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1 Low-rank approximation for matrices

Given a matrix A € C™*", we want to find a matrix B of rank at most k which “approxi-
mates” A. For now we will consider the notion of approximation in spectral norm i.e., we
want to minimize ||A — B||,, where

A—B
[(A=B)ly = max A= Bl
0#0 k[P

Here, ||v], = +/(v,v) denotes the norm defined by the standard inner product on C".
The 2 in the notation ||-||, comes from the express from the expression we get by ex-
pressing v in the orthonormal basis of the coordinate vectors. If v = (cy,...,c,)T, then

loll, = (Xt e |2> 2 which is simply the Euclidean norm we are familiar with !. Note
that while the norm here seems to be defined in terms of the coefficients, which indeed
depend on the choice of the orthonormal basis, the value of the norm is in fact \/(v,v)
which is just a function of the vector itself and not of the basis we are working with. The basis and
the coefficients merely provide a convenient way of computing the norm.

SVD also gives the optimal solution for another notion of approximation: minimizing the
Frobenius norm ||A — B||y, which equals (¥;(A; — Bij)?)!/2. We will see this later. Let
A = Y|, w;iv} be the singular value decomposition of Aand leto; > -+ >0, > 0. Ifk > 7,
we can simply use B = A since rank(A) = r. If k < r, we claim that Ay = Y, o;w;v; is
the optimal solution. If is easy to check the following.

Proposition 1.1 ||A — Ay|l, = 0k1.

Proof: Complete vy,..., v, to an orthonormal basis vy, ...,v, for C". Given any v € C",
we can uniquely express it as } | ; ¢; - v; for appropriate coefficients cy, ..., c,. Thus, we

In general, one can consider the norm loll, == (2 Jeil? )1/ P for any p > 1. While these are indeed valid
notions of distance satisfying a triangle inequality for any p > 1, they do not arise as a square root of an inner
product when p # 2.
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r

r n r n
(A= Ax)o = <Z Ui'“’]’”}'*) (Zci-m) = Y Y a0 (o) wp =} cjoj-wj,
i=1

j=k+1 j=k+1i=1 j=k+1

where the last equality uses the orthonormality of {vy,...,v,}. We can also complete
w1, ..., W, to an orthonormal basis wy, . .., wy, for C™. Since (A — Ay) is already expressed
in this basis above, we get that

;
Z €0 - Wi
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Finally, as in the computation with Rayleigh quotients, we have that for any v # 0 ex-
pressedasv =Y ' ;¢ v,
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This gives that ||A — Ag||, < 0k4+1. Check that it is in fact equal to o1 (Why?) [ ]

In fact the proof above actually shows the following:

Exercise 1.2 Let M € C"*" be any matrix with singular values oy > - - - o > 0. Then, |M||, =
oy i.e., the spectral norm of a matrix is actually equal to its largest singular value.

Thus, we know that the error of the best approximation B is at most 0. To show the
lower bound, we need the following fact.

Exercise 1.3 Let V be a finite-dimensional vector space and let Sy, Sy be subspaces of V. Then,
S1 N Sy is also a subspace and satisfies

dim(S$1NSy) > dim(S;) 4+ dim(S;) — dim(V).
We can now show the following.

Proposition 1.4 Let B € C"*" have rank(B) < kand let k < r. Then |A — B||, > 0j1.

Proof: By rank-nullity theorem dim(ker(B)) > n — k. Thus, by the fact above

dim (ker(B) NSpan (vy,...,0k+1)) > (n—k)+(k+1)—n > 1.



Thus, there exists a z € ker(B) N Span (vy,...,vk41) \ {0}. Then,
I(A=B)z|l5 = ||Az|; = (z,A"Az) = Raa(z) |zl

> min Raa ) Alzl?

<y€Span(vl,...,vk+1)\{O} (]/) H ||2
2

> oiyq - Ilzll2 -

Thus, there exists a z # 0 such that || (A — B)z||, > 041 - ||z]|,, which implies ||A — B||, >
Ok+1- u

2 Least squares approximation

We discuss another application of singular value decomposition (SVD) of matrices. Let
aiy,...,a, € R be points which we want to fit to a low-dimensional subspace. The goal
is to find a subspace S of R? of dimension at most k to minimize Y, (dist(a;, S))?, where
dist(a;, S) denotes the distance of a; from the closest point in S. As we will see later in the
course, this also the same as Principal Component Analysis (PCA).

We first prove the following.

Claim 2.1 Let uy, ..., uy be an orthonormal basis for S. Then
(dist(ai,S)) ||a,||2 Z(a,,u]>

Proof: Complete uy,...,u; to an orthonormal basis w1, ..., u, for all of R“. For any
point v € R9, where exist ¢y, ...,¢; € R such that v = 2?21 ¢j - uj. To find the distance
dist(v, S) = min,eg ||v — u||, we need to find the point u € S, which is closest to v.

Letu = Z}‘:l b - u be an arbitrary point in S (any u € S can be written in this form, since
ui,...,u, form a basis for S). We have that

2
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lo—ull® = {[Y(c;=b)-uj+ Y ¢j-ujl| = Y (j—b)*+ ) o,
=1 j=k+1 =1 j=k+1

which is minimized when b; = ¢; for all j € [k]. Thus, the cloest point u € Stov =
Z}i:l cj-ujis givenby u = Z;-‘Zl cj-uj,witho —u = Z?:kﬂ cj - uj. Moreover, since uy, . .., Ug
form an orthonormal basis, we have c; = (uj,v) for all j € [d], which gives

d k k
lo—ul® = ) & -y = lol* =} (u,0)’

j=k+1 j=1 j=1

u M&

Using the above for each 4; (as the point v) completes the proof. |
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Thus, the goal is to find a set of k orthonormal vectors uy, . .., u; to maximize the quantity
Yo Z;-;l (aj, uj>2. Let A € R"* be a matrix with the i’ row equal to a!. Then, we need

to find orthonormal vectors u, . . ., u; to maximize || Auy|[5 + - - - + || Aug]|5. We will prove
the following.

Proposition 2.2 Let vy, ..., v, be the right singular vectors of A corresponding to singular values
o1 > -+ >0y > 0. Then, for all k < r and all orthonormal sets of vectors uy, ..., uy

2 2 2 2
[Aug|ly + -+ [[Augl; < [JAvr]]; + -+ + [ Aokl

Thus, the optimal solution is to take S = Span (v, ..., vk). We prove the above by induc-
tion on k. For k = 1, we note that

Aup|? = ATAu,u < max R v) = 62 = ||Av?.
[Awls = (ATAwun) < max Runs(e) = of = [[Ani]3

To prove the induction step for a given k < r, define
Vi, = {v ERY| (v,0,) =0 Vie [k—l]} .
First prove the following claim.

Claim 2.3 Given an orthonormal set uy, ..., uy, there exist orthonormal vectors uf, ..., uf( such
that

- Span (u1,...,ux) = Span (u},..., u}).

2 2 2 2
- [JAug||3 + - A = HA”/1H2+"'+HA”;<H2'

Proof: We only provide a sketch of the proof here. Let S = Span ({11, ..., u;}). Note that
dim (V- ;) =d — k+ 1 (why?) and dim(S) = k. Thus,

dim (Vi NS) > k+(d—k+1)—d = 1.

Hence, there exists u} € Vi, N S with ||u}|| = 1. Completing this to an orthonormal basis
of S gives orthonormal w7, ...,u; with the first and second properties. We claim that this
already implies the third property (why?). ]



Thus, we can assume without loss of generality that the given vectors uy, ..., u; are such
that uy € V- |. Hence,

2 2 2
lAug; < max [|Aof; = of = [|Ave]; -

veVi_ g
lloll=1

Also, by the inductive hypothesis, we have that
lAw |3+ + | Aueally < JAvil+ -+ [[Aveallz

which completes the proof. The above proof can also be used to prove that SVD gives the
best rank k approximation to the matrix A in Frobenius norm. We will see this in the next
homework.
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