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Abstract. Maximum a-posteriori (MAP) estimation is an important
task in many applications of probabilistic graphical models. Although
finding an exact solution is generally intractable, approximations based
on linear programming (LP) relaxation often provide good approximate
solutions. In this paper we present an algorithm for solving the LP re-
laxation optimization problem. In order to overcome the lack of strict
convexity, we apply an augmented Lagrangian method to the dual LP.
The algorithm, based on the alternating direction method of multipliers
(ADMM), is guaranteed to converge to the global optimum of the LP re-
laxation objective. Our experimental results show that this algorithm is
competitive with other state-of-the-art algorithms for approximate MAP
estimation.
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1 Introduction

Graphical models are widely used to describe multivariate statistics for discrete
variables, and have found widespread applications in numerous domains. One
of the basic inference tasks in such models is to find the maximum a-posteriori
(MAP) assignment. Unfortunately, this is typically a hard computational prob-
lem which cannot be solved exactly for many problems of interest. It has turned
out that linear programming (LP) relaxations provide effective approximations
to the MAP problem in many cases (e.g., see [15, 21, 24]).

Despite the theoretical computational tractability of MAP-LP relaxations,
solving them in practice is a challenge for real world problems. Using off-the-
shelf LP solvers is typically inadequate for large models since the resulting LPs
have too many constraints and variables [29]. This has led researchers to seek
optimization algorithms that are tailored to the specific structure of the MAP-
LP [7, 13, 14, 16, 20, 28]. The advantage of such methods is that they work with
very simple local updates and are therefore easy to implement in the large scale
setting.

The suggested algorithms fall into several classes, depending on their ap-
proach to the problem. The TRW-S [14], MSD [28] and MPLP [7] algorithms
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employ coordinate descent in the dual of the LP. While these methods typically
show good empirical behavior, they are not guaranteed to reach the global op-
timum of the LP relaxation. This is a result of non strict-convexity of the dual
LP and the fact that block coordinate descent might get stuck in suboptimal
points under these conditions. One way to avoid this problem is to use a soft-max
function which is smooth and strictly convex, hence this results in globally con-
vergent algorithms [6, 10, 12]. Another class of algorithms [13, 16] uses the same
dual objective, but employs variants of subgradient descent to it. While these
methods are guaranteed to converge globally, they are typically slower in prac-
tice than the coordinate descent ones (e.g., see [13] for a comparison). Finally,
there are also algorithms that optimize the primal LP directly. One example is
the proximal point method of Ravikumar et al. [20]. While also globally conver-
gent, it has the disadvantage of using a double loop scheme where every update
involves an iterative algorithm for projecting onto the local polytope.

More recently, Martins et al. [17] proposed a globally convergent algorithm
for MAP-LP based on the alternating direction method of multipliers (ADMM)
[8, 5, 4, 2]. This method proceeds by iteratively updating primal and dual vari-
ables in order to find a saddle point of an augmented Lagrangian for the problem.
They suggest to use an augmented Lagrangian of the primal MAP-LP problem.
However, their formulation is restricted to binary pairwise factors and several
specific global factors. In this work, we propose an algorithm that is based on
the same key idea of ADMM, however it stems from augmenting the Lagrangian
of the dual MAP-LP problem instead. An important advantage of our approach
is that the resulting algorithm can be applied to models with general local fac-
tors (non-pairwise, non-binary). We also show that in practice our algorithm
converges much faster than the primal ADMM algorithm and that it compares
favorably with other state-of-the-art methods for MAP-LP optimization.

2 MAP and LP relaxation

Markov Random Fields (MRFs) are probabilistic graphical models that encode
the joint distribution of a set of discrete random variables X = {X1, ..., Xn}. The
joint probability is defined by combining a set C of local functions θc(xc), termed
factors. The factors depend only on (small) subsets of the variables (Xc ⊆ X )
and model the direct interactions between them (to simplify notation we drop
the variable name in Xc = xc; see [27]). The joint distribution is then given by:
P (x) ∝ exp

(∑
i θi(xi) +

∑
c∈C θc(xc)

)
, where we have included also singleton

factors over individual variables [27]. In many applications of MRFs we are
interested in finding the maximum probability assignment (MAP assignment).
This yields the optimization problem:

arg max
x

∑
i

θi(xi) +
∑
c∈C

θc(xc)

Due to its combinatorial nature, this problem is NP-hard for general graphical
models, and tractable only in isolated cases such as tree structured graphs. This
has motivated research on approximation algorithms.
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One of the most successful approximation schemes has been to use LP relax-
ations of the MAP problem. In this approach the original combinatorial prob-
lem is posed as a LP and then some of the constraints are relaxed to obtain
a tractable LP problem that approximates the original one. In our case, the
resulting MAP-LP relaxation problem is:

max
µ∈L(G)

∑
i

∑
xi

µi(xi)θi(xi) +
∑
c

∑
xc

µc(xc)θc(xc) (1)

where µ are auxiliary variables that correspond to (pseudo) marginal distribu-
tions, and L(G) is the reduced set of constraints called the local polytope [27],
defined by:

L(G) =

{
µ ≥ 0

∣∣∣∣∑xc\i
µc(xc\i, xi) = µi(xi) ∀c, i : i ∈ c, xi∑

xi
µi(xi) = 1 ∀i

}
In this paper we use the dual problem of Eq. (1), which takes the form:

min
δ

∑
i

max
xi

(
θi(xi) +

∑
c:i∈c

δci(xi)

)
+
∑
c

max
xc

(
θc(xc)−

∑
i:i∈c

δci(xi)

)
(2)

where δ are dual variables corresponding to the marginalization constraints in
L(G) (see [22, 28, 23]).1 This formulation offers several advantages. First, it
minimizes an upper bound on the true MAP value. Second, it provides an opti-
mality certificate through the duality gap w.r.t. a decoded primal solution [23].
Third, the resulting problem is unconstrained, which facilitates its optimization.
Indeed, several algorithms have been proposed for optimizing this dual problem.
The two main approaches are block coordinate descent [14, 28, 7] and subgra-
dient descent [16], each with its advantages and disadvantages. In particular,
coordinate descent algorithms are typically much faster at minimizing the dual,
while the subgradient method is guaranteed to converge to the global optimum
(see [23] for in-depth discussion).

Recently, Jojic et al. [13] presented an accelerated dual decomposition algo-
rithm which stems from adding strongly convex smoothing terms to the subprob-
lems in the dual function Eq. (2). Their method achieves a better convergence
rate over the standard subgradient method (O

(
1
ε

)
vs. O

(
1
ε2

)
). An alternative

approach, that is also globally convergent, has been recently suggested by Mar-
tins et al. [17]. Their approach is based on an augmented Lagrangian method,
which we next discuss.

3 The Alternating Direction Method of Multipliers

We now briefly review ADMM for convex optimization [8, 5, 4, 2].

1 An equivalent optimization problem can be derived via a dual decomposition ap-
proach [23].
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Consider the following optimization problem:

minimize f(x) + g(z) s.t. Ax = z (3)

where f and g are convex functions. The ADMM approach begins by adding the
function ρ

2 ‖Ax− z‖
2

to the above objective, where ρ > 0 is a penalty parameter.
This results in the optimization problem:

minimize f(x) + g(z) +
ρ

2
‖Ax− z‖2 s.t. Ax = z (4)

Clearly the above has the same optimum as Eq. (3) since when the constraints
Ax = z are satisfied, the added quadratic term equals zero. The Lagrangian of
the augmented problem Eq. (4) is given by:

Lρ(x, z, ν) = f(x) + g(z) + ν>(Ax− z) +
ρ

2
‖Ax− z‖2 (5)

where ν is a vector of Lagrange multipliers. The solution to the problem of
Eq. (4) is given by maxν minx,z Lρ(x, z, ν). The ADMM method provides an ele-
gant algorithm for finding this saddle point. The idea is to combine subgradient
descent over ν with coordinate descent over the x and z variables. The method
applies the following iterations:

xt+1 = arg min
x

Lρ(x, zt, νt)

zt+1 = arg min
z
Lρ(xt+1, z, νt)

νt+1 =νt + ρ
(
Axt+1 − zt+1

)
(6)

The algorithm consists of primal and dual updates, where the primal update is
executed sequentially, minimizing first over x and then over z. This split retains
the decomposition of the objective that has been lost due to the addition of the
quadratic term.

The algorithm is run either until the number of iterations exceeds a predefined
limit, or until some termination criterion is met. A commonly used such stopping

criterion is: ‖Ax− z‖2 ≤ ε and
∥∥zt+1 − zt

∥∥2 ≤ ε. These two conditions can serve
to bound the suboptimality of the solution.

The ADMM algorithm is guaranteed to converge to the global optimum of
Eq. (3) under rather mild conditions [2]. However, in terms of convergence rate,
the worst case complexity of ADMM is O( 1

ε2 ). Despite this potential caveat,
ADMM has been shown to work well in practice (e.g., [1, 26]). Recently, accel-
erated variants on the basic alternating direction method have been proposed
[9]. These faster algorithms are based on linearization and come with improved
convergence rate of O( 1

ε ), achieving the theoretical lower bound for first-order
methods [19]. In this paper we focus on the basic ADMM formulation and leave
derivation of accelerated variants to future work.
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4 The Augmented Dual LP Algorithm

In this section we derive our algorithm by applying ADMM to the dual MAP-
LP problem of Eq. (2). The challenge is to design the constraints in a way that
facilitates efficient closed-form solutions for all updates.

To this end, we duplicate the dual variables δ and denote the second copy by
δ̄. We then introduce additional variables λc corresponding to the summation
of δ’s pertaining to factor c. These agreement constraints are enforced through
δ̄, and thus we have a constraint δci(xi) = δ̄ci(xi) for all c, i : i ∈ c, xi, and
λc(xc) =

∑
i:i∈c δ̄ci(xi) for all c, xc.

Following the ADMM framework, we add quadratic terms and obtain the
augmented Lagrangian for the dual MAP-LP problem of Eq. (2):

Lρ(δ, λ, δ̄, γ, µ) =∑
i

max
xi

(
θi(xi) +

∑
c:i∈c

δci(xi)

)
+
∑
c

max
xc

(θc(xc)− λc(xc))

+
∑
c

∑
i:i∈c

∑
xi

γci(xi)
(
δci(xi)− δ̄ci(xi)

)
+
ρ

2

∑
c

∑
i:i∈c

∑
xi

(
δci(xi)− δ̄ci(xi)

)2
+
∑
c

∑
xc

µc(xc)

(
λc(xc)−

∑
i:i∈c

δ̄ci(xi)

)
+
ρ

2

∑
c

∑
xc

(
λc(xc)−

∑
i:i∈c

δ̄ci(xi)

)2

To see the relation of this formulation to Eq. (5), notice that (δ, λ) subsume the
role of x, δ̄ subsumes the role of z (with g(z) = 0), and the multipliers (γ, µ)
correspond to ν.

The updates of our algorithm, which stem from Eq. (6), are summarized
in Alg. 1 (a detailed derivation appears in Appendix A). In Alg. 1 we define
N(i) = {c : i ∈ c}, and the subroutine w = TRIM(v, d) that serves to clip the
values in the vector v at some threshold t (i.e., wi = min{vi, t}) such that the
sum of removed parts equals d > 0 (i.e.,

∑
i vi − wi = d). This can be carried

out efficiently in linear time (in expectation) by partitioning [3].

Notice that all updates can be computed efficiently so the cost of each itera-
tion is similar to that of message passing algorithms like MPLP [7] or MSD [28],
and to that of dual decomposition [13, 16]. Furthermore, significant speedup is
attained by caching some results for future iterations. In particular, the thresh-
old in the TRIM subroutine (the new maximum) can serve as a good initial guess
at the next iteration, especially at later iterations where the change in variable
values is quite small. Finally, many of the updates can be executed in parallel.
In particular, the δ update can be carried out simultaneously for all variables
i, and likewise all factors c can be updated simultaneously in the λ and δ̄ up-
dates. In addition, δ and λ can be optimized independently, since they appear
in different parts of the objective. This may result in considerable reduction in
runtime when executed on parallel architecture.2

2 In our experiments we used sequential updates.
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Algorithm 1 The Augmented Dual LP Algorithm (ADLP)

for t = 1 to T do
Update δ: for all i = 1, ..., n

Set θ̄i = θi +
∑
c:i∈c(δ̄ci −

1
ρ
γci)

θ̄′i = TRIM(θ̄i,
|N(i)|
ρ

)

q = (θ̄i − θ̄′i)/|N(i)|
Update δci = δ̄ci − 1

ρ
γci − q ∀c : i ∈ c

Update λ: for all c ∈ C
Set θ̄c = θc −

∑
i:i∈c δ̄ci + 1

ρ
µc

θ̄′c = TRIM(θ̄c,
1
ρ
)

Update λc = θc − θ̄′c

Update δ̄: for all c ∈ C, i : i ∈ c, xi
Set vci(xi) = δci(xi) + 1

ρ
γci(xi) +

∑
xc\i

λc(xc\i, xi) + 1
ρ

∑
xc\i

µc(xc\i, xi)

v̄c = 1
1+

∑
k:k∈c |Xc\k|

∑
k:k∈c |Xc\k|

∑
xk
vck(xk)

Update δ̄ci(xi) = 1
1+|Xc\i|

[
vci(xi)−

∑
j:j∈c,j 6=i |Xc\{i,j}|

(∑
xj
vcj(xj)− v̄c

)]
Update the multipliers:

γci(xi)← γci(xi) + ρ
(
δci(xi)− δ̄ci(xi)

)
for all c ∈ C, i : i ∈ c, xi

µc(xc)← µc(xc) + ρ
(
λc(xc)−

∑
i:i∈c δ̄ci(xi)

)
for all c ∈ C, xc

end for

5 Experimental Results

To evaluate our augmented dual LP (ADLP) algorithm (Alg. 1) we compare it
to two other algorithms for finding an approximate MAP solution. The first is
MPLP of Globerson and Jaakkola [7], which minimizes the dual LP of Eq. (2)
via block coordinate descent steps (cast as message passing). The second is
the accelerated dual decomposition (ADD) algorithm of Jojic et al. [13].3 We
conduct experiments on protein design problems from the dataset of Yanover
et al. [29]. In these problems we are given a 3D structure and the goal is to
find a sequence of amino-acids that is the most stable for that structure. The
problems are modeled by singleton and pairwise factors and can be posed as
finding a MAP assignment for the given model. This is a demanding setting in
which each problem may have hundreds of variables with 100 possible states on
average [29, 24].

Figure 1 shows two typical examples of protein design problems. It plots
the objective of Eq. (2) (computed using δ variables only) as a function of the
execution time for all algorithms. First, in Figure 1 (left) we observe that the co-
ordinate descent algorithm (MPLP) converges faster than the other algorithms,

3 For both algorithms we used the same C++ implementation used by Jojic et al.
[13], available at http://ai.stanford.edu/~sgould/svl. Our own algorithm was
implemented as an extension of their package.
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Fig. 1. Comparison of three algorithms for approximate MAP estimation: our aug-
mented dual LP algorithm (ADLP), accelerated dual decomposition algorithm (ADD)
by Jojic et al. [13], and the dual coordinate descent MPLP algorithm [7]. The figure
shows two examples of protein design problems, for each the dual objective of Eq. (2)
is plotted as a function of execution time. Dashed lines denote the value of the best
decoded primal solution.

however it tends to stop prematurely and yield suboptimal solutions. In contrast,
ADD and ADLP take longer to converge but achieve the globally optimal solu-
tion to the approximate objective. Second, it can be seen that the convergence
times of ADD and ADLP are very close, with a slight advantage to ADD. The
dashed lines in Figure 1 show the value of the decoded primal solution (assign-
ment) [23]. We see that there is generally a correlation between the quality of
the dual objective and the decoded primal solution, namely the decoded primal
solution improves as the dual solution approaches optimality. Nevertheless, we
note that there is no dominant algorithm in terms of decoding (here we show
examples where our decoding is superior). In many cases MPLP yields better
decoded solutions despite being suboptimal in terms of the dual objective (not
shown; this is also noted in [13]).

We also conduct experiments to study the effect of the penalty parameter ρ.
Our algorithm is guaranteed to globally converge for all ρ > 0, but its choice
affects the actual rate of convergence. In Figure 1 (right) we compare two values
of the penalty parameter ρ = 0.01 and ρ = 0.05. It shows that setting ρ = 0.01
results in somewhat slower convergence to the optimum, however in this case the
final primal solution (dashed line) is better than that of the other algorithms.
In practice, in order to choose an appropriate ρ, one can run a few iterations
of ADLP with several values and see which one achieves the best objective
[17]. We mention in passing that ADD employs an accuracy parameter ε which
determines the desired suboptimality of the final solution [13]. Setting ε to a
large value results in faster convergence to a lower accuracy solution. On the one
hand, this trade-off can be viewed as a merit of ADD, which allows to obtain
coarser approximations at reduced cost. On the other hand, an advantage of our
method is that the choice of penalty ρ affects only the rate of convergence and
does not impose additional reduction in solution accuracy over that of the LP
relaxation. In Figure 1 (left) we use ε = 1, as in Jojic et al., while in Figure 1



8 Ofer Meshi and Amir Globerson

10
0

10
1

10
2

10
3

−1000

−500

0

500

1000

1500

2000

2500

Runtime (secs)

O
bj

ec
tiv

e

1a8i

 

 

MPLP
ADD (ε=1)
ADLP (ρ=0.05)

10
1

10
2

10
3

10
4

100

150

200

250

300
1jo8

Runtime (secs)

O
b

je
ct

iv
e

 

 

ADLP
APLP

Fig. 2. (Left) Comparison for a side chain prediction problem similar to Figure 1 (left).
(Right) Comparison of our augmented dual LP algorithm (ADLP) and a generalized
variant (APLP) of the ADMM algorithm by Martins et al. [17] on a protein design
problem. The dual objective of Eq. (2) is plotted as a function of execution time.
Dashed lines denote the value of the best decoded primal solution.

(right) we compare two values ε = 1 and ε = 10 to demonstrate the effect of this
accuracy parameter.

We next compare performance of the algorithms on a side chain prediction
problem [29]. This problem is the inverse of the protein design problem, and
involves finding the 3D configuration of rotamers given the backbone structure
of a protein. Figure 2 (left) shows a comparison of MPLP, ADD and ADLP on one
of the largest proteins in the dataset (812 variables with 12 states on average). As
in the protein design problems, MPLP converges fast to a suboptimal solution.
We observe that here ADLP converges somewhat faster than ADD, possibly
because the smaller state space results in faster ADLP updates.

As noted earlier, Martins et al. [17] recently presented an approach that ap-
plies ADMM to the primal LP (i.e., Eq. (1)). Although their method is limited
to binary pairwise factors (and several global factors), it can be modified to
handle non-binary higher-order factors, as the derivation in Appendix B shows.
We denote this variant by APLP. As in ADLP, in the APLP algorithm all up-
dates are computed analytically and executed efficiently. Figure 2 (right) shows
a comparison of ADLP and APLP on a protein design problem. It illustrates
that ADLP converges significantly faster than APLP (similar results, not shown
here, are obtained for the other proteins).

6 Discussion

Approximate MAP inference methods based on LP relaxation have drawn much
attention lately due to their practical success and attractive properties. In this
paper we presented a novel globally convergent algorithm for approximate MAP
estimation via LP relaxation. Our algorithm is based on the augmented La-
grangian method for convex optimization, which overcomes the lack of strict
convexity by adding a quadratic term to smooth the objective. Importantly, our
algorithm proceeds by applying simple to implement closed-form updates, and
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it is highly scalable and parallelizable. We have shown empirically that our algo-
rithm compares favorably with other state-of-the-art algorithms for approximate
MAP estimation in terms of accuracy and convergence time.

Several existing globally convergent algorithms for MAP-LP relaxation rely
on adding local entropy terms in order to smooth the objective [6, 10, 12, 13].
Those methods must specify a temperature control parameter which affects the
quality of the solution. Specifically, solving the optimization subproblems at high
temperature reduces solution accuracy, while solving them at low temperature
might raise numerical issues. In contrast, our algorithm is quite insensitive to
the choice of such control parameters. In fact, the penalty parameter ρ affects
the rate of convergence but not the accuracy or numerical stability of the al-
gorithm. Moreover, despite lack of fast convergence rate guarantees, in practice
the algorithm has similar or better convergence times compared to other globally
convergent methods in various settings. Note that [17] also show an advantage
of their primal based ADMM method over several baselines.

Several improvements over our basic algorithm can be considered. One such
improvement is to use smart initialization of the variables. For example, since
MPLP achieves larger decrease in objective at early iterations, it is possible to
run it for a limited number of steps and then take the resulting variables δ for
the initialization of ADLP. Notice, however, that for this scheme to work well,
the Lagrange multipliers γ and µ should be also initialized accordingly. Another
potential improvement is to use an adaptive penalty parameter ρt (e.g., [11]).
This may improve convergence in practice, as well as reduce sensitivity to the
initial choice of ρ. On the downside, the theoretical convergence guarantees of
ADMM no longer hold in this case. Martins et al. [17] show that the ADMM
framework is also suitable for handling certain types of global factors, which
include a large number of variables in their scope (e.g., XOR factor). Using an
appropriate formulation, it is possible to incorporate such factors in our dual
LP framework as well.4 Finally, it is likely that our method can be further
improved by using recently introduced accelerated variants of ADMM [9]. Since
these variants achieve asymptotically better convergence rate, the application of
such methods to MAP-LP similar to the one we presented here will likely result
in faster algorithms for approximate MAP estimation.

In this paper, we assumed that the model parameters were given. However,
in many cases one wishes to learn these from data, for example by minimizing a
prediction loss (e.g., hinge loss [25]). We have recently shown how to incorporate
dual relaxation algorithms into such learning problems [18]. It will be interest-
ing to apply our ADMM approach in this setting to yield an efficient learning
algorithm for structured prediction problems.

Acknowledgments. We thank Ami Wiesel and Elad Eban for useful discus-
sions and comments on this manuscript. We thank Stephen Gould for his SVL
code. Ofer Meshi is a recipient of the Google European Fellowship in Machine
Learning, and this research is supported in part by this Google Fellowship.

4 The auxiliary variables λc are not used in this case.
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A Derivation of Augmented Dual LP Algorithm

In this section we derive the ADMM updates for the augmented Lagrangian of
the dual MAP-LP which we restate here for convenience:

Lρ(δ, λ, δ̄, γ, µ) =∑
i

max
xi

(
θi(xi) +

∑
c:i∈c

δci(xi)

)
+
∑
c

max
xc

(θc(xc)− λc(xc))

+
∑
c

∑
i:i∈c

∑
xi

γci(xi)
(
δci(xi)− δ̄ci(xi)

)
+
ρ

2

∑
c

∑
i:i∈c

∑
xi

(
δci(xi)− δ̄ci(xi)

)2
+
∑
c

∑
xc

µc(xc)

(
λc(xc)−

∑
i:i∈c

δ̄ci(xi)

)
+
ρ

2

∑
c

∑
xc

(
λc(xc)−

∑
i:i∈c

δ̄ci(xi)

)2

Updates:

– The δ update:
For each variable i = 1, ..., n consider a block δi which consists of δci for all
c : i ∈ c. For this block we need to minimize the following function:

max
xi

(
θi(xi) +

∑
c:i∈c

δci(xi)

)
+
∑
c:i∈c

∑
xi

γci(xi)δci(xi)+
ρ

2

∑
c:i∈c

∑
xi

(
δci(xi)− δ̄ci(xi)

)2
Equivalently, this can be written more compactly in vector notation as:

min
δi

1

2
‖δi‖2 − (δ̄i −

1

ρ
γi)
>δi +

1

ρ
max
xi

(θi(xi) +
∑
c:i∈c

δci(xi))

where δ̄i and γi are defined analogous to δi. The closed-form solution to
this QP is given by the update in Alg. 1. It is obtained by inspecting KKT
conditions and exploiting the structure of the summation inside the max (for
a similar derivation see [3]).

– The λ update:
For each factor c ∈ C we seek to minimize the function:

max
xc

(θc(xc)− λc(xc)) +
∑
xc

µc(xc)λc(xc) +
ρ

2

∑
xc

(
λc(xc)−

∑
i:i∈c

δ̄ci(xi)

)2

In equivalent vector notation we have the problem:

min
λc

1

2
‖λc‖2 −

(∑
i:i∈c

δ̄ci −
1

ρ
µc

)>
λc +

1

ρ
max
xc

(θc(xc)− λc(xc))

This QP is very similar to that of the δ update and can be solved using the
same technique. The resulting closed-form update is given in Alg. 1.
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– The δ̄ update:

For each c ∈ C we consider a block which consists of δ̄ci for all i : i ∈ c. We
seek a minimizer of the function:

−
∑
i:i∈c

∑
xi

γci(xi)δ̄ci(xi) +
ρ

2

∑
i:i∈c

∑
xi

(
δci(xi)− δ̄ci(xi)

)2
−
∑
xc

µc(xc)
∑
i:i∈c

δ̄ci(xi) +
ρ

2

∑
xc

(
λc(xc)−

∑
i:i∈c

δ̄ci(xi)

)2

Taking partial derivative w.r.t. δ̄ci(xi) and setting to 0 yields:

δ̄ci(xi) =
1

1 + |Xc\i|

vci(xi)− ∑
j:j∈c,j 6=i

|Xc\{i,j}|
∑
xj

δ̄cj(xj)


where: vci(xi) = δci(xi) + 1

ργci(xi) +
∑
xc\i

λc(xc\i, xi) + 1
ρ

∑
xc\i

µc(xc\i, xi).

Summing this over xi and i : i ∈ c and plugging back in, we get the update
in Alg. 1.

– Finally, the multipliers update is straightforward.

B Derivation of Augmented Primal LP Algorithm

We next derive the algorithm for optimizing Eq. (1) with general local factors.
Consider the following formulation which is equivalent to the primal MAP-LP

problem of Eq. (1). Define:

fi(µi) =

{∑
xi
µi(xi)θi(xi) µi(xi) ≥ 0 and

∑
xi
µi(xi) = 1

−∞ otherwise

fc(µc) =

{∑
xc
µc(xc)θc(xc) µc(xc) ≥ 0 and

∑
xc
µc(xc) = 1

−∞ otherwise

f accounts for the non-negativity and normalization constraints in L(G). We
add the marginalization constraints via copies of µc for each i ∈ c, denoted by
µ̄ci. Thus we get the augmented Lagrangian:

Lρ(µ, µ̄, δ, β) =∑
i

fi(µi) +
∑
c

fc(µc)

−
∑
c

∑
i:i∈c

∑
xi

δci(xi) (µ̄ci(xi)− µi(xi))−
ρ

2

∑
c

∑
i:i∈c

∑
xi

(µ̄ci(xi)− µi(xi))2

−
∑
c

∑
i:i∈c

∑
xc

βci(xc) (µ̄ci(xc)− µc(xc))−
ρ

2

∑
c

∑
i:i∈c

∑
xc

(µ̄ci(xc)− µc(xc))2
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where µ̄ci(xi) =
∑
xc\i

µ̄ci(xc\i, xi).

To draw the connection with Eq. (5), in this formulation µ subsumes the
role of x, µ̄ subsumes the role of z (with g(z) = 0), and the multipliers (δ, β)
correspond to ν. We next show the updates which result from applying Eq. (6)
to this formulation.

– Update µi for all i = 1, ..., n:

µi ← arg max
µi∈∆i

µ>i

(
θi +

∑
c:i∈c

(δci + ρMiµ̄ci)

)
− 1

2
µ>i (ρ|N(i)|I)µi

where Miµ̄ci =
∑
xc\i

µ̄ci(xc\i, ·).
We have to maximize this QP under simplex constraints on µi. Notice that
the objective matrix is diagonal, so this can be solved in closed form by
shifting the target vector and then truncating at 0 such that the sum of
positive elements equals 1 (see [3]). The solution can be computed in linear
time (in expectation) by partitioning [3].

– Update µc for all c ∈ C:

µc ← arg max
µc∈∆c

µ>c

(
θc +

∑
i:i∈c

(βci + ρµ̄ci)

)
− 1

2
µ>c (ρ|N(c)|I)µc

where N(c) = {i : i ∈ c}.
Again we have a projection onto the simplex with diagonal objective matrix,
which can be done efficiently.

– Update µ̄ci for all c ∈ C, i : i ∈ c:

µ̄ci ← arg max
µ̄ci

µ̄>ci
(
M>i (ρµi − δci)− βci + ρµc

)
− ρ

2
µ̄>ci
(
M>i Mi + I

)
µ̄ci

Here we have an unconstrained QP, so the solution is obtained by H−1v.
Further notice that the inverse H−1 can be computed in closed form. To see
how, M>i Mi is a block-diagonal matrix with blocks of ones with size |Xi|.
Therefore, H = ρ

(
M>i Mi + I

)
is also block-diagonal. It follows that the

inverse H−1 is a block-diagonal matrix where each block is the inverse of the
corresponding block in H. Finally, it is easy to verify that the inverse of a

block ρ
(
1|Xi| + I|Xi|

)
is given by 1

ρ

(
I|Xi| − 1

|Xi|+11|Xi|

)
.

– Update the multipliers:

δci(xi)←δci(xi) + ρ (µ̄ci(xi)− µi(xi)) for all c ∈ C, i : i ∈ c, xi
βci(xc)←βci(xc) + ρ (µ̄ci(xc)− µc(xc)) for all c ∈ C, i : i ∈ c, xc
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