

Lecture 8: October 23, 2025

Lecturer: Madhur Tulsiani

1 Low-rank approximation for matrices

Given a matrix $A \in \mathbb{C}^{m \times n}$, we want to find a matrix B of rank at most k which “approximates” A . For now we will consider the notion of approximation in spectral norm i.e., we want to minimize $\|A - B\|_2$, where

$$\|(A - B)\|_2 = \max_{v \neq 0} \frac{\|(A - B)v\|_2}{\|v\|_2}.$$

Here, $\|v\|_2 = \sqrt{\langle v, v \rangle}$ denotes the norm defined by the standard inner product on \mathbb{C}^n . The 2 in the notation $\|\cdot\|_2$ comes from the express from the expression we get by expressing v in the orthonormal basis of the coordinate vectors. If $v = (c_1, \dots, c_n)^T$, then $\|v\|_2 = \left(\sum_{i=1}^n |c_i|^2\right)^{1/2}$ which is simply the Euclidean norm we are familiar with¹. Note that while the norm here seems to be defined in terms of the coefficients, which indeed depend on the choice of the orthonormal basis, the value of the norm is in fact $\sqrt{\langle v, v \rangle}$ which is just a function of the vector itself and not of the basis we are working with. The basis and the coefficients merely provide a convenient way of computing the norm.

SVD also gives the optimal solution for another notion of approximation: minimizing the Frobenius norm $\|A - B\|_F$, which equals $(\sum_{ij} (A_{ij} - B_{ij})^2)^{1/2}$. We will see this later. Let $A = \sum_{i=1}^r w_i v_i^*$ be the singular value decomposition of A and let $\sigma_1 \geq \dots \geq \sigma_r > 0$. If $k \geq r$, we can simply use $B = A$ since $\text{rank}(A) = r$. If $k < r$, we claim that $A_k = \sum_{i=1}^k \sigma_i w_i v_i^*$ is the optimal solution. It is easy to check the following.

Proposition 1.1 $\|A - A_k\|_2 = \sigma_{k+1}$.

Proof: Complete v_1, \dots, v_k to an orthonormal basis v_1, \dots, v_n for \mathbb{C}^n . Given any $v \in \mathbb{C}^n$, we can uniquely express it as $\sum_{i=1}^n c_i \cdot v_i$ for appropriate coefficients c_1, \dots, c_n . Thus, we

¹In general, one can consider the norm $\|v\|_p := (\sum_{i=1}^n |c_i|^p)^{1/p}$ for any $p \geq 1$. While these are indeed valid notions of distance satisfying a triangle inequality for any $p \geq 1$, they do not arise as a square root of an inner product when $p \neq 2$.

have

$$(A - A_k)v = \left(\sum_{j=k+1}^r \sigma_j \cdot w_j v_j^* \right) \left(\sum_{i=1}^n c_i \cdot v_i \right) = \sum_{j=k+1}^r \sum_{i=1}^n c_i \sigma_j \cdot \langle v_j, v_i \rangle \cdot w_j = \sum_{j=k+1}^r c_j \sigma_j \cdot w_j,$$

where the last equality uses the orthonormality of $\{v_1, \dots, v_n\}$. We can also complete w_1, \dots, w_r to an orthonormal basis w_1, \dots, w_m for \mathbb{C}^m . Since $(A - A_k)$ is already expressed in this basis above, we get that

$$\|(A - A_k)v\|_2^2 = \left\| \sum_{j=k+1}^r c_j \sigma_j \cdot w_j \right\|_2^2 = \left\langle \sum_{j=k+1}^r c_j \sigma_j \cdot w_j, \sum_{j=k+1}^r c_j \sigma_j \cdot w_j \right\rangle = \sum_{j=k+1}^r |c_j|^2 \cdot \sigma_j^2.$$

Finally, as in the computation with Rayleigh quotients, we have that for any $v \neq 0$ expressed as $v = \sum_{i=1}^n c_i \cdot v_i$,

$$\frac{\|(A - A_k)v\|_2^2}{\|v\|_2^2} = \frac{\sum_{j=k+1}^r |c_j|^2 \cdot \sigma_j^2}{\sum_{i=1}^n |c_i|^2} \leq \frac{\sum_{j=k+1}^r |c_j|^2 \cdot \sigma_{k+1}^2}{\sum_{i=1}^n |c_i|^2} \leq \sigma_{k+1}^2.$$

This gives that $\|A - A_k\|_2 \leq \sigma_{k+1}$. Check that it is in fact equal to σ_{k+1} (why?) ■

In fact the proof above actually shows the following:

Exercise 1.2 Let $M \in \mathbb{C}^{m \times n}$ be any matrix with singular values $\sigma_1 \geq \dots \geq \sigma_r > 0$. Then, $\|M\|_2 = \sigma_1$ i.e., the spectral norm of a matrix is actually equal to its largest singular value.

Thus, we know that the error of the best approximation B is at most σ_{k+1} . To show the lower bound, we need the following fact.

Exercise 1.3 Let V be a finite-dimensional vector space and let S_1, S_2 be subspaces of V . Then, $S_1 \cap S_2$ is also a subspace and satisfies

$$\dim(S_1 \cap S_2) \geq \dim(S_1) + \dim(S_2) - \dim(V).$$

We can now show the following.

Proposition 1.4 Let $B \in \mathbb{C}^{m \times n}$ have $\text{rank}(B) \leq k$ and let $k < r$. Then $\|A - B\|_2 \geq \sigma_{k+1}$.

Proof: By rank-nullity theorem $\dim(\ker(B)) \geq n - k$. Thus, by the fact above

$$\dim(\ker(B) \cap \text{Span}(v_1, \dots, v_{k+1})) \geq (n - k) + (k + 1) - n \geq 1.$$

Thus, there exists a $z \in \ker(B) \cap \text{Span}(v_1, \dots, v_{k+1}) \setminus \{0\}$. Then,

$$\begin{aligned}\|(A - B)z\|_2^2 &= \|Az\|_2^2 = \langle z, A^*Az \rangle = \mathcal{R}_{A^*A}(z) \cdot \|z\|_2^2 \\ &\geq \left(\min_{y \in \text{Span}(v_1, \dots, v_{k+1}) \setminus \{0\}} \mathcal{R}_{A^*A}(y) \right) \cdot \|z\|_2^2 \\ &\geq \sigma_{k+1}^2 \cdot \|z\|_2^2.\end{aligned}$$

Thus, there exists a $z \neq 0$ such that $\|(A - B)z\|_2 \geq \sigma_{k+1} \cdot \|z\|_2$, which implies $\|A - B\|_2 \geq \sigma_{k+1}$. \blacksquare

2 Least squares approximation

We discuss another application of singular value decomposition (SVD) of matrices. Let $a_1, \dots, a_n \in \mathbb{R}^d$ be points which we want to fit to a low-dimensional subspace. The goal is to find a subspace S of \mathbb{R}^d of dimension at most k to minimize $\sum_{i=1}^n (\text{dist}(a_i, S))^2$, where $\text{dist}(a_i, S)$ denotes the distance of a_i from the closest point in S . As we will see later in the course, this is also the same as Principal Component Analysis (PCA).

We first prove the following.

Claim 2.1 *Let u_1, \dots, u_k be an orthonormal basis for S . Then*

$$(\text{dist}(a_i, S))^2 = \|a_i\|_2^2 - \sum_{j=1}^k \langle a_i, u_j \rangle^2.$$

Proof: Complete u_1, \dots, u_k to an orthonormal basis u_{k+1}, \dots, u_d for all of \mathbb{R}^d . For any point $v \in \mathbb{R}^d$, where exist $c_1, \dots, c_d \in \mathbb{R}$ such that $v = \sum_{j=1}^d c_j \cdot u_j$. To find the distance $\text{dist}(v, S) = \min_{u \in S} \|v - u\|$, we need to find the point $u \in S$, which is closest to v .

Let $u = \sum_{j=1}^k b_j \cdot u_j$ be an arbitrary point in S (any $u \in S$ can be written in this form, since u_1, \dots, u_k form a basis for S). We have that

$$\|v - u\|^2 = \left\| \sum_{j=1}^k (c_j - b_j) \cdot u_j + \sum_{j=k+1}^d c_j \cdot u_j \right\|^2 = \sum_{j=1}^k (c_j - b_j)^2 + \sum_{j=k+1}^d c_j^2,$$

which is minimized when $b_j = c_j$ for all $j \in [k]$. Thus, the closest point $u \in S$ to $v = \sum_{j=1}^d c_j \cdot u_j$ is given by $u = \sum_{j=1}^k c_j \cdot u_j$, with $v - u = \sum_{j=k+1}^d c_j \cdot u_j$. Moreover, since u_1, \dots, u_d form an orthonormal basis, we have $c_j = \langle u_j, v \rangle$ for all $j \in [d]$, which gives

$$\|v - u\|^2 = \sum_{j=k+1}^d c_j^2 = \sum_{j=1}^d c_j^2 - \sum_{j=1}^k c_j^2 = \|v\|^2 - \sum_{j=1}^k \langle u_j, v \rangle^2.$$

Using the above for each a_i (as the point v) completes the proof. \blacksquare

Thus, the goal is to find a set of k orthonormal vectors u_1, \dots, u_k to maximize the quantity $\sum_{i=1}^n \sum_{j=1}^k \langle a_i, u_j \rangle^2$. Let $A \in \mathbb{R}^{n \times d}$ be a matrix with the i^{th} row equal to a_i^T . Then, we need to find orthonormal vectors u_1, \dots, u_k to maximize $\|Au_1\|_2^2 + \dots + \|Au_k\|_2^2$. We will prove the following.

Proposition 2.2 *Let v_1, \dots, v_r be the right singular vectors of A corresponding to singular values $\sigma_1 \geq \dots \geq \sigma_r > 0$. Then, for all $k \leq r$ and all orthonormal sets of vectors u_1, \dots, u_k*

$$\|Au_1\|_2^2 + \dots + \|Au_k\|_2^2 \leq \|Av_1\|_2^2 + \dots + \|Av_k\|_2^2$$

Thus, the optimal solution is to take $S = \text{Span}(v_1, \dots, v_k)$. We prove the above by induction on k . For $k = 1$, we note that

$$\|Au_1\|_2^2 = \langle A^T A u_1, u_1 \rangle \leq \max_{v \in \mathbb{R}^d \setminus \{0\}} \mathcal{R}_{A^T A}(v) = \sigma_1^2 = \|Av_1\|_2^2.$$

To prove the induction step for a given $k \leq r$, define

$$V_{k-1}^\perp = \left\{ v \in \mathbb{R}^d \mid \langle v, v_i \rangle = 0 \ \forall i \in [k-1] \right\}.$$

First prove the following claim.

Claim 2.3 *Given an orthonormal set u_1, \dots, u_k , there exist orthonormal vectors u'_1, \dots, u'_k such that*

- $u'_k \in V_{k-1}^\perp$.
- $\text{Span}(u_1, \dots, u_k) = \text{Span}(u'_1, \dots, u'_k)$.
- $\|Au_1\|_2^2 + \dots + \|Au_k\|_2^2 = \|Au'_1\|_2^2 + \dots + \|Au'_k\|_2^2$.

Proof: We only provide a sketch of the proof here. Let $S = \text{Span}(\{u_1, \dots, u_k\})$. Note that $\dim(V_{k-1}^\perp) = d - k + 1$ (why?) and $\dim(S) = k$. Thus,

$$\dim(V_{k-1}^\perp \cap S) \geq k + (d - k + 1) - d = 1.$$

Hence, there exists $u'_k \in V_{k-1}^\perp \cap S$ with $\|u'_k\| = 1$. Completing this to an orthonormal basis of S gives orthonormal u'_1, \dots, u'_k with the first and second properties. We claim that this already implies the third property (why?). \blacksquare

Thus, we can assume without loss of generality that the given vectors u_1, \dots, u_k are such that $u_k \in V_{k-1}^\perp$. Hence,

$$\|Au_k\|_2^2 \leq \max_{\substack{v \in V_{k-1}^\perp \\ \|v\|=1}} \|Av\|_2^2 = \sigma_k^2 = \|Av_k\|_2^2.$$

Also, by the inductive hypothesis, we have that

$$\|Au_1\|_2^2 + \dots + \|Au_{k-1}\|_2^2 \leq \|Av_1\|_2^2 + \dots + \|Av_{k-1}\|_2^2,$$

which completes the proof. The above proof can also be used to prove that SVD gives the best rank k approximation to the matrix A in Frobenius norm. We will see this in the next homework.