory of Graphs. Dover Books on
Mathematics Series. Dover, 1962.

J. K. Bradley and C. Guestrin. Learning tree conditional
random fields. In J. Fürnkranz and T. Joachims, editors,
Proceedings of the 27th International Conference on Ma-
chine Learning (ICML-10), pages 127–134. Omnipress,
2010.

A. Chechetka and C. Guestrin. Evidence-specific structures
for rich tractable crfs. In J. La↵erty, C. K. I. Williams,
J. Shawe-Taylor, R. Zemel, and A. Culotta, editors,
Advances in Neural Information Processing Systems 23,
pages 352–360. 2010.

C. I. Chow and C. N. Liu. Approximating discrete
probability distributions with dependence trees. IEEE
Transactions on Information Theory, 14:462–467, 1968.

M. Collins. Discriminative training methods for hidden
Markov models: Theory and experiments with percep-
tron algorithms. In EMNLP, 2002.

K. Dembczynski, W. Cheng, and E. Hüllermeier. Bayes op-
timal multilabel classification via probabilistic classifier
chains. In ICML, pages 279–286, 2010.

T. Finley and T. Joachims. Training structural SVMs
when exact inference is intractable. In Proceedings of
the 25th International Conference on Machine learning,
pages 304–311, 2008.

J. Friedman, T. Hastie, and R. Tibshirani. Sparse
inverse covariance estimation with the graphical lasso.
Biostatistics, 9(3):432–441, 2008.

E. Hazan and S. Kale. Beyond convexity: Online submod-
ular minimization. In Advances in Neural Information
Processing Systems 22, pages 700–708. 2009.

R. Horst and N. Thoai. Dc programming: Overview.
Journal of Optimization Theory and Applications, 103
(1):1–43, 1999. ISSN 0022-3239. doi: 10.1023/A:
1021765131316. URL http://dx.doi.org/10.1023/A%
3A1021765131316.

J. B. Kruskal. On the Shortest Spanning Subtree of a
Graph and the Traveling Salesman Problem. Proceedings
of the American Math. Society, 7(1):48–50, 1956.

S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher.
Block-coordinate Frank-Wolfe optimization for struc-
tural SVMs. In Proceedings of The 30th International
Conference on Machine Learning, pages 53–61, 2013.

J. La↵erty, A. McCallum, and F. Pereira. Conditional
random fields: Probabilistic models for segmenting and
labeling sequence data. In Proc. 18th Int. Conf. on
Machine Learning, pages 282–289, 2001.

S.-I. Lee, V. Ganapathi, and D. Koller. E�cient structure
learning of Markov networks using L1-regularization.
In Advances in Neural Information Processing Systems
(NIPS 2006), 2007.

O. Meshi, D. Sontag, T. Jaakkola, and A. Globerson.
Learning e�ciently with approximate inference via dual
losses. In ICML, pages 783–790, New York, NY, USA,
2010. ACM.

J. G. Oxley. Matroid Theory. Oxford University Press,
2006.

J. Pearl. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann,
1988.

P. Ravikumar, G. Raskutti, M. J. Wainwright, and B. Yu.
Model selection in gaussian graphical models: High-
dimensional consistency of l1-regularized MLE. In
Advances in Neural Info. Processing Systems 17. 2008.

P. Ravikumar, M. J. Wainwright, and J. La↵erty. High-
dimensional ising model selection using l1-regularized
logistic regression. Annals of Statistics, 38(3):1287–1319,
2010.

M. Schmidt, K. Murphy, G. Fung, and R. Rosales.
Structure learning in random fields for heart motion
abnormality detection. In CVPR, pages 1 –8, 2008.

Y. Shimony. Finding the MAPs for belief networks is NP-
hard. Aritifical Intelligence, 68(2):399–410, 1994.

D. Sontag, O. Meshi, T. Jaakkola, and A. Globerson. More
data means less inference: A pseudo-max approach to
structured learning. In Advances in Neural Information
Processing Systems 23, pages 2181–2189. 2010.

B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov
networks. In Advances in Neural Information Processing
Systems. MIT Press, 2003.

A. Torralba, K. P. Murphy, and W. T. Freeman. Contex-
tual models for object detection using boosted random
fields. In Advances in Neural Information Processing
Systems 17, pages 1401–1408. 2004.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun.
Large margin methods for structured and interdepen-
dent output variables. Journal of Machine Learning
Research, 6(2):1453, 2006.

M. Wainwright and M. I. Jordan. Graphical Models,
Exponential Families, and Variational Inference. Now
Publishers Inc., Hanover, MA, USA, 2008.

A. L. Yuille and A. Rangarajan. The concave-convex
procedure. Neural Comput., 15(4):915–936, Apr. 2003.

Y. Zhang and J. Schneider. Maximum margin output
coding. In ICML, 2012.

J. Zhu, E. P. Xing, and B. Zhang. Primal sparse max-
margin markov networks. In Proceedings of the ACM
SIGKDD international conf. on Knowledge discovery
and data mining, KDD ’09, pages 1047–1056, 2009.

68

Chapter 3

Discussion and Conclusions

In this thesis we have proposed and analyzed efficient methods for inference and learning

in structured output prediction problems. Since these tasks are usually hard, our focus has

been on approximation algorithms which provide high accuracy solutions as well as efficient

computation.

For the prediction (i.e., inference) task we have proposed a new algorithm based on optimiz-

ing the dual of the LP relaxation of the prediction task (Section 2.1). Our algorithm has simple

updates and shows good empirical performance. In addition, we have analyzed the convergence

rate of coordinate descent algorithms that optimize the smoothed dual LP relaxation (Section

2.2). We have shown that a greedy schedule for updating blocks has theoretical and empirical

advantages over a stochastic schedule. We also propose a simple procedure to map dual variables

to primal ones, and derive an upper bound on the convergence rate of the mapped primal

solutions. This is very useful in practice since it provides a sound stopping criterion.

For the learning task we have shown that replacing the primal LP relaxation with its dual

during training has some computational advantages (Section 2.3). Specifically, this results in

a joint minimization problem over model weights and dual variables. This means that at the

beginning of training, when the model weights are far from optimal, it is not necessary to solve

the inference problem completely. Instead, a few improving steps on the dual variables are

enough to move the weights in the right direction. Moreover, at the end of training, when

model weights are close to optimal, they usually do not change by much between the iterations.

In that case our formulation allows for warm-starting the dual variables from their previous

values, which speeds up training.

After our paper has been published two other closely related works appeared. In the first

work Hazan and Urtasun [2010] proposed a formulation very similar to ours, where the main

difference is that they used the smooth dual LP (see Section 1.2.4) instead of the non-smooth

dual. In the second work Komodakis [2011] used the same training objective as we did, but

applied a pure subgradient descent optimization scheme. In contrast, in our paper we mixed

subgradient descent on the weights with coordinate descent steps on the dual variables.

Instead of learning complex models and approximating intractable prediction problems at

69

test time, an alternative approach is to learn only models which accommodate efficient test-time

prediction. In Section 2.4 we followed this path by constraining the learned models to tree-

structured graphs. We have shown that finding the optimal tree is intractable, and proposed

an efficient approximation scheme. Our proposed CRANK algorithm yields tree-structured

models which are almost as accurate as a fully-connected graph, with scalable training, and

fast (linear-time) prediction.

3.1 Future directions

I next discuss a number of possible ways to extend our work.

Input-specific trees: When learning tractable models, as we did with trees in Section 2.4, it

makes sense to let the model depend on the input x. Hence, instead of learning a single model

that fits all inputs we aim at learning a procedure that maps inputs to models. In the context

of tree-structured models, we would like to learn a mapping from input to tree f : x 7→ T .

Notice that this formulation is more broadly applicable than the single model approach as it

does not require all problem instances to be of the same size. This new learning problem is not

easier than learning a single tree model, but can be approximated efficiently via an alternating

minimization scheme [see Weiss and Taskar, 2010, for a related approach]. Chechetka and

Guestrin [2010] study this problem in the context of CRFs, and it would be interesting to see

how this extends to the max-margin objective.

Richer models for structured prediction: Most previous works on structured prediction

use decompositions (Eq. (1.2)) where factors are over small subsets of variables (e.g., singleton

and pairwise factors). However, in light of the recent success of LP relaxation in learning and

prediction for complex structured outputs [Kulesza and Pereira, 2008, Finley and Joachims,

2008, Martins et al., 2009b, Meshi et al., 2010, Hazan and Urtasun, 2010, Komodakis, 2011],

it is reasonable to expect that this technique will yield accurate and efficient predictors for

even more complex models. Indeed, several recent works introduce specific high-order factors

(or losses) to the structured model and show that prediction and learning can still be handled

efficiently in these more complex models [Joachims, 2005, Ranjbar et al., 2010, Tarlow and

Zemel, 2012, Ranjbar et al., 2012]. We believe that other high-order models will be found

useful for various applications in the future. An important goal of future research is to

identify such cases and design efficient algorithms that can handle the resulting inference and

learning tasks. For example, it is interesting to study the problem of learning to rank with

structured models. Specifically, in this setting we need to output a ranking of elements that

have additional complex dependencies. Interestingly, although the area-under-the-ROC-curve

(AUC) is a natural measure of ranking quality, its use in the context of structured models has

not been thoroughly studied. In this case one can define an AUC-loss that can be seen as a

70

global factor which is added to an already intractable model. Learning and inference in such a

complex model pose a serious computational challenge, even when using approximations.

One can think of even more expressive models that can be used to advance state-of-the-art

predictors. The motivation for structured output prediction is that predicting multiple outputs

together is better than predicting each variable alone. Interdependence between variables is

taken into account in order to improve prediction quality. A similar motivation can justify the

design of models that solve multiple tasks together. Information from one prediction task can

then be used when solving another related task. Indeed, an increasing number of works propose

methods for solving multiple related tasks simultaneously. For example, in NLP it was shown

that solving POS tagging and parsing together improves prediction accuracy on both tasks

[Rush et al., 2010, Lee et al., 2011]. In computer vision, Heitz et al. [2009] propose a “cascaded

classification” formalism to combine several task-specific classifiers in a way that allows each

model to benefit from the expertise of the others. The resulting joint model is used for holistic

scene understanding [see Yao et al., 2012, for a related approach]. Designing such holistic

predictors is an important step towards building large intelligent systems. Applying such rich

models to specific domains and training them from data is a great challenge of contemporary

research in machine learning.

An interesting application for such methods is video analysis. First, the number of video

data sources is constantly growing (e.g., YouTube, or cameras installed on robots and vehicles

[Geiger et al., 2012]). Second, the challenge here is designing scalable algorithms that can

deal with the large number of variables and the vast amount of data. Indeed, very recently,

some works started to address this great challenge [e.g., Hu et al., 2013]. Video analysis

problems are natural to handle within the structured prediction framework since video streams

are inherently structured. The structure emerges both temporally (e.g., dependence between

pixels in consecutive frames) and spatially (e.g., dependence between adjacent pixels in a single

frame). We believe that the methodology proposed in the previous sections can be very suitable

for this domain.

Learning to tighten: In Section 1.2.4 we mentioned the standard LP relaxation for MAP

inference. Unfortunately, the first-order LP relaxation of Eq. (1.8) is often not tight on real-

world inference problems. Therefore, several recent works suggest to tighten the relaxation in

various ways [Sontag et al., 2008, Werner, 2008, Komodakis and Paragios, 2008, Batra et al.,

2011, Sontag et al., 2012]. However, all of these works focus solely on the prediction task and

do not address the effect of tightening on learning. Thus, it would be interesting to study the

problem of learning with tighter relaxations. As mentioned earlier (Section 1.3.4), learning with

LP relaxation can be understood as optimizing over an inner bound on the space of separating

weights w. Accordingly, tightening the relaxation at training has the effect of tightening this

bound on weights. One of the interesting questions that arise in this context is that of “region

pursuit”, namely, which additional constraints should be used for tightening the bound. Similar

71

to the input-specific trees problem, here too the problem is that of learning a procedure that

should work well at test time. Finally, it seems that the resulting learning problem is not easier

than the one which uses the basic relaxation, so there will be a need for efficient approximation

algorithms to perform the tightening.

Understanding integrality of LP relaxation: As mentioned in Section 1.3.4, in sur-

prisingly many cases, the LP relaxation at test time happens to be tight (i.e., an integral

solution is found). Investigating and quantifying this phenomenon is an important question

which can improve our theoretical understanding of the success of LP relaxations for structured

prediction problems. Moreover, such inquiry also has the potential of leading us to new and

better approximation methods. One promising step in this direction is to find the integrality-

dimension of structured prediction problems. More specifically, we would like to bound the

rate of tight solutions at test time as a function of the rate of tight solutions at train time and

the number of training samples. This would imply that if many train instances are exact, then

test instances are also very likely to be exact.

Semi-supervised highly structured learning: In this thesis we focused on the supervised

learning setting. However, supervised training requires large amounts of labeled data, which is

often expensive to obtain. On the other hand, in many domains unlabeled data is abundant.

For instance, we currently have access to a virtually unlimited number of images and text on

the Internet. This situation motivates the development of semi-supervised learning methods.

In the semi-supervised setting one tries to use a large number of unlabeled examples on top of

the small number of labeled examples in order to improve prediction accuracy. In recent years

there has been some effort to handle structured output prediction in the semi-supervised setting

[Altun et al., 2006, Brefeld and Scheffer, 2006, Belkin et al., 2005, Wang et al., 2009]. However,

in previous works relatively simple models were assumed where prediction is tractable. An

interesting question is how to extend this line of research to the regime of complex structured

models where prediction is hard and approximations are necessary. This nicely complements

the view of holistic prediction mentioned earlier, since to achieve background knowledge needed

for such prediction, large amounts of unlabeled data must inevitably be used.

In conclusion, I believe that structured output prediction will continue to be a powerful and

leading tool for solving complex tasks in machine learning. As we have seen, problems in this

regime pose interesting and challenging questions in both machine learning and optimization.

Developing new methods for structured output prediction that can handle large-scale datasets

accurately and efficiently is therefore a prominent goal of contemporary research in this field.

72

Bibliography

A. Agarwal, P. Bartlett, P. Ravikumar, and M. Wainwright. Information-theoretic lower bounds on

the oracle complexity of stochastic convex optimization. Information Theory, IEEE Transactions

on, 58(5):3235–3249, 2012.

Y. Altun, D. McAllester, and M. Belkin. Maximum margin semi-supervised learning for structured

variables. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural Information

Processing Systems 18, pages 33–40. MIT Press, Cambridge, MA, 2006.

G. H. Bakir, T. Hofmann, B. Schölkopf, A. J. Smola, B. Taskar, and S. V. N. Vishwanathan. Predicting

Structured Data. The MIT Press, 2007.

D. Batra, S. Nowozin, and P. Kohli. Tighter relaxations for map-mrf inference: A local primal-dual

gap based separation algorithm. In Conference on Uncertainty in Artificial Intelligence (AISTATS),

2011.

M. Belkin, P. Niyogi, and V. Sindhwani. On manifold regularization. In R. G. Cowell and

Z. Ghahramani, editors, AISTATS, pages 17–24. Society for Artificial Intelligence and Statistics,

2005. (Available electronically at http://www.gatsby.ucl.ac.uk/aistats/).

D. Bertsekas, A. Nedić, and A. Ozdaglar. Convex Analysis and Optimization. Athena Scientific

optimization and computation series. Athena Scientific, 2003. ISBN 9781886529458.

J. Besag. On the Statistical Analysis of Dirty Pictures. Journal of the Royal Statistical Society. Series

B (Methodological), 48(3):259–302, 1986.

S. Boyd, N. Parikh, and E. Chu. Distributed Optimization and Statistical Learning Via the Alternating

Direction Method of Multipliers. Now Publishers, 2011. ISBN 9781601984609. URL http://books.

google.co.il/books?id=8MjgLpJ0_4YC.

Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2001.

J. K. Bradley and C. Guestrin. Learning tree conditional random fields. In J. Fürnkranz and

T. Joachims, editors, Proceedings of the 27th International Conference on Machine Learning (ICML-

10), pages 127–134. Omnipress, 2010.

U. Brefeld and T. Scheffer. Semi-supervised learning for structured output variables. In Proceedings of

the 23rd international conference on Machine learning, ICML ’06, pages 145–152, New York, NY,

73

http://books.google.co.il/books?id=8MjgLpJ0_4YC
http://books.google.co.il/books?id=8MjgLpJ0_4YC

USA, 2006. ACM. ISBN 1-59593-383-2. doi: 10.1145/1143844.1143863. URL http://doi.acm.

org/10.1145/1143844.1143863.

V. Chandrasekaran and M. I. Jordan. Computational and statistical tradeoffs via convex relaxation.

CoRR, abs/1211.1073, 2012.

A. Chechetka and C. Guestrin. Evidence-specific structures for rich tractable crfs. In J. Lafferty,

C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, editors, Advances in Neural

Information Processing Systems 23, pages 352–360. 2010.

M. Collins. Discriminative training methods for hidden Markov models: Theory and experiments with

perceptron algorithms. In EMNLP, 2002.

M. Collins, A. Globerson, T. Koo, X. Carreras, and P. L. Bartlett. Exponentiated gradient algorithms

for conditional random fields and max-margin markov networks. The Journal of Machine Learning

Research, 9:1775–1822, 2008.

W. Cook and A. Rohe. Computing minimum-weight perfect matchings. INFORMS J. on Computing,

11(2):138–148, 1999.

A. Darwiche. A differential approach to inference in bayesian networks. Journal of the ACM, 50(3):

280–305, 2003.

R. Dechter. Constraint Processing. The Morgan Kaufmann Series in Artificial Intelligence Series.

Morgan Kaufmann Publishers, 2003.

R. Dechter and R. Mateescu. And/or search spaces for graphical models. Artificial Intelligence, 171

(2-3):73–106, 2007.

K. Dembczynski, W. Cheng, and E. Hüllermeier. Bayes optimal multilabel classification via

probabilistic classifier chains. In ICML, pages 279–286, 2010.

M. M. Deza and M. Laurent. Geometry of Cuts and Metrics. Algorithms and Combinatorics. Springer,

1997.

Y. Dinitz. Algorithm for solution of a problem of maximum flow in a network with power estimation.

Doklady Akademii nauk SSSR, 11:1277–1280, 1970.

J. Edmonds. Maximum matching and a polyhedron with 0, 1 vertices. Journal of Research of the

National Bureau of Standards, 69 B:125–130, 1965.

P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively

trained part-based models. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 32

(9):1627–1645, 2010.

T. Finley and T. Joachims. Training structural SVMs when exact inference is intractable. In

Proceedings of the 25th International Conference on Machine learning, pages 304–311, 2008.

74

http://doi.acm.org/10.1145/1143844.1143863
http://doi.acm.org/10.1145/1143844.1143863

M. E. Fisher. On the dimer solution of planar ising models. Journal of Mathematical Physics, 7(10):

1776–1781, 1966.

B. Flach and D. Schlesinger. Best labeling search for a class of higher order gibbs models. Pattern

Recognition and Image Analysis, 14:249–254, 2004.

L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of Mathematics,

8:399–404, 1956.

M. Frank and P. Wolfe. An algorithm for quadratic programming, volume 3, pages 95–110. 1956.

D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational problems via

finite-element approximations. Computers and Mathematics with Applications, 2:17–40, 1976.

A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the kitti vision benchmark

suite. In Computer Vision and Pattern Recognition (CVPR), Providence, USA, June 2012.

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of

images. IEEE Trans. PAMI, 6(6):721–741, 1984.

A. Globerson and T. Jaakkola. Fixing max-product: Convergent message passing algorithms for MAP

LP-relaxations. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, NIPS 20. MIT Press, 2008.

R. Glowinski and A. Marrocco. Sur lapproximation, par elements finis dordre un, et la resolution,

par penalisation-dualité, dune classe de problems de dirichlet non lineares. Revue Française

d’Automatique, Informatique, et Recherche Opérationelle, 9:4176, 1975.

D. M. Greig, B. T. Porteous, and A. H. Seheult. Exact maximum a posteriori estimation for binary

images. Journal of the Royal Statistical Society. Series B (Methodological), 51(2):pp. 271–279, 1989.

P. Hammer. Some network flow problems solved with pseudo-boolean programming. Operations

Research, 13:388–399, 1965.

T. Hazan and A. Shashua. Norm-product belief propagation: Primal-dual message-passing for

approximate inference. IEEE Transactions on Information Theory, 56(12):6294–6316, 2010.

T. Hazan and R. Urtasun. A primal-dual message-passing algorithm for approximated large scale

structured prediction. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta,

editors, Advances in Neural Information Processing Systems 23, pages 838–846. 2010.

B. He and X. Yuan. On the $o(1/n)$ convergence rate of the douglas-rachford alternating direction

method. SIAM J. Numer. Anal., 50(2):700–709, Apr. 2012. ISSN 0036-1429.

G. Heitz, S. Gould, A. Saxena, and D. Koller. Cascaded classification models: Combining models

for holistic scene understanding. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors,

Advances in Neural Information Processing Systems 21, pages 641–648. 2009.

H. Hu, D. Munoz, J. A. Bagnell, and M. Hebert. Efficient 3-d scene analysis from streaming data. In

IEEE International Conference on Robotics and Automation (ICRA), 2013.

75

H. Ishikawa. Exact optimization for markov random fields with convex priors. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 25(10):1333–1336, 2003.

T. Jebara. Perfect graphs and graphical modeling. In L. Bordeaux, Y. Hamadi, P. Kohli, and

R. Mateescu, editors, Tractability: Practical Approaches to Hard Problems. Cambridge Press, 2013.

T. Joachims. A support vector method for multivariate performance measures. In Proceedings of the

22nd International Conference on Machine Learning, pages 377–384. ACM Press, 2005.

T. Joachims, T. Finley, and C.-N. Yu. Cutting-plane training of structural svms. Machine Learning,

76(1), 2009.

J. Johnson. Convex Relaxation Methods for Graphical Models: Lagrangian and Maximum Entropy

Approaches. PhD thesis, EECS, MIT, 2008.

V. Jojic, S. Gould, and D. Koller. Fast and smooth: Accelerated dual decomposition for MAP

inference. In Proceedings of International Conference on Machine Learning (ICML), 2010.

J. H. Kappes and C. Schnörr. Map-inference for highly-connected graphs with dc-programming. In

G. Rigoll, editor, DAGM-Symposium, volume 5096 of Lecture Notes in Computer Science, pages

1–10. Springer, 2008.

J. H. Kappes, B. Savchynskyy, and C. Schnörr. A bundle approach to efficient map-inference by

lagrangian relaxation. In CVPR 2012, 2012.

J. H. Kappes, B. Andres, F. A. Hamprecht, C. Schnörr, S. Nowozin, D. Batra, S. Kim, B. X. Kausler,

J. Lellmann, N. Komodakis, and C. Rother. A comparative study of modern inference techniques

for discrete energy minimization problems. In Proc. IEEE Conf. Comput. Vision Pattern Recog.,

2013.

P. W. Kasteleyn. Dimer statistics and phase transitions. Journal of Mathematical Physics, 4(2):

287–293, 1963.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, 220:

671–680, 1983.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT Press,

2009.

V. Kolmogorov. Convergent tree-reweighted message passing for energy minimization. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 28(10):1568–1583, 2006.

N. Komodakis. Efficient training for pairwise or higher order crfs via dual decomposition. In

Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR ’11,

pages 1841–1848, Washington, DC, USA, 2011. IEEE Computer Society. ISBN 978-1-4577-0394-2.

doi: 10.1109/CVPR.2011.5995375. URL http://dx.doi.org/10.1109/CVPR.2011.5995375.

76

http://dx.doi.org/10.1109/CVPR.2011.5995375

N. Komodakis and N. Paragios. Beyond loose lp-relaxations: Optimizing MRFs by repairing cycles.

In ECCV, pages 806–820, 2008.

N. Komodakis and G. Tziritas. Approximate labeling via graph cuts based on linear programming.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 29(8):1436–1453, Aug 2007.

N. Komodakis, N. Paragios, and G. Tziritas. Mrf optimization via dual decomposition: Message-

passing revisited, 2007.

T. Koo, A. M. Rush, M. Collins, T. Jaakkola, and D. Sontag. Dual decomposition for parsing with

non-projective head automata. In EMNLP, 2010.

F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Factor graphs and the sum-product algorithm.

IEEE Transactions on Information Theory, 2001. to appear.

A. Kulesza and F. Pereira. Structured learning with approximate inference. In J. Platt, D. Koller,

Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages

785–792. MIT Press, Cambridge, MA, 2008.

A. Kumar and S. Zilberstein. MAP estimation for graphical models by likelihood maximization. In

Proceedings of the Twenty-Fourth Neural Information Processing Systems Conference, pages 1180–

1188, Vancouver, British Columbia, Canada, 2010.

A. Kumar, S. Zilberstein, and M. Toussaint. Message-passing algorithms for map estimation using

dc programming. In Proceedings of the Fifteenth International Conference on Artificial Intelligence

and Statistics, pages 656–664, La Palma, Canary Islands, 2012.

M. P. Kumar, V. Kolmogorov, and P. H. Torr. An analysis of convex relaxations for map estimation

of discrete mrfs. 10:71–106, 2009.

M. P. Kumar, O. Veksler, and P. H. Torr. Improved moves for truncated convex models. Journal of

Machine Learning Research, 12:31–67, Feb. 2011.

S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher. Block-coordinate Frank-Wolfe optimization

for structural SVMs. In Proceedings of The 30th International Conference on Machine Learning,

pages 53–61, 2013.

J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for

segmenting and labeling sequence data. In Proc. 18th Int. Conf. on Machine Learning, pages

282–289, 2001.

J. Lee, J. Naradowsky, and D. A. Smith. A discriminative model for joint morphological disambiguation

and dependency parsing. In Proceedings of the 49th Annual Meeting of the Association for

Computational Linguistics: Human Language Technologies - Volume 1, HLT ’11, pages 885–894,

Stroudsburg, PA, USA, 2011. Association for Computational Linguistics. ISBN 978-1-932432-87-9.

URL http://dl.acm.org/citation.cfm?id=2002472.2002584.

77

http://dl.acm.org/citation.cfm?id=2002472.2002584

P. Liang, H. Daumé, III, and D. Klein. Structure compilation: trading structure for features. In

Proceedings of the 25th international conference on Machine learning, ICML ’08, pages 592–599,

New York, NY, USA, 2008. ACM.

D. Lowd and P. Domingos. Learning arithmetic circuits. In UAI, pages 383–392. AUAI Press, 2008.

A. Martins, N. Smith, and E. P. Xing. Concise integer linear programming formulations for dependency

parsing. In Proceedings of the 47th Annual Meeting of the Association for Computational Linguistics,

2009a.

A. Martins, N. Smith, and E. P. Xing. Polyhedral outer approximations with application to natural

language parsing. In Proceedings of the 26th International Conference on Machine Learning, 2009b.

A. L. Martins, M. A. T. Figueiredo, P. M. Q. Aguiar, N. A. Smith, and E. P. Xing. An augmented

lagrangian approach to constrained map inference. In ICML, pages 169–176, 2011.

D. McAllester, T. Hazan, and J. Keshet. Direct loss minimization for structured prediction. In

J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, editors, Advances in

Neural Information Processing Systems 23, pages 1594–1602. 2010.

O. Meshi, D. Sontag, T. Jaakkola, and A. Globerson. Learning efficiently with approximate inference

via dual losses. In ICML, pages 783–790, New York, NY, USA, 2010. ACM.

K. Murphy, Y. Weiss, and M. Jordan. Loopy belief propagation for approximate inference: an empirical

study. In Proceedings of Uncertainty in AI, 1999.

K. Murty. Linear programming. Wiley, 1983. URL http://books.google.com/books?id=

67PuAAAAMAAJ.

Y. Nesterov. Smooth minimization of non-smooth functions. Math. Prog., 103(1):127–152, May

2005. ISSN 0025-5610. doi: 10.1007/s10107-004-0552-5. URL http://dx.doi.org/10.1007/

s10107-004-0552-5.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan

Kaufmann, 1988.

D. Plummer and L. Lovász. Matching Theory. North-Holland Mathematics Studies. Elsevier Science,

1986.

H. Poon and P. Domingos. Sum-product networks: A new deep architecture. In UAI, pages 337–346,

2011.

M. Ranjbar, G. Mori, and Y. Wang. Optimizing complex loss functions in structured prediction. In

European Conference on Computer Vision, 2010.

M. Ranjbar, A. Vahdat, and G. Mori. Complex loss optimization via dual decomposition. In Computer

Vision and Pattern Recognition (CVPR), 2012.

78

http://books.google.com/books?id=67PuAAAAMAAJ
http://books.google.com/books?id=67PuAAAAMAAJ
http://dx.doi.org/10.1007/s10107-004-0552-5
http://dx.doi.org/10.1007/s10107-004-0552-5

N. Ratliff, J. A. D. Bagnell, and M. Zinkevich. (Online) subgradient methods for structured prediction.

In AISTATS, 2007.

P. Ravikumar and J. Lafferty. Quadratic programming relaxations for metric labeling and markov

random field map estimation. In Proceedings of the 23rd international conference on Machine

learning, ICML ’06, pages 737–744, New York, NY, USA, 2006. ACM.

P. Ravikumar, A. Agarwal, and M. J. Wainwright. Message-passing for graph-structured linear

programs: Proximal methods and rounding schemes. J. Mach. Learn. Res., 11:1043–1080, Mar.

2010. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=1756006.1756040.

C. Rother, V. Kolmogorov, V. Lempitsky, and M. Szummer. Optimizing binary mrfs via extended

roof duality. In Computer Vision and Pattern Recognition, 2007. CVPR ’07. IEEE Conference on,

pages 1–8, 2007.

A. M. Rush, D. Sontag, M. Collins, and T. Jaakkola. On dual decomposition and linear programming

relaxations for natural language processing. In Proceedings of the 2010 Conference on Empirical

Methods in Natural Language Processing (EMNLP), 2010.

B. Savchynskyy, S. Schmidt, J. Kappes, and C. Schnorr. A study of Nesterov’s scheme for lagrangian

decomposition and map labeling. CVPR, 2011.

S. Schmidt, B. Savchynskyy, J. H. Kappes, and C. Schnörr. Evaluation of a first-order primal-dual

algorithm for MRF energy minimization. In EMMCVPR. Springer, 2011.

A. G. Schwing, T. Hazan, M. Pollefeys, and R. Urtasun. Globally Convergent Dual MAP LP

Relaxation Solvers using Fenchel-Young Margins. In Proc. NIPS, 2012.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for svm.

In Proceedings of the 24th international conference on Machine learning, pages 807–814. ACM,

2007.

O. Shamir and T. Zhang. Stochastic gradient descent for non-smooth optimization: Convergence

results and optimal averaging schemes. In ICML, 2013.

Y. Shimony. Finding the MAPs for belief networks is NP-hard. Aritifical Intelligence, 68(2):399–410,

1994.

N. Z. Shor, K. C. Kiwiel, and A. Ruszcayǹski. Minimization methods for non-differentiable functions.

Springer-Verlag New York, Inc., New York, NY, USA, 1985.

D. Sontag and T. Jaakkola. Tree block coordinate descent for MAP in graphical models. In Proceedings

of the 12th International Conference on Artificial Intelligence and Statistics (AI-STATS), volume 8,

pages 544–551. JMLR: W&CP, 2009.

D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and Y. Weiss. Tightening LP relaxations for

MAP using message passing. In Proceedings of the 24th Conference on Uncertainty in Artificial

Intelligence, pages 503–510, Arlington, Virginia, 2008. AUAI Press.

79

http://dl.acm.org/citation.cfm?id=1756006.1756040

D. Sontag, O. Meshi, T. Jaakkola, and A. Globerson. More data means less inference: A pseudo-max

approach to structured learning. In Advances in Neural Information Processing Systems 23, pages

2181–2189. 2010.

D. Sontag, A. Globerson, and T. Jaakkola. Introduction to dual decomposition for inference. In

Optimization for Machine Learning, pages 219–254. MIT Press, 2011.

D. Sontag, D. K. Choe, and Y. Li. Efficiently searching for frustrated cycles in MAP inference. In

Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial Intelligence (UAI-12),

pages 795–804, Corvallis, Oregon, 2012. AUAI Press.

R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala, M. Tappen, and

C. Rother. A comparative study of energy minimization methods for markov random fields with

smoothness-based priors. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 30(6):

1068–1080, 2008.

D. Tarlow and R. Zemel. Structured output learning with high order loss functions. In AISTATS,

2012.

D. Tarlow, I. E. Givoni, R. S. Zemel, and B. J. Frey. Graph cuts is a max-product algorithm. In

Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, 2011.

B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. In Advances in Neural

Information Processing Systems. MIT Press, 2003.

B. Taskar, V. Chatalbashev, and D. Koller. Learning associative Markov networks. In Proc. ICML.

ACM Press, 2004a.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. D. Manning. Max-margin parsing. In EMNLP,

2004b.

B. Taskar, S. Lacoste-Julien, and M. Jordan. Structured prediction, dual extragradient and Bregman

projections. JMLR, pages 1627–1653, 2006.

C. H. Teo, S. Vishwanathan, A. J. Smola, and Q. Le. Bundle methods for regularized risk minimization.

Journal of Machine Learning Research, 11:311–365, 2010.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and

interdependent output variables. Journal of Machine Learning Research, 6(2):1453, 2005.

M. Wainwright and M. I. Jordan. Graphical Models, Exponential Families, and Variational Inference.

Now Publishers Inc., Hanover, MA, USA, 2008.

M. Wainwright, T. Jaakkola, and A. Willsky. Tree-based reparameterization framework for analysis of

sum-product and related algorithms. IEEE Transactions on Information Theory, 49(5):1120–1146,

2003.

80

M. J. Wainwright. Estimating the ”wrong” graphical model: Benefits in the computation-limited

setting. Journal on Machince Learning Research, 7:1829–1859, Dec. 2006.

M. J. Wainwright, T. Jaakkola, and A. S. Willsky. Map estimation via agreement on trees: message-

passing and linear programming. IEEE Transactions on Information Theory, 51(11):3697–3717,

2005.

H. Wang and A. Banerjee. Online alternating direction method. In ICML, 2012.

Y. Wang, G. Haffari, S. Wang, and G. Mori. A rate distortion approach for semi-supervised conditional

random fields. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors,

Advances in Neural Information Processing Systems 22, pages 2008–2016. 2009.

D. Weiss and B. Taskar. Structured Prediction Cascades. In AISTATS, 2010.

Y. Weiss, C. Yanover, and T. Meltzer. MAP estimation, linear programming and belief propagation

with convex free energies. In Proceedings of the 23rd Conference on Uncertainty in Artificial

Intelligence, pages 416–425, Arlington, Virginia, 2007. AUAI Press.

T. Werner. A linear programming approach to max-sum problem: A review. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 29(7):1165–1179, 2007.

T. Werner. High-arity interactions, polyhedral relaxations, and cutting plane algorithm for soft

constraint optimisation (MAP-MRF). In CVPR, 2008.

T. Werner. Revisiting the decomposition approach to inference in exponential families and graphical

models. Technical Report CTU-CMP-2009-06, Czech Technical University, 2009.

C. Yanover, T. Meltzer, and Y. Weiss. Linear programming relaxations and belief propagation – an

empirical study. Journal of Machine Learning Research, 7:1887–1907, 2006.

J. Yao, S. Fidler, and R. Urtasun. Describing the scene as a whole: Joint object detection, scene

classification and semantic segmentation. In CVPR, pages 702–709. IEEE, 2012.

81

	Introduction
	The Prediction Problem
	Exact inference

	Approximate MAP inference
	Loopy Belief propagation
	Sampling
	Local search methods
	LP relaxation and dual decomposition
	Quadratic programming relaxation

	The Learning Problem
	Subgradient descent
	Cutting plane
	The stochastic Frank-Wolfe algorithm
	Approximate learning

	Results
	An Alternating Direction Method for Dual MAP LP Relaxation
	Convergence Rate Analysis of MAP Coordinate Minimization Algorithms
	Learning Efficiently with Approximate Inference via Dual Losses
	Learning Max-Margin Tree Predictors

	Discussion and Conclusions
	Future directions

