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1 Singular Value Decomposition

Let V, W be finite-dimensional inner product spaces and let φ : V → W be a linear
transformation. Since the domain and range of φ are different, we cannot analyze it in
terms of eigenvectors. However, we can use the spectral theorem to analyze the operators
φ∗φ : V → V and φφ∗ : W → W and use their eigenvectors to derive a nice decomposition
of φ. This is known as the singular value decomposition (SVD) of φ.

Proposition 1.1 Let φ : V → W be a linear transformation. Then φ∗φ : V → V and φφ∗ :
W → W are self-adjoint positive semidefinite linear operators with the same non-zero eigenvalues.

Proof: The self-adjointness and positive semidefiniteness of the operators φφ∗ and φ∗φ
follows from the exercise characterizing positive semidefinite operators in the previous
lecture. Specifically, we can see that for any w1, w2 ∈ W,

⟨w1, φφ∗(w2)⟩ = ⟨w1, φ(φ∗(w2))⟩ = ⟨φ∗(w1), φ∗(w2)⟩ = ⟨φφ∗(w1), w2⟩ .

This gives that φφ∗ is self-adjoint. Similarly, we get that for any w ∈ W

⟨w, φφ∗(w)⟩ = ⟨w, φ(φ∗(w))⟩ = ⟨φ∗(w), φ∗(w)⟩ ≥ 0 .

This implies that the Rayleigh quotient Rφφ∗ is non-negative for any w ̸= 0 which implies
that φφ∗ is positive semidefinite. The proof for φ∗φ is identical (using the fact that (φ∗)∗ =
φ).

Let λ ̸= 0 be an eigenvalue of φ∗φ. Then there exists v ̸= 0 such that φ∗φ(v) = λ · v.
Applying φ on both sides, we get φφ∗(φ(v)) = λ · φ(v). However, note that if λ ̸= 0 then
φ(v) cannot be zero (why?) Thus φ(v) is an eigenvector of φφ∗ with the same eigenvalue
λ.

We can notice the following from the proof of the above proposition.

Proposition 1.2 Let v be an eigenvector of φ∗φ with eigenvalue λ ̸= 0. Then φ(v) is an eigen-
vector of φφ∗ with eigenvalue λ. Similarly, if w is an eigenvector of φφ∗ with eigenvalue λ ̸= 0,
then φ∗(w) is an eigenvector of φ∗φ with eigenvalue λ.
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We will use these properties to develop a simple way of understanding the action of linear
transformations φ : V → W, mapping one inner product space to another. We can also
conclude the following.

Proposition 1.3 Let the subspaces Vλ and Wλ be defined as

Vλ := {v ∈ V | φ∗φ(v) = λ · v} and Wλ := {w ∈ W | φφ∗(w) = λ · w} .

Then for any λ ̸= 0, dim(Vλ) = dim(Wλ).

Using the above properties, we can prove the following useful proposition, which extends
the concept of eigenvectors to cases when we have φ : V → W and it might not be possible
to define eigenvectors since V ̸= W (also φ may not be self-adjoint so we may not get
orthonormal eigenvectors).

Proposition 1.4 Let σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
r > 0 be the non-zero eigenvalues of φ∗φ, and let

v1, . . . , vr be a corresponding orthonormal eigenvectors (since φ∗φ is self-adjoint, these are a subset
of some orthonormal eigenbasis). For w1, . . . , wr defined as wi = φ(vi)/σi, we have that

1. {w1, . . . , wr} form an orthonormal set.

2. For all i ∈ [r]
φ(vi) = σi · wi and φ∗(wi) = σi · vi .

Proof: For any i, j ∈ [r], i ̸= j, we note that

〈
wi, wj

〉
=

〈
φ(vi)

σi
,

φ(vj)

σj

〉
=

1
σiσj

·
〈

φ(vi), φ(vj)
〉
=

1
σiσj

·
〈

φ∗φ(vi), vj
〉

=
σi

σj
·
〈
vi, vj

〉
= 0 .

Thus, the vectors {w1, . . . , wr} form an orthonormal set. We also get φ(vi) = σi · wi from
the definition of wi. For proving φ∗(wi) = vi, we note that

φ∗(wi) = φ∗
(

φ(vi

σi

)
=

1
σi

· φ∗φ(vi) =
σ2

i
σi

· vi = σi · vi ,

which completes the proof.

The values σ1, . . . , σr are known as the (non-zero) singular values of φ. For each i ∈ [r], the
vector vi is known as the right singular vector and wi is known as the left singular vector
corresponding to the singular value σi.
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Proposition 1.5 Let r be the number of non-zero eigenvalues of φ∗φ. Then,

rank(φ) = dim(im(φ)) = r .

Using the above, we can write φ in a particularly convenient form. We first need the
following definition.

Definition 1.6 Let V, W be inner product spaces and let v ∈ V, w ∈ W be any two vectors. The
outer product of w with v, denoted as |w⟩ ⟨v|, is a linear transformation from V to W such that

|w⟩ ⟨v| (u) := ⟨v, u⟩ · w .

Note that if ∥v∥ = 1, then |w⟩ ⟨v| (v) = w and |w⟩ ⟨v| (u) = 0 for all u ⊥ v.

Exercise 1.7 Show that for any v ∈ V and w ∈ W, we have

rank (|w⟩ ⟨v|) = dim (im (|w⟩ ⟨v|)) = 1 .

We can then write φ : V → W in terms of outer products of its singular vectors.

Proposition 1.8 Let V, W be finite dimensional inner product spaces and let φ : V → W be a
linear transformation with non-zero singular values σ1, . . . , σr, right singular vectors v1, . . . , vr
and left singular vectors w1, . . . , wr. Then,

φ =
r

∑
i=1

σi · |wi⟩ ⟨vi| .

Exercise 1.9 If φ : V → V is a self-adjoint operator with dim(V) = n, then the real spectral
theorem proves the existence of an orthonormal basis of eigenvectors, say {v1, . . . , vn} with corre-
sponding eigenvalues λ1, . . . , λn. Check that in this case, we can write φ as

φ =
n

∑
i=1

λi · |vi⟩ ⟨vi| .

Note that while the above decomposition has possibly negative coefficients (the λis), the singular
value decomposition only has positive coefficients (the σis). Why is this the case?

2 Singular Value Decomposition for matrices

Using the previous discussion, we can write matrices in convenient form. Let A ∈ Cm×n,
which can be thought of as an operator from Cn to Cm. Let σ1, . . . , σr be the non-zero singu-
lar values and let v1, . . . , vr and w1, . . . , wr be the right and left singular vectors respectively.
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Note that V = Cn and W = Cm and v ∈ V, w ∈ W, we can write the operator |w⟩ ⟨v| as the
matrix wv∗, there v∗ denotes vT. This is because for any u ∈ V, wv∗u = w(v∗u) = ⟨v, u⟩ ·w.
Thus, we can write

A =
r

∑
i=1

σi · wiv∗i .

Let W ∈ Cm×r be a matrix with w1, . . . , wr as columns, such that ith column equals wi.
Similarly, let V ∈ Cn×r be a matrix with v1, . . . , vr as the columns. Let Σ ∈ Cr×r be a
diagonal matrix with Σii = σi. Then, check that the above expression for A can also be
written as

A = WΣV∗ ,

where V∗ = VT as before.

We can also complete the bases {v1, . . . , vr} and {w1, . . . , wr} to bases for Cn and Cm re-
spectively and write the above in terms of unitary matrices.

Definition 2.1 A matrix U ∈ Cn×n is known as a unitary matrix if the columns of U form an
orthonormal basis for Cn.

Proposition 2.2 Let U ∈ Cn×n be a unitary matrix. Then UU∗ = U∗U = id, where id denotes
the identity matrix.

Let {v1, . . . , vn} be a completion of {v1, . . . , vr} to an orthonormal basis of Cn, and let Vn ∈
Cn×n be a unitary matrix with {v1, . . . , vn} as columns. Similarly, let Wm ∈ Cm×m be a
unitary matrix with a completion of {w1, . . . , wr} as columns. Let Σ′ ∈ Cm×n be a matrix
with Σ′

ii = σi if i ≤ r, and all other entries equal to zero. Then, we can also write

A = WmΣ′V∗
n .
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