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1 Bounding the eigenvalues: Gershgorin Disc Theorem

We will now see a simple but extremely useful bound on the eigenvalues of a matrix, given
by the Gershgorin disc theorem. Many useful variants of this bound can also be derived
from the observation that for any invertible matrix S, the matrices S−1MS and M have the
same eigenvalues (prove it!).

Theorem 1.1 (Gershgorin Disc Theorem) Let M ∈ Cn×n. Let Ri = ∑j 6=i
∣∣Mij

∣∣. Define the
set

Disc(Mii, Ri) := {z | z ∈ C, |x−Mii| ≤ Ri} .

If λ is an eigenvalue of M, then

λ ∈
n⋃

i=1

Disc(Mii, Ri) .

Proof: Let x ∈ Cn be an eigenvector corresponding to the eigenvalue λ. Let i0 =
argmaxi∈[n]{|xi|}. Since x is an eigenvector, we have

Mx = λx ⇒ ∀i ∈ [n]
n

∑
j=1

Mijzj = λxi .

In particular, we have that for i = i0,

n

∑
j=1

Mi0 jxj = λxi0 ⇒
n

∑
j=1

Mi0 j
xj

xi0
= λ ⇒ ∑

j 6=i0

Mi0 j
xj

xi0
= λ−Mi0i0 .

Thus, we have

|λ−Mi0i0 | ≤ ∑
j 6=i0

∣∣Mi0 j
∣∣ · ∣∣∣∣ xj

xi0

∣∣∣∣ ≤ ∑
j 6=i0

∣∣Mi0 j
∣∣ = Ri0 .
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1.1 An application to compressed sensing

The Gershgorin disc theorem is quite useful in compressed sensing, to ensure what is
known as the “Restricted Isometry Property” for the measurement matrices.

Definition 1.2 A matrix A ∈ Rk×n is said to have the restricted isometry property with parame-
ters (t, δt) if

(1− δt) · ‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δt) · ‖x‖2

for all x ∈ Rn which satisfy |{i | xi 6= 0}| ≤ t.

Thus, we want the transformation A to be approximately norm preserving for all sparse
vectors x. This can of course be ensured for all x by taking A = id, but we require k � n
for the applications in compressed sensing. In general, the restricted isometry property
is NP-hard to verify and can thus also be hard to reason about for a given matrix. The
Gershgorin Disc Theorem lets us derive a much easier condition which is sufficient to
ensure the restricted isometry property.

Definition 1.3 Let A ∈ Rk×n be such that
∥∥∥A(i)

∥∥∥ = 1 for each column A(i) of A. Define the
coherence of A as

µ(A) = max
i 6=j

∣∣∣〈A(i), A(j)
〉∣∣∣ .

We will prove the following

Proposition 1.4 Let A ∈ Rk×n be such that
∥∥∥A(i)

∥∥∥ = 1 for each column A(i) of A. Then, for any
t, the matrix A has the restricted isometry property with parameters (t, (t− 1)µ(A)).

Note that the bound becomes meaningless if s ≥ 1+ 1
µ(A)

. However, the above proposition
shows that it may be sufficient to bound µ(A) (which is also easier to check in practice).

Proof: Consider any x such that |{i | xi 6= 0}| ≤ t. Let S denote the support of x i.e.,
S = {i | xi 6= 0}. Let AS denote the k × |S| submatrix where we only keep the columns
corresponding to indices in S. Let xS denote x restricted to the non-zero entries. Then

‖Ax‖2 = ‖ASxS‖2 =
〈

AT
S ASxS, xS

〉
.

Thus, it suffices to bound the eigenvalues of the matrix AT
S AS. Note that (AS)ij =

〈
A(i), A(j)

〉
.

Thus the diagonal entries are 1 and the off-diagonal entries are bounded by µ(A) in abso-
lute value. By the Gershgorin Disc Theorem, for any eigenvalue λ of A, we have

|λ− 1| ≤ (t− 1) · µ(A) .
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Thus, we have

(1− (t− 1) · µ(A)) · ‖x‖2 ≤ ‖Ax‖2 ≤ (1 + (t− 1) · µ(A)) · ‖x‖2 ,

as desired.

The theorem is also very useful for bounding how much the eigenvalues of matrix change
due to a perturbation. We will see an example of this in the homework.

2 Solving systems of linear equations: Gaussian elimination

Given a system of linear equations Ax = b for A ∈ Fm×n, b ∈ Fm, recall that we can
solve the system or determine that there is no solution by converting the matrix [A | b] to
a row-reduced form using elementary row operations.

Definition 2.1 A matrix M ∈ Fm×n is said to be in row-reduced form if

- The first non-zero entry in each row (known as the leading entry) is 1.

- If the leading entry in row i0 is in column j0, then Mij = 0 for all i > i0 and j ≤ j0.

- All non-zero rows occur above the zero rows.

Notice that a matrix in the row-reduced form is always upper triangular. The system has
no solution if and only if there is a non-zero row with a leading entry in the last column
(corresponding to the entries of b). Also, if the system has a solution, then it can easily be
found using back-substitution, starting from the last non-zero row.

Also, recall that an elementary row operations consist of the following (using Mi to denote
the ith row of M):

- Swapping the rows Mi and Mj, for some i, j,∈ [m].

- Mi ← c ·Mi for some i ∈ [m], c ∈ F \ {0}.

- Mi ← Mi + c ·Mj for some i, j ∈ [m], c ∈ F.

A matrix M can always be converted to a row-reduced form using elementary row oper-
ations, which gives a general algorithm for solving a system of linear equations over any
field. However, the time taken by this algorithm can be as large as Ω(n3), which is pro-
hibitive for large matrices. In the next lecture, we will discuss methods which can take
advantage of sparsity to significantly speed up the solution of linear systems.

Exercise 2.2 Prove that performing elementary row operations on a given matrix M changes nei-
ther the row rank, nor the column rank of M. Use this to prove that for any matrix M, the row-rank
and column-rank are equal.
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3 Solving sparse systems of linear equations

Given A ∈ Rm×n, if we have a representation of the non-zero entries of A in “list form” i.e.,
a list of the non-zero entries in each row, then the for any vector v, if the matrix has a total
of N non-zero entries, then for any vector v, the product Av can be computed using O(N)
arithmetic operations. We will keep this as our base cost and try to compute a solution to
Ax = b using as few matrix-vector multiplications as possible.

For the purposes of the discussion below, we will assume that A ∈ Rn×n is a symmetric,
positive-definite matrix (written as A � 0). This assumption is not as restrictive as it
sounds, and in particular is no more restrictive than assuming that A is invertible. Given
a system A0x = b0, we can always multiply both sides by AT

0 and obtain AT
0 A0x = AT

0 b0,
where the matrix AT

0 A0 is now positive-definite (if A0 is invertible). Note that AT
0 A0 may

not be sparse, but we can still compute AT
0 A0v in O(N) operations for any vector v using

only O(N) operations (we will also need the list of non-zero entries in every column for
this). Taking A = AT

0 A0 and b = AT
0 b0 satisfies the required assumptions.

Remark 3.1 The methods we discuss here will require analyzing distances and inner products, and
thus we will work with matrices with real entries (though everything we say will extend easily to
complex matrices).

3.1 Steepest descent

Given a system Ax = b with A � 0, we apply a method for minimizing the function

f (x) =
1
2
· 〈Ax, x〉 − 〈b, x〉+ c

for some arbitrary constant c ∈ R. This can be motivated by recalling that we originally
had the system A0x = b0 and Ax = b was obtained by multiplying both sides by AT

0 . If we
consider minimizing the least square distance, we get

‖A0x− b0‖2 = 〈A0x, A0x〉 − 2 〈b0, A0x〉+ ‖b0‖2 = 〈Ax, x〉 − 2 〈b, x〉+ ‖b0‖2 .

Of course, scaling by a factor of 2 and changing the constant term does not change the
minimizer. If u is the solution to the linear system, we can also re-write the above as

‖A0(x− u)‖2 = 〈A(x− u), (x− u)〉 = 〈x− u, x− u〉A ,

where 〈x, y〉A denotes the function 〈Ax, y〉.

Exercise 3.2 Let A ∈ Rn×n be a positive definite matrix. Let the function µ : Rn ×Rn → R be
defined as µ(x, y) = 〈Ax, y〉. Check that µ is an inner product. We will use 〈·, ·〉A to this inner
product.
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The inner product 〈·, ·〉A and the associated norm are sometimes more convenient for mea-
suring the distance to the solution u since this distance actually measures the least square
error in the “output” A0x rather than the “input” x. We will need this inner product when
working with the conjugate gradient method.

We will use the following algorithm for solving the linear system:

- Start with an arbitrary vector x0.

- At time t, update

xt+1 = xt − η · ∇ f (xt) = η · (Axt − b) .

The method can also be analyzed by choosing an optimal step size ηt at each time t but we
will work with the simpler variant here. Let u be the solution to the system Ax = b. We
note that

xt+1 − u = xt − u− η · A(xt − u) = (I − ηA)(xt − u) .

By induction,

xt − u = (I − ηA)t(x0 − u) ⇒ ‖xt − u‖2 ≤ ‖I − ηA‖t
2 ‖x0 − u‖2 ,

where we used the fact that if λ is an eigenvalue of M, then λt is an eigenvalue of Mt,
which gives that

∥∥(I − ηA)t
∥∥

2 = ‖I − ηA‖t
2. Thus, if ‖I − ηA‖2 is small, we can reach a

point close to the solution u in a small number of steps. We now choose η to minimize
‖I − ηA‖2. Let 0 < λ1 ≤ · · · ≤ λn denote the eigenvalues of A. Then, the eigenvalues of
I − ηA are 1− ηλ1 ≥ · · · ≥ 1− ηλn. Thus, we have

‖I − ηA‖2 = max {|1− ηλ1| , |1− ηλn|} .

Check that this is minimized for λ = 2
λ1+λn

. Plugging this, we get that

‖I − ηA‖2 = 1− 2
λn
λ1

+ 1
= 1− 2

κ + 1
.

Here κ = λn/λ1 is known as the condition number of the matrix A. Using this, we get that
‖xt − u‖ ≤ ε ‖x0 − u‖ after O(κ log(1/ε)) iterations. Notice that the cost of each iteration
is just O(1) matrix-vector multiplications.

Exercise 3.3 Obtain a similar bound for the distance ‖xt − u‖A defined as
√
〈(x− u), (x− u)〉A.

In the next lecture, we will discuss the conjugate gradient method, which can obtain a
similar guarantee in O(

√
κ log(1/ε)) iterations.
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