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1 Low-rank approximation for matrices

Given a matrix A ∈ Cm×n, we want to find a matrix B of rank at most k which “approxi-
mates” A. For now we will consider the notion of approximation in spectral norm i.e., we
want to minimize ∥A − B∥2, where

∥(A − B)∥2 = max
v ̸=0

∥(A − B)v∥2
∥v∥2

.

Here, ∥v∥2 =
√
⟨v, v⟩ denotes the norm defined by the standard inner product on Cn.

The 2 in the notation ∥·∥2 comes from the express from the expression we get by ex-
pressing v in the orthonormal basis of the coordinate vectors. If v = (c1, . . . , cn)T, then

∥v∥2 =
(

∑n
i=1 |ci|2

)1/2
which is simply the Euclidean norm we are familiar with 1. Note

that while the norm here seems to be defined in terms of the coefficients, which indeed
depend on the choice of the orthonormal basis, the value of the norm is in fact

√
⟨v, v⟩

which is just a function of the vector itself and not of the basis we are working with. The basis and
the coefficients merely provide a convenient way of computing the norm.

SVD also gives the optimal solution for another notion of approximation: minimizing the
Frobenius norm ∥A − B∥F, which equals (∑ij(Aij − Bij)

2)1/2. We will see this later. Let
A = ∑r

i=1 wiv∗i be the singular value decomposition of A and let σ1 ≥ · · · ≥ σr > 0. If k ≥ r,
we can simply use B = A since rank(A) = r. If k < r, we claim that Ak = ∑k

i=1 σiwiv∗i is
the optimal solution. If is easy to check the following.

Proposition 1.1 ∥A − Ak∥2 = σk+1.

Proof: Complete v1, . . . , vk to an orthonormal basis v1, . . . , vn for Cn. Given any v ∈ Cn,
we can uniquely express it as ∑n

i=1 ci · vi for appropriate coefficients c1, . . . , cn. Thus, we

1In general, one can consider the norm ∥v∥p :=
(
∑n

i=1 |ci|p
)1/p for any p ≥ 1. While these are indeed valid

notions of distance satisfying a triangle inequality for any p ≥ 1, they do not arise as a square root of an inner
product when p ̸= 2.
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have

(A− Ak)v =

(
r

∑
j=k+1

σj · wjvj∗
)(

n

∑
i=1

ci · vi

)
=

r

∑
j=k+1

n

∑
i=1

ciσj ·
〈
vj, vi

〉
·wj =

r

∑
j=k+1

cjσj ·wj ,

where the last equality uses the orthonormality of {v1, . . . , vn}. We can also complete
w1, . . . , wr to an orthonormal basis w1, . . . , wm for Cm. Since (A − Ak) is already expressed
in this basis above, we get that

∥(A − Ak)v∥2
2 =

∥∥∥∥∥ r

∑
j=k+1

cjσj · wj

∥∥∥∥∥
2

2

=

〈
r

∑
j=k+1

cjσj · wj,
r

∑
j=k+1

cjσj · wj

〉
=

r

∑
j=k+1

∣∣cj
∣∣2 · σ2

j .

Finally, as in the computation with Rayleigh quotients, we have that for any v ̸= 0 ex-
pressed as v = ∑n

i=1 ci · vi,

∥(A − Ak)v∥2
2

∥v∥2
2

=
∑r

j=k+1

∣∣cj
∣∣2 · σ2

j

∑n
i=1 |ci|2

≤
∑r

j=k+1

∣∣cj
∣∣2 · σ2

k+1

∑n
i=1 |ci|2

≤ σ2
k+1 .

This gives that ∥A − Ak∥2 ≤ σk+1. Check that it is in fact equal to σk+1 (why?)

In fact the proof above actually shows the following:

Exercise 1.2 Let M ∈ Cm×n be any matrix with singular values σ1 ≥ · · · σr > 0. Then, ∥M∥2 =
σ1 i.e., the spectral norm of a matrix is actually equal to its largest singular value.

Thus, we know that the error of the best approximation B is at most σk+1. To show the
lower bound, we need the following fact.

Exercise 1.3 Let V be a finite-dimensional vector space and let S1, S2 be subspaces of V. Then,
S1 ∩ S2 is also a subspace and satisfies

dim(S1 ∩ S2) ≥ dim(S1) + dim(S2)− dim(V) .

We can now show the following.

Proposition 1.4 Let B ∈ Cm×n have rank(B) ≤ k and let k < r. Then ∥A − B∥2 ≥ σk+1.

Proof: By rank-nullity theorem dim(ker(B)) ≥ n − k. Thus, by the fact above

dim (ker(B) ∩ Span (v1, . . . , vk+1)) ≥ (n − k) + (k + 1)− n ≥ 1 .
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Thus, there exists a z ∈ ker(B) ∩ Span (v1, . . . , vk+1) \ {0}. Then,

∥(A − B)z∥2
2 = ∥Az∥2

2 = ⟨z, A∗Az⟩ = RA∗A(z) · ∥z∥2
2

≥
(

min
y∈Span(v1,...,vk+1)\{0}

RA∗A(y)
)
· ∥z∥2

2

≥ σ2
k+1 · ∥z∥2

2 .

Thus, there exists a z ̸= 0 such that ∥(A − B)z∥2 ≥ σk+1 · ∥z∥2, which implies ∥A − B∥2 ≥
σk+1.

2 Least squares approximation

We discuss another application of singular value decomposition (SVD) of matrices. Let
a1, . . . , an ∈ Rd be points which we want to fit to a low-dimensional subspace. The goal
is to find a subspace S of Rd of dimension at most k to minimize ∑n

i=1 (dist(ai, S))2, where
dist(ai, S) denotes the distance of ai from the closest point in S. As we will see later in the
course, this also the same as Principal Component Analysis (PCA).

We first prove the following.

Claim 2.1 Let u1, . . . , uk be an orthonormal basis for S. Then

(dist(ai, S))2 = ∥ai∥2
2 −

k

∑
j=1

〈
ai, uj

〉2 .

Proof: Complete u1, . . . , uk to an orthonormal basis uk+1, . . . , ud for all of Rd. For any
point v ∈ Rd, where exist c1, . . . , cd ∈ R such that v = ∑d

j=1 cj · uj. To find the distance
dist(v, S) = minu∈S ∥v − u∥, we need to find the point u ∈ S, which is closest to v.

Let u = ∑k
j=1 bj · uk be an arbitrary point in S (any u ∈ S can be written in this form, since

u1, . . . , uk form a basis for S). We have that

∥v − u∥2 =

∥∥∥∥∥ k

∑
j=1

(cj − bj) · uj +
d

∑
j=k+1

cj · uj

∥∥∥∥∥
2

=
k

∑
j=1

(cj − bj)
2 +

d

∑
j=k+1

c2
j ,

which is minimized when bj = cj for all j ∈ [k]. Thus, the cloest point u ∈ S to v =

∑d
j=1 cj · uj is given by u = ∑k

j=1 cj · uj, with v− u = ∑d
j=k+1 cj · uj. Moreover, since u1, . . . , ud

form an orthonormal basis, we have cj =
〈
uj, v

〉
for all j ∈ [d], which gives

∥v − u∥2 =
d

∑
j=k+1

c2
j =

d

∑
j=1

c2
j −

k

∑
j=1

c2
j = ∥v∥2 −

k

∑
j=1

〈
uj, v

〉2 .

Using the above for each ai (as the point v) completes the proof.
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Thus, the goal is to find a set of k orthonormal vectors u1, . . . , uk to maximize the quantity
∑n

i=1 ∑k
j=1
〈

ai, uj
〉2. Let A ∈ Rn×d be a matrix with the ith row equal to aT

i . Then, we need

to find orthonormal vectors u1, . . . , uk to maximize ∥Au1∥2
2 + · · ·+ ∥Auk∥2

2. We will prove
the following.

Proposition 2.2 Let v1, . . . , vr be the right singular vectors of A corresponding to singular values
σ1 ≥ · · · ≥ σr > 0. Then, for all k ≤ r and all orthonormal sets of vectors u1, . . . , uk

∥Au1∥2
2 + · · ·+ ∥Auk∥2

2 ≤ ∥Av1∥2
2 + · · ·+ ∥Avk∥2

2

Thus, the optimal solution is to take S = Span (v1, . . . , vk). We prove the above by induc-
tion on k. For k = 1, we note that

∥Au1∥2
2 =

〈
AT Au1, u1

〉
≤ max

v∈Rd\{0}
RAT A(v) = σ2

1 = ∥Av1∥2
2 .

To prove the induction step for a given k ≤ r, define

V⊥
k−1 =

{
v ∈ Rd | ⟨v, vi⟩ = 0 ∀i ∈ [k − 1]

}
.

First prove the following claim.

Claim 2.3 Given an orthonormal set u1, . . . , uk, there exist orthonormal vectors u′
1, . . . , u′

k such
that

- u′
k ∈ V⊥

k−1.

- Span (u1, . . . , uk) = Span
(
u′

1, . . . , u′
k

)
.

- ∥Au1∥2
2 + · · ·+ ∥Auk∥2

2 = ∥Au′
1∥

2
2 + · · ·+

∥∥Au′
k

∥∥2
2.

Proof: We only provide a sketch of the proof here. Let S = Span ({u1, . . . , uk}). Note that
dim

(
V⊥

k−1

)
= d − k + 1 (why?) and dim(S) = k. Thus,

dim
(

V⊥
k−1 ∩ S

)
≥ k + (d − k + 1)− d = 1 .

Hence, there exists u′
k ∈ V⊥

k−1 ∩ S with
∥∥u′

k

∥∥ = 1. Completing this to an orthonormal basis
of S gives orthonormal u′

1, . . . , u′
k with the first and second properties. We claim that this

already implies the third property (why?).
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Thus, we can assume without loss of generality that the given vectors u1, . . . , uk are such
that uk ∈ V⊥

k−1. Hence,

∥Auk∥2
2 ≤ max

v∈V⊥
k−1

∥v∥=1

∥Av∥2
2 = σ2

k = ∥Avk∥2
2 .

Also, by the inductive hypothesis, we have that

∥Au1∥2
2 + · · ·+ ∥Auk−1∥2

2 ≤ ∥Av1∥2
2 + · · ·+ ∥Avk−1∥2

2 ,

which completes the proof. The above proof can also be used to prove that SVD gives the
best rank k approximation to the matrix A in Frobenius norm. We will see this in the next
homework.
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