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1 Singular Value Decomposition

Let V,W be finite-dimensional inner product spaces and let ¢ : V. — W be a linear
transformation. Since the domain and range of ¢ are different, we cannot analyze it in
terms of eigenvectors. However, we can use the spectral theorem to analyze the operators
"¢ :V — Vand ¢¢* : W — W and use their eigenvectors to derive a nice decomposition
of ¢. This is known as the singular value decomposition (SVD) of ¢.

Proposition 1.1 Let ¢ : V. — W be a linear transformation. Then ¢*¢ : V. — V and @¢* :
W — W are self-adjoint positive semidefinite linear operators with the same non-zero eigenvalues.

Proof: The self-adjointness and positive semidefiniteness of the operators ¢¢* and ¢*¢
follows from the exercise characterizing positive semidefinite operators in the previous
lecture. Specifically, we can see that for any w;, w, € W,

(wi, 99" (w2)) = (w1, 9(¢"(w2))) = (97 (w1), ¢"(w2)) = (pg"(w1),w2) .
This gives that g¢* is self-adjoint. Similarly, we get that for any w € W

(w, 99" (w)) = (w, @(¢"(w))) = (9" (w), ¢"(w)) > 0.

This implies that the Rayleigh quotient R y,+ is non-negative for any w # 0 which implies
that p¢* is positive semidefinite. The proof for ¢* ¢ is identical (using the fact that (¢*)* =
P)-

Let A # 0 be an eigenvalue of ¢*¢. Then there exists v # 0 such that ¢*¢(v) = A - 0.
Applying ¢ on both sides, we get p¢*(¢(v)) = A - ¢(v). However, note that if A # 0 then
¢(v) cannot be zero (why?) Thus ¢(v) is an eigenvector of p¢* with the same eigenvalue
A [

We can notice the following from the proof of the above proposition.

Proposition 1.2 Let v be an eigenvector of ¢* ¢ with eigenvalue A # 0. Then ¢(v) is an eigen-
vector of p@* with eigenvalue A. Similarly, if w is an eigenvector of @™ with eigenvalue A # 0,
then ¢* (w) is an eigenvector of ¢* @ with eigenvalue A.
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We will use these properties to develop a simple way of understanding the action of linear
transformations ¢ : V. — W, mapping one inner product space to another. We can also
conclude the following.

Proposition 1.3 Let the subspaces V) and W), be defined as
Vii={veV|¢pv)=A-v} and Wy = {weW]|gpp*(w) =A-w}.
Then for any A # 0, dim(V)) = dim(W,).

Using the above properties, we can prove the following useful proposition, which extends
the concept of eigenvectors to cases when we have ¢ : V. — W and it might not be possible
to define eigenvectors since V' # W (also ¢ may not be self-adjoint so we may not get
orthonormal eigenvectors).

Proposition 1.4 Let (712 > (722 > e > Urz > 0 be the non-zero eigenvalues of ¢* ¢, and let
v1, ..., bea corresponding orthonormal eigenvectors (since ¢* ¢ is self-adjoint, these are a subset
of some orthonormal eigenbasis). For wy, . .., w, defined as w; = ¢(v;)/0;, we have that

1. {wy,...,w,} form an orthonormal set.

2. Foralli € [r]
¢(v)) = o;-w; and @*(w;) = 0;-v;.

Proof: Foranyi,j € [r],i # j, we note that

(o) = <<”(”’(1)> = L o) @) = = (g"p0i),v))

a ' o 0i0 7i0;j

= Z;-<Z)i,0]‘> = 0.

Thus, the vectors {w;, ..., w,} form an orthonormal set. We also get ¢(v;) = 0; - w; from
the definition of w;. For proving ¢*(w;) = v;, we note that

* * Ui 1 * i
" (wi) = ¢ <qo() = —¢'p(vi)) = = -vi = 00,

o i i
which completes the proof. [
The values 0y, . . ., 0, are known as the (non-zero) singular values of ¢. For each i € [r], the

vector v; is known as the right singular vector and w; is known as the left singular vector
corresponding to the singular value ;.



Proposition 1.5 Let r be the number of non-zero eigenvalues of ¢*¢. Then,
rank(¢) = dim(im(¢)) = r.

Using the above, we can write ¢ in a particularly convenient form. We first need the
following definition.

Definition 1.6 Let V, W be inner product spaces and let v € V,w € W be any two vectors. The
outer product of w with v, denoted as |w) (v|, is a linear transformation from V to W such that

) (o] (u) = (0,1) -w.
Note that if ||v|| = 1, then |w) (v| (v) = w and |w) (v| (1) =0 forallu L v.
Exercise 1.7 Show that for any v € V and w € W, we have
rank (|w) (v|) = dim (im (Jw) (v])) = 1.
We can then write ¢ : V. — W in terms of outer products of its singular vectors.

Proposition 1.8 Let V, W be finite dimensional inner product spaces and let ¢ : V. — W be a
linear transformation with non-zero singular values o, . .., 0y, right singular vectors vy, ..., v,
and left singular vectors wy, ..., wy. Then,

¢ = E(Ti'|wi> (vi .
i=1

Exercise 1.9 If ¢ : V — V is a self-adjoint operator with dim(V') = n, then the real spectral
theorem proves the existence of an orthonormal basis of eigenvectors, say {v1, ..., vy, } with corre-
sponding eigenvalues A1, . .., A,. Check that in this case, we can write ¢ as

o = Y Ai-|o) (vil .
i=1

Note that while the above decomposition has possibly negative coefficients (the A;s), the singular
value decomposition only has positive coefficients (the o;s). Why is this the case?

2 Singular Value Decomposition for matrices
Using the previous discussion, we can write matrices in convenient form. Let A € C"™*",

which can be thought of as an operator from C" to C™. Let oy, . . ., 0; be the non-zero singu-
lar values and let vy, ..., v, and wy, . . ., w, be the right and left singular vectors respectively.
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Note that V =C"and W = C" and v € V,w € W, we can write the operator |w) (v| as the
matrix wv*, there v* denotes v. This is because for any u € V, wv*u = w(v*u) = (v, u) - w.

Thus, we can write
r

A=Y o;-wp;.
i=1
Let W € C"™*" be a matrix with wy, ..., w, as columns, such that i column equals w;.
Similarly, let V' € C"*" be a matrix with vy,...,v, as the columns. Let X € C"™" be a
diagonal matrix with X;; = ¢;. Then, check that the above expression for A can also be
written as
A = WXIV*,

where V* = VT as before.

We can also complete the bases {vy,...,v,} and {wy,...,w,} to bases for C" and C™ re-
spectively and write the above in terms of unitary matrices.

Definition 2.1 A matrix U € C"*" is known as a unitary matrix if the columns of U form an
orthonormal basis for C".

Proposition 2.2 Let U € C"*" be a unitary matrix. Then UU* = U*U = id, where id denotes
the identity matrix.

Let {v1,...,v,} be a completion of {v,...,v,} to an orthonormal basis of C", and let V,, €
C"*" be a unitary matrix with {vy,...,v,} as columns. Similarly, let W,, € C"™*" be a
unitary matrix with a completion of {wy, ..., w,} as columns. Let X’ € C"*" be a matrix
with X}, = 07 if i < r, and all other entries equal to zero. Then, we can also write

A=W,Z'V".
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